Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = clock-steering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2841 KiB  
Article
A Multi-Constraint Co-Optimization LQG Frequency Steering Method for LEO Satellite Oscillators
by Dongdong Wang, Wenhe Liao, Bin Liu and Qianghua Yu
Sensors 2025, 25(15), 4733; https://doi.org/10.3390/s25154733 (registering DOI) - 31 Jul 2025
Abstract
High-precision time–frequency systems are essential for low Earth orbit (LEO) navigation satellites to achieve real-time (RT) centimeter-level positioning services. However, subject to stringent size, power, and cost constraints, LEO satellites are typically equipped with oven-controlled crystal oscillators (OCXOs) as the system clock. The [...] Read more.
High-precision time–frequency systems are essential for low Earth orbit (LEO) navigation satellites to achieve real-time (RT) centimeter-level positioning services. However, subject to stringent size, power, and cost constraints, LEO satellites are typically equipped with oven-controlled crystal oscillators (OCXOs) as the system clock. The inherent long-term stability of OCXOs leads to rapid clock error accumulation, severely degrading positioning accuracy. To simultaneously balance multi-dimensional requirements such as clock bias accuracy, and frequency stability and phase continuity, this study proposes a linear quadratic Gaussian (LQG) frequency precision steering method that integrates a four-dimensional constraint integrated (FDCI) model and hierarchical weight optimization. An improved system error model is refined to quantify the covariance components (Σ11, Σ22) of the LQG closed-loop control system. Then, based on the FDCI model that explicitly incorporates quantization noise, frequency adjustment, frequency stability, and clock bias variance, a priority-driven collaborative optimization mechanism systematically determines the weight matrices, ensuring a robust tradeoff among multiple performance criteria. Experiments on OCXO payload products, with micro-step actuation, demonstrate that the proposed method reduces the clock error RMS to 0.14 ns and achieves multi-timescale stability enhancement. The short-to-long-term frequency stability reaches 9.38 × 10−13 at 100 s, and long-term frequency stability is 4.22 × 10−14 at 10,000 s, representing three orders of magnitude enhancement over a free-running OCXO. Compared to conventional PID control (clock bias RMS 0.38 ns) and pure Kalman filtering (stability 6.1 × 10−13 at 10,000 s), the proposed method reduces clock bias by 37% and improves stability by 93%. The impact of quantization noise on short-term stability (1–40 s) is contained within 13%. The principal novelty arises from the systematic integration of theoretical constraints and performance optimization within a unified framework. This approach comprehensively enhances the time–frequency performance of OCXOs, providing a low-cost, high-precision timing–frequency reference solution for LEO satellites. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

32 pages, 1019 KiB  
Article
Time Scale in Alternative Positioning, Navigation, and Timing: New Dynamic Radio Resource Assignments and Clock Steering Strategies
by Khanh Pham
Information 2025, 16(3), 210; https://doi.org/10.3390/info16030210 - 9 Mar 2025
Viewed by 884
Abstract
Terrestrial and satellite communications, tactical data links, positioning, navigation, and timing (PNT), as well as distributed sensing will continue to require precise timing and the ability to synchronize and disseminate time effectively. However, the supply of space-qualified clocks that meet Global Navigation Satellite [...] Read more.
Terrestrial and satellite communications, tactical data links, positioning, navigation, and timing (PNT), as well as distributed sensing will continue to require precise timing and the ability to synchronize and disseminate time effectively. However, the supply of space-qualified clocks that meet Global Navigation Satellite Systems (GNSS)-level performance standards is limited. As the awareness of potential disruptions to GNSS due to adversarial actions grows, the current reliance on GNSS-level timing appears costly and outdated. This is especially relevant given the benefits of developing robust and stable time scale references in orbit, especially as various alternatives to GNSS are being explored. The onboard realization of clock ensembles is particularly promising for applications such as those providing the on-demand dissemination of a reference time scale for navigation services via a proliferated Low-Earth Orbit (pLEO) constellation. This article investigates potential inter-satellite network architectures for coordinating time and frequency across pLEO platforms. These architectures dynamically allocate radio resources for clock data transport based on the requirements for pLEO time scale formations. Additionally, this work proposes a model-based control system for wireless networked timekeeping systems. It envisions the optimal placement of critical information concerning the implicit ensemble mean (IEM) estimation across a multi-platform clock ensemble, which can offer better stability than relying on any single ensemble member. This approach aims to reduce data traffic flexibly. By making the IEM estimation sensor more intelligent and running it on the anchor platform while also optimizing the steering of remote frequency standards on participating platforms, the networked control system can better predict the future behavior of local reference clocks paired with low-noise oscillators. This system would then send precise IEM estimation information at critical moments to ensure a common pLEO time scale is realized across all participating platforms. Clock steering is essential for establishing these time scales, and the effectiveness of the realization depends on the selected control intervals and steering techniques. To enhance performance reliability beyond what the existing Linear Quadratic Gaussian (LQG) control technique can provide, the minimal-cost-variance (MCV) control theory is proposed for clock steering operations. The steering process enabled by the MCV control technique significantly impacts the overall performance reliability of the time scale, which is generated by the onboard ensemble of compact, lightweight, and low-power clocks. This is achieved by minimizing the variance of the chi-squared random performance of LQG control while maintaining a constraint on its mean. Full article
(This article belongs to the Special Issue Sensing and Wireless Communications)
Show Figures

Graphical abstract

21 pages, 4154 KiB  
Article
Utilization of Anabolic Implants and Individual Supplementation on Muscle Growth and Protein Turnover During Backgrounding of Beef Steers
by J. Luke Jacobs, Elizabeth Leonard, Nishanth Tharayil and Susan K. Duckett
Animals 2025, 15(4), 513; https://doi.org/10.3390/ani15040513 - 11 Feb 2025
Viewed by 966
Abstract
Weaned Angus-cross steers (n = 69; body weight [BW] = 233 ± 29 kg) were used for the following purposes: (1) develop an assay to measure 3-methylhistidine (3MH) in blood samples to monitor changes in protein turnover, and (2) evaluate the effects of [...] Read more.
Weaned Angus-cross steers (n = 69; body weight [BW] = 233 ± 29 kg) were used for the following purposes: (1) develop an assay to measure 3-methylhistidine (3MH) in blood samples to monitor changes in protein turnover, and (2) evaluate the effects of an implant (Revalor-G, 40 mg of trenbolone acetate, 8 mg of estradiol) or an implant plus individual supplementation via SuperSmart Feeder (SSF; C-Lock Inc., Rapid City, SD, USA) on animal growth, muscle growth, and nitrogen retention patterns in backgrounded beef steers. Steers were blocked by weight, trained to precision supplementation via SSF, and then assigned to one of three treatments: (1) grazing only [G], (2) grazing with implant [GI], or (3) grazing with implant plus individual animal supplementation via SSF at 0.75% BW [GIS] for 56 d of grazing study. Steers grazed a cowpea and pearl millet mixture until d 42, when forage became limiting, and steers were transitioned to an oat and annual ryegrass baleage. Steers were weighed and blood was collected every 14 d to determine plasma urea nitrogen (PUN), creatinine (CREAT), and 3-methylhistidine (3MH) concentrations. Ultrasound measurements of ribeye area (REA) were collected on d 0, 28, and 56. Data were analyzed using the GLIMMIX with treatment, day, and two-way interaction in the model. A novel, robust method for the determination of 3MH was developed and validated. The development of this 3MH method allows us to monitor changes in protein turnover in cattle over time, a metric which is related to production efficiency. A treatment-by-day interaction (p = 0.0050) was observed for BW and REA. Steer BW did not differ (p > 0.05) on d 0, 14, or 28 between treatments; however, on d 42, GI and GIS steers had a greater (p < 0.01) BW than G steers. On d 56, BW was greater (p < 0.0001) for GIS than GI and G, which not differ (p > 0.05). Total BW gain during the 56 d study was greater (p < 0.001) by 54% for GIS compared to GI or G. For GI, the total BW gain was greater (p < 0.01) by 18% compared to G. On d 56, the REA of GI and GIS steers was greater (p < 0.001) than of G steers. Steers in the GI treatment group had a greater PUN and PUN–CREAT ratio concentrations than the GIS steers. Both G and GI steers had greater 3-methylhistidine (3MH) concentrations compared to GIS steers on d 28. Our results demonstrate that the supplementation of implanted steers improves growth and improves nitrogen utilization during backgrounding on forage diets. This research illustrates that animal and muscle growth may be limited in grazing animals implanted with combination implants (estrogenic and androgenic compounds) when supplementation is not included. Full article
Show Figures

Figure 1

13 pages, 1634 KiB  
Article
The Effect of Time Display Format on Cognitive Performance of Integrated Meteorological Radar Information
by Bo Liu, Yunhe Wang and Yongxin Li
Behav. Sci. 2024, 14(9), 847; https://doi.org/10.3390/bs14090847 - 20 Sep 2024
Viewed by 1499
Abstract
A proper time display format is essential for pilots to understand integrated meteorological radar information, thereby making informed flying decisions and steering clear of hazardous weather. Previous studies on time display format supported the advantages of digital format, while some studies found that [...] Read more.
A proper time display format is essential for pilots to understand integrated meteorological radar information, thereby making informed flying decisions and steering clear of hazardous weather. Previous studies on time display format supported the advantages of digital format, while some studies found that analog clock format is superior to digital format. This study explored the effect of time display format on the cognitive performance of integrated meteorological radar information through two experiments. Experiment 1 first examined the effects of digital and analog clock displays on the timing of individual processing advance or delay changes in a general scenario. Then, Experiment 2 was conducted in a simulated flight scenario to investigate the advantages and disadvantages of digital and analog clock display in delay time processing with and without time pressure. The results showed the following: (1) Analog clock has more advantages than digital display format in processing the varying time difference. (2) Whether with or without time pressure, analog clock is more conducive to individual cognition of integrated meteorological radar information than digital time display. (3) The length of delay time is an important factor affecting individual time cognition, and it can also affect the cognition of radar information. The longer the delay time, the more difficult it is to identify the time and understand the information. These findings provide a certain reference for the design of the integrated meteorological radar information display interface. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

13 pages, 5155 KiB  
Article
A Linear Regression-Based Methodology to Improve the Stability of a Low-Cost GPS Receiver Using the Precision Timing Signals from an Atomic Clock
by Shilpa Manandhar, Sneha Saravanan, Yu Song Meng and Yung Chuen Tan
Electronics 2024, 13(16), 3321; https://doi.org/10.3390/electronics13163321 - 21 Aug 2024
Cited by 1 | Viewed by 3907
Abstract
The global positioning system (GPS) is widely known for its applications in navigation, timing, and positioning. However, its accuracy can be greatly impacted by the performance of its receiver clocks, especially for a low-cost receiver equipped with lower-grade clocks like crystal oscillators. The [...] Read more.
The global positioning system (GPS) is widely known for its applications in navigation, timing, and positioning. However, its accuracy can be greatly impacted by the performance of its receiver clocks, especially for a low-cost receiver equipped with lower-grade clocks like crystal oscillators. The objective of this study is to develop a model to improve the stability of a low-cost receiver. To achieve this, a machine-learning-based linear regression algorithm is proposed to predict the differences of the low-cost GPS receiver compared to the precision timing source. Experiments were conducted using low-cost receivers like Ublox and expensive receivers like Septentrio. The model was implemented and the clocks of low-cost receivers were steered. The outcomes demonstrate a notable enhancement in the stability of low-cost receivers after the corrections were applied. This improvement underscores the efficacy of the proposed model in enhancing the performance of low-cost GPS receivers. Consequently, these low-cost receivers can be cost-effectively utilized for various purposes, particularly in applications requiring the deployment of numerous GPS receivers to achieve extensive spatial coverage. Full article
Show Figures

Figure 1

18 pages, 2551 KiB  
Article
High-Precision Digital Clock Steering Method Based on Discrete Σ-Δ Modulation for GNSS
by Mingkai Liu, Zhijun Meng, Enqi Yan, Suyang Liu, Yinhong Lv, Xiye Guo and Jun Yang
Remote Sens. 2024, 16(15), 2794; https://doi.org/10.3390/rs16152794 - 30 Jul 2024
Viewed by 1238
Abstract
A high-precision time reference is fundamental to the positioning, navigation, and timing (PNT) of global navigation satellite systems (GNSS). The precision of clock steering determines the accuracy of practical applications that rely on the time–frequency reference. With the invention of direct digital synthesizer [...] Read more.
A high-precision time reference is fundamental to the positioning, navigation, and timing (PNT) of global navigation satellite systems (GNSS). The precision of clock steering determines the accuracy of practical applications that rely on the time–frequency reference. With the invention of direct digital synthesizer (DDS) technology, digital clock steering (DCS) has gradually become a mainstream technology. However, the key factor limiting DCS accuracy is the system quantization noise, which leads to a low frequency and phase adjustment accuracy. Here we propose a DCS method based on Σ-Δ modulation to address the issue of low resolution of DAC through shaping the quantization noise. A simulated GNSS time–frequency reference system experimental platform is constructed to validate the effectiveness of the proposed method. The experimental results demonstrate that this method achieves a phase adjustment accuracy of 0.48 ps and a frequency adjustment accuracy better than 0.48 pHz, which is two orders of magnitude higher than that of existing GNSS time–frequency reference systems. Thus, the proposed method offers a significant improvement in time–frequency reference systems, leading to better performance, reliability, and accuracy in a wide range of practical applications. Full article
(This article belongs to the Special Issue GNSS Positioning, Navigation, and TimingPresent and Beyond)
Show Figures

Figure 1

17 pages, 13077 KiB  
Article
Disciplining a Rubidium Atomic Clock Based on Adaptive Kalman Filter
by Kun Liu, Xiaolong Guan, Xiaoqian Ren and Jianfeng Wu
Sensors 2024, 24(14), 4495; https://doi.org/10.3390/s24144495 - 11 Jul 2024
Cited by 2 | Viewed by 1606
Abstract
Rubidium atomic clocks have been used extensively in various fields, with applications such as a core component of Global Navigation Satellite Systems (GNSS). However, they exhibit inherently poor long-term stability. This paper presents the development of a control system for rubidium atomic clocks. [...] Read more.
Rubidium atomic clocks have been used extensively in various fields, with applications such as a core component of Global Navigation Satellite Systems (GNSS). However, they exhibit inherently poor long-term stability. This paper presents the development of a control system for rubidium atomic clocks. It introduces an adaptive Kalman filtering algorithm for the disciplining of a rubidium atomic clock, utilizing autocovariance least squares (ALS) to estimate the clock’s noise parameters. The experimental results demonstrate that the proposed algorithm achieves a high estimation accuracy. The standard deviation of the clock error between the steered rubidium atomic clock 1 Pulse Per Second (1PPS) and Coordinated Universal Time (UTC) provided by the National Time Service Center (NTSC) is better than 2.568 nanoseconds(ns), with peak-to-peak values improving to within 11.358 ns. Notably, its frequency stability is reduced to 3.06 × 10−13 @100,000 s. The results for the rubidium atomic clock demonstrate that the adaptive Kalman filtering algorithm proposed herein constitutes an accurate and effective control strategy for the rubidium atomic clock discipline. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

8 pages, 1398 KiB  
Communication
Training and Adaptation of Beef Calves to Precision Supplementation Technology for Individual Supplementation in Grazing Systems
by Joshua L. Jacobs, Matt J. Hersom, John G. Andrae and Susan K. Duckett
Animals 2023, 13(18), 2872; https://doi.org/10.3390/ani13182872 - 9 Sep 2023
Cited by 3 | Viewed by 1592
Abstract
Supplementation of beef cattle can be used to meet both nutrient requirements and production goals; however, supplementation costs influence farm profitability. Common supplementation delivery strategies are generally designed to provide nutrients to the mean of the group instead of an individual. Precision individual [...] Read more.
Supplementation of beef cattle can be used to meet both nutrient requirements and production goals; however, supplementation costs influence farm profitability. Common supplementation delivery strategies are generally designed to provide nutrients to the mean of the group instead of an individual. Precision individual supplementation technologies, such as the Super SmartFeed (SSF, C-Lock Inc., Rapid City, SD, USA), are available but are generally cost prohibitive to producers. These systems require adaptation or training periods for cattle to utilize this technology. The objective of this research was to assess the training and adoption rates of three different groups of cattle (suckling calves, weaned steers, replacement heifers) to the SSF. Successful adaptation was determined if an individual’s supplement intake was above the group average of total allotted feed consumed throughout the training period. Suckling calves (n = 31) underwent a 12 d training period on pasture; 45% of suckling calves adapted to the SSF and average daily intake differed (p < 0.0001) by day of training. Weaned steers (n = 79) were trained in drylot for 13 d. Of the weaned steers, 62% were trained to the SSF, and average daily intake differed (p < 0.0001) by day of training. Replacement heifers (n = 63) grazed tall fescue pastures and had access to SSF for 22 d of training. The success rate of replacement heifers was 73%. For replacement heifers, the daily intake did not differ (p < 0.0001) by day of training. Results indicate production stage may influence cattle adaptation to precision technologies. Full article
(This article belongs to the Special Issue 2nd U.S. Precision Livestock Farming Conference)
Show Figures

Figure 1

20 pages, 17657 KiB  
Article
A Method for Autonomous Generation of High-Precision Time Scales for Navigation Constellations
by Shitao Yang, Xiao Yi, Richang Dong, Qianyi Ren, Xupeng Li, Tao Shuai, Jun Zhang and Wenbin Gong
Sensors 2023, 23(3), 1703; https://doi.org/10.3390/s23031703 - 3 Feb 2023
Cited by 3 | Viewed by 2072
Abstract
The time maintenance accuracy of the navigation constellation determines the user positioning and timing performance. Especially in autonomous operation scenarios, the performance of navigation constellation maintenance time directly affects the duration of constellation autonomous navigation. Among them, the frequency stability of the atomic [...] Read more.
The time maintenance accuracy of the navigation constellation determines the user positioning and timing performance. Especially in autonomous operation scenarios, the performance of navigation constellation maintenance time directly affects the duration of constellation autonomous navigation. Among them, the frequency stability of the atomic clock onboard the navigation satellite is a key factor. In order to further improve the stability of the navigation constellation time-frequency system, combined with the development of high-precision inter-satellite link measurement technology, the idea of constructing constellation-level synthetic atomic time has gradually become the development trend of major GNSS systems. This paper gives a navigation constellation time scale generation framework, and designs an improved Kalman plus weights (KPW) time scale algorithm and time-frequency steer algorithm that integrates genetic algorithms. Finally, a 30-day autonomous timekeeping simulation was carried out using the GPS precision clock data provided by CODE, when the sampling interval is 300 s, the Allan deviation of the output time scale is 5.73 × 10−14, a 71% improvement compared with the traditional KPW time scale algorithm; when the sampling interval is 1 day, the Allan deviation is 9.17 × 10−15; when the sampling interval is 1 × 106 s, the Allan deviation is 8.87 × 10−16, a 94% improvement compared with the traditional KPW time scale algorithm. The constellation-level high-precision time scale generation technology proposed in this paper can significantly improve the stability performance of navigation constellation autonomous timekeeping. Full article
Show Figures

Figure 1

16 pages, 8187 KiB  
Article
Unsteady Aerodynamic Lift Force on a Pitching Wing: Experimental Measurement and Data Processing
by Péter Zoltán Csurcsia, Muhammad Faheem Siddiqui, Mark Charles Runacres and Tim De Troyer
Vibration 2023, 6(1), 29-44; https://doi.org/10.3390/vibration6010003 - 4 Jan 2023
Cited by 4 | Viewed by 4213
Abstract
This work discusses the experimental challenges and processing of unsteady experiments for a pitching wing in the low-speed wind tunnel of the Vrije Universiteit Brussel. The setup used for unsteady experiments consisted of two independent devices: (a) a position control device to steer [...] Read more.
This work discusses the experimental challenges and processing of unsteady experiments for a pitching wing in the low-speed wind tunnel of the Vrije Universiteit Brussel. The setup used for unsteady experiments consisted of two independent devices: (a) a position control device to steer the pitch angle of the wing, and (b) a pressure measurement device to measure the aerodynamic loads. The position control setup can pitch the wing for a range of frequencies, amplitude, and offset levels. In this work, a NACA-0018 wing profile was used with an aspect ratio of 1.8. The position control and the pressure measurement setups operate independently of each other, necessitating advanced signal processing techniques to synchronize the pitch angle and the lift force. Furthermore, there is a (not well-documented) issue with the (sampling) clock frequency of the pressure measurement setup, which was resolved using a fully automated spectral analysis technique. The wing was pitched using a simple harmonic sine excitation signal at eight different offset levels (between 6° and 21°) for a fixed amplitude variation (std) of 6°. At each offset level, the wing was pitched at five different frequencies between 0.1 Hz and 2 Hz (that correspond to reduced frequencies k ranging from 0.006 to 0.125). All the experiments were conducted at a fixed chord-based Reynolds number of 2.85 × 105. The choice of operating parameters invokes the linear and nonlinear behavior of the wing. The linear unsteady measurements agreed with the analytical results. The unsteady pressure measurements at higher offset levels revealed the nonlinear aerodynamic phenomenon of dynamic stall. This confirms that a nonlinear and dynamic model is required to capture the salient characteristics of the lift force on a pitching wing. Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
Show Figures

Figure 1

26 pages, 3772 KiB  
Article
An X-Band CMOS Digital Phased Array Radar from Hardware to Software
by Yue-Ming Wu, Hao-Chung Chou, Cheng-Yung Ke, Chien-Cheng Wang, Chien-Te Li, Li-Han Chang, Borching Su, Ta-Shun Chu and Yu-Jiu Wang
Sensors 2021, 21(21), 7382; https://doi.org/10.3390/s21217382 - 6 Nov 2021
Cited by 1 | Viewed by 4953
Abstract
Phased array technology features rapid and directional scanning and has become a promising approach for remote sensing and wireless communication. In addition, element-level digitization has increased the feasibility of complicated signal processing and simultaneous multi-beamforming processes. However, the high cost and bulky characteristics [...] Read more.
Phased array technology features rapid and directional scanning and has become a promising approach for remote sensing and wireless communication. In addition, element-level digitization has increased the feasibility of complicated signal processing and simultaneous multi-beamforming processes. However, the high cost and bulky characteristics of beam-steering systems have prevented their extensive application. In this paper, an X-band element-level digital phased array radar utilizing fully integrated complementary metal-oxide-semiconductor (CMOS) transceivers is proposed for achieving a low-cost and compact-size digital beamforming system. An 8–10 GHz transceiver system-on-chip (SoC) fabricated in 65 nm CMOS technology offers baseband filtering, frequency translation, and global clock synchronization through the proposed periodic pulse injection technique. A 16-element subarray module with an SoC integration, antenna-in-package, and tile array configuration achieves digital beamforming, back-end computing, and dc–dc conversion with a size of 317 × 149 × 74.6 mm3. A radar demonstrator with scalable subarray modules simultaneously realizes range sensing and azimuth recognition for pulsed radar configurations. Captured by the suggested software-defined pulsed radar, a complete range–azimuth figure with a 1 km maximum observation range can be displayed within 150 ms under the current implementation. Full article
(This article belongs to the Special Issue Radar Signal Detection, Recognition and Identification)
Show Figures

Figure 1

16 pages, 4156 KiB  
Article
Improved Single-Frequency Kinematic Orbit Determination Strategy of Small LEO Satellite with the Sun-Pointing Attitude Mode
by Wenju Fu, Lei Wang, Ruizhi Chen, Haitao Zhou, Tao Li and Yi Han
Remote Sens. 2021, 13(19), 4020; https://doi.org/10.3390/rs13194020 - 8 Oct 2021
Cited by 1 | Viewed by 3486
Abstract
Kinematic orbit determination (KOD) of low earth orbit (LEO) satellites only using single-frequency global navigation satellite system (GNSS) data is a suitable solution for space applications demanding meter-level orbit precision. For some small LEO satellites with the sun-pointing attitude mode, the rotation of [...] Read more.
Kinematic orbit determination (KOD) of low earth orbit (LEO) satellites only using single-frequency global navigation satellite system (GNSS) data is a suitable solution for space applications demanding meter-level orbit precision. For some small LEO satellites with the sun-pointing attitude mode, the rotation of the GNSS antenna radiation pattern changes the observation noise characteristics. Since the rotation angle information of the antenna plane may not be available for most low-cost missions, the true elevation cannot be computed and a general elevation-dependent weighting model remains invalid for the onboard GNSS observations. Furthermore, the low-stability GNSS receiver clock oscillator of the LEO satellite at high speeds makes single-frequency cycle slip detection ineffective and difficult since the clock steering events occur frequently. In this study, we investigated the improved KOD strategy to improve the performance of orbit solution using single-frequency GPS and BeiDou navigation satellite system (BDS) observations collected from the Luojia-1A satellite. The weighting model based on exponential function and signal strength is proposed according to the analysis of satellite attitude impact, and a joint single-frequency detection algorithm of receiver clock jump and cycle slip is investigated as well. Based on the GPS/BDS-combined KOD results, it is demonstrated that the clock jump and cycle slip can be properly detected and observations can be effectively utilized with the proposed weighting model considering satellite attitude, which significantly improves the availability and accuracy of orbit solution. The number of available epochs is increased by 12.9% benefitting from this strategy. The orbital root mean square (RMS) precision improvements in the radial, along-track, and cross-track directions are 22.1%, 16.4%, and 6.5%, respectively. Combining BDS observations also contributes to orbit precision improvement, which reaches up to 28.8%. Full article
(This article belongs to the Special Issue Autonomous Space Navigation)
Show Figures

Figure 1

14 pages, 2741 KiB  
Article
Research on Absolute Calibration of GNSS Receiver Delay through Clock-Steering Characterization
by Feng Zhu, Huijun Zhang, Luxi Huang, Xiaohui Li and Ping Feng
Sensors 2020, 20(21), 6063; https://doi.org/10.3390/s20216063 - 25 Oct 2020
Cited by 3 | Viewed by 3603
Abstract
The receiver delay has a significant impact on global navigation satellite system (GNSS) time measurement. This article comprehensively analyzes the difficulty, composition, principle, and calculation of GNSS receiver delay. A universal method, based on clock-steering characterization, is proposed to absolutely calibrate all types [...] Read more.
The receiver delay has a significant impact on global navigation satellite system (GNSS) time measurement. This article comprehensively analyzes the difficulty, composition, principle, and calculation of GNSS receiver delay. A universal method, based on clock-steering characterization, is proposed to absolutely calibrate all types of receivers. We use a hardware simulator to design several experiments to test the performance of GNSS receiver delay for different receiver types, radio frequency (RF) signals, operation status and time-to-phase (TtP). At first, through the receivers of Novatel and Septentrio, the channel delay of Septentrio is 2 ns far lower than 65 ns for Novatel, and for the inter-frequency bias of GLONASS L1, Septentrio tends to increase within 10 ns compared with decreasing of Novatel within 5 ns. Secondly, a representative receiver of UniNav-BDS (BeiDou) is chosen to test the influence of Ttp which may be ignored by users. Under continuous operation, the receiver delay shows a monotone reduction of 10 ns as TtP increased by 10 ns. However, under on-off operation, the receiver delay represents periodic variation. Through a zero-baseline comparison, we verifies the relation between receiver delay and TtP. At last, the article analyzes instrument errors and measurement errors in the experiment, and the combined uncertainty of absolute calibration is calculated with 1.36 ns. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

14 pages, 4861 KiB  
Article
Low-Cost GNSS Software Receiver Performance Assessment
by Matteo Cutugno, Umberto Robustelli and Giovanni Pugliano
Geosciences 2020, 10(2), 79; https://doi.org/10.3390/geosciences10020079 - 21 Feb 2020
Cited by 20 | Viewed by 7664
Abstract
The Software-Defined Receiver (SDR) is a rapidly evolving technology which is a useful tool for researchers and allows users an extreme level customization. The main aim of this work is the assessment of the performance of the combination consisting of the Global Navigation [...] Read more.
The Software-Defined Receiver (SDR) is a rapidly evolving technology which is a useful tool for researchers and allows users an extreme level customization. The main aim of this work is the assessment of the performance of the combination consisting of the Global Navigation Satellite Systems Software-Defined Receiver (GNSS-SDR), developed by CTTC (Centre Tecnològic de Telecomunicacions de la Catalunya), and a low-cost front-end. GNSS signals were acquired by a Nuand bladeRF x-40 front-end fed by the TOPCON PG-A1 antenna. Particular attention was paid to the study of the clock-steering mechanism due to the low-cost characteristics of the bladeRF x-40 clock. Two different tests were carried out: In the first test, the clock-steering algorithm was activated, while in the second, it was deactivated. The tests were conducted in a highly degraded scenario where the receiver was surrounded by tall buildings. Single-Point and Code Differential positioning were computed. The achieved results show that the steering function guarantees the availability of more solutions, but the DRMS is quite the same in the two tests. Full article
Show Figures

Figure 1

19 pages, 5270 KiB  
Article
CSAC Characterization and Its Impact on GNSS Clock Augmentation Performance
by Enric Fernández, David Calero and M. Eulàlia Parés
Sensors 2017, 17(2), 370; https://doi.org/10.3390/s17020370 - 14 Feb 2017
Cited by 24 | Viewed by 9103
Abstract
Chip Scale Atomic Clocks (CSAC) are recently-developed electronic instruments that, when used together with a Global Navigation Satellite Systems (GNSS) receiver, help improve the performance of GNSS navigation solutions in certain conditions (i.e., low satellite visibility). Current GNSS receivers include a Temperature Compensated [...] Read more.
Chip Scale Atomic Clocks (CSAC) are recently-developed electronic instruments that, when used together with a Global Navigation Satellite Systems (GNSS) receiver, help improve the performance of GNSS navigation solutions in certain conditions (i.e., low satellite visibility). Current GNSS receivers include a Temperature Compensated Cristal Oscillator (TCXO) clock characterized by a short-term stability (τ = 1 s) of 10−9 s that leads to an error of 0.3 m in pseudorange measurements. The CSAC can achieve a short-term stability of 2.5 × 10−12 s, which implies a range error of 0.075 m, making for an 87.5% improvement over TCXO. Replacing the internal TCXO clock of GNSS receivers with a higher frequency stability clock such as a CSAC oscillator improves the navigation solution in terms of low satellite visibility positioning accuracy, solution availability, signal recovery (holdover), multipath and jamming mitigation and spoofing attack detection. However, CSAC suffers from internal systematic instabilities and errors that should be minimized if optimal performance is desired. Hence, for operating CSAC at its best, the deterministic errors from the CSAC need to be properly modelled. Currently, this modelling is done by determining and predicting the clock frequency stability (i.e., clock bias and bias rate) within the positioning estimation process. The research presented in this paper aims to go a step further, analysing the correlation between temperature and clock stability noise and the impact of its proper modelling in the holdover recovery time and in the positioning performance. Moreover, it shows the potential of fine clock coasting modelling. With the proposed model, an improvement in vertical positioning precision of around 50% with only three satellites can be achieved. Moreover, an increase in the navigation solution availability is also observed, a reduction of holdover recovery time from dozens of seconds to only a few can be achieved. Full article
(This article belongs to the Special Issue MEMS and Nano-Sensors)
Show Figures

Figure 1

Back to TopTop