The Effect of Time Display Format on Cognitive Performance of Integrated Meteorological Radar Information
Abstract
:1. Introduction
2. Experiment 1 Effect of Time Display Format on Individual Processing Change Time Difference
2.1. Method
2.1.1. Participants
2.1.2. Research Design
2.1.3. Materials and Apparatus
2.1.4. Procedure
2.2. Results
2.2.1. Response Time of Identifying the Direction of Time Change
2.2.2. Accuracy of Calculating the Time Differences
2.3. Summary
3. Experiment 2 Effect of Time Display Format on Individual Cognition of Simulated Weather Radar Information
3.1. Method
3.1.1. Participants
3.1.2. Research Design
3.1.3. Materials and Apparatus
3.1.4. Procedure
3.2. Results
3.2.1. Response Time
3.2.2. Distance Deviation Value
3.3. Summary
4. Discussion
4.1. The Advantages of Analog Clock Display in Processing Time Difference Value
4.2. The Advantages of Analog Clock Display in Simulating Weather Radar Information Cognition
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wise, J.; Hopkin, V.; Garland, D. (Eds.) Handbook of Aviation Human Factors; Taylor and Francis: Boca Raton, FL, USA, 2010. [Google Scholar]
- Wu, S.C.; Duong, C.G.; Koteskey, R.W.; Johnson, W.W. Designing a Flight Deck Predictive Weather Forecast Interface Supporting Trajectory-Based Operations. In Ninth USA/Europe Air Traffic Management Research and Development Seminar. 2011. Available online: https://humanfactors.arc.nasa.gov/publications/Wu-Final-Paper-4-15-11.pdf (accessed on 1 June 2020).
- Hua, L.; Ling, C.; Thomas, R. Timestamp representative of weather radar images in the cockpit. Int. J. Aerosp. Psychol. 2019, 29, 86–97. [Google Scholar] [CrossRef]
- Novacek, P.F.; Burgess, M.A.; Heck, M.L.; Stokes, A.F. The Effect of Ownership Information and the NEXRAD Resolution on Pilot Decision Making in the Use of a Cockpit Weather Information Display (NASA/CR-2001-210845); Research Triangle Inst: Hampton, VA, USA, 2001. [Google Scholar]
- Latorella, K.A.; Chamberlain, J.P. Tactical vs. strategic behavior: General aviation piloting in convective weather scenarios. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2002, 46, 101. [Google Scholar] [CrossRef]
- Van Nes, F.L. Determining Temporal Differences with Analogue and Digital Time Displays. Ergonomics 1972, 15, 73–79. [Google Scholar] [PubMed]
- Korvorst, M.; Roelofs, A.; Levelt, J.M.W. Telling time from analog and digital clocks. Exp. Psychol. 2007, 54, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Kantowitz, B.H.; Sorkin, R.D. Workspace design. In Human Factors: Understanding People-System Relationships; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Helander, M.G. Design of visual displays. In Handbook of Human Factors; Salvendy, G., Ed.; Wiley: New York, NY, USA, 1987; pp. 507–548. [Google Scholar]
- Lai, S.; Lu, Z.; Zhou, M.; He, X. The Study on the Temporal Metaphor at the Level of Moment: Clock Face Simulation. J. Psychol. Sci. 2014, 37, 2–9. [Google Scholar]
- Casasanto, D.; Boroditsky, L. Time in the mind: Using space to think about time. Cognition 2008, 106, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, J. A Study about the Psychological Mechanism of Space-time Metaphor. Psychol. Explor. 2009, 29, 32–36. [Google Scholar]
- Hua, L.; Chen, L.; Thomas, R. Effects of delayed radar information on distance estimation. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2015, 59, 150–154. [Google Scholar] [CrossRef]
- Endsley, M.R.; Farley, T.C.; Jones, W.M.; Midkiff, A.H.; Hansman, R.J. Situation Awareness Information Requirements for Commercial Airline Pilots. ICAT-98-1. 1998. Available online: http://hdl.handle.net/1721.1/35929 (accessed on 1 September 1998).
- Wickens, C.D. Spatial Awareness Biases. Technical Report ARL-02-6/NASA-02-4ses. University of Illinois at Urbana-Champaign, Aviation Human Factors Division. 2004. Available online: https://hsi.arc.nasa.gov/groups/HCSL/publications/Wickens_SABias.pdf (accessed on 1 June 2020).
- da Silva, F.P. Mental workload, task demand and driving performance: What relation? Procedia-Soc. Behav. Sci. 2014, 162, 310–319. [Google Scholar] [CrossRef]
- Mohanavelu, B.; Poonguzhali, S.; Adalarasu, K.; Ravi, D.; Vijayakumar, C.; Vinutha, S.; Ramachandran, K.; Srinivasan, J. Dynamic cognitive workload assessment for fighter pilots in simulated fighter aircraft environment using EEG. Biomed. Signal Process. Control 2020, 61, 102018. [Google Scholar]
- Zhang, H.; Zhuang, D.; Fan, W. The study on pleasure and ergonomics of cockpit interface design. In Proceedings of the IEEE International Conference on Computer-aided Industrial Design & Conceptual Design, Wenzhou, China, 26–29 November 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1400–1402. [Google Scholar]
- Hua, L.; Ling, C.; Thomas, R. Effects of delayed weather radar images on pilots’ spatial awareness. Appl. Ergon. 2022, 98, 103598. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Ji, M.; Jiao, W. Aviation Psychology: Theory, Practice and Application; Zhejiang Education Publishing House: Hangzhou, China, 2017. [Google Scholar]
- Sun, R.; Gao, L.; Li, K. Simulation experiment study on relationship between color temperature of LED lights and personnel alertness in cockpit. J. Saf. Sci. Technol. 2019, 15, 167–172. [Google Scholar]
- Townsend, C.; Kahn, B.E. The “visual preference heuristic”: The influence of visual versus verbal depiction on assortment processing, perceived variety, and choice overload. J. Consum. Res. 2014, 40, 993–1015. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, M. The effects of home page design on consumer responses: Moderating role of centrality of visual product aesthetics. Comput. Hum. Behav. 2014, 38, 240–247. [Google Scholar] [CrossRef]
- Lin, M.; Qian, X. The Role of Attention In Time Perception and Its Theories. Adv. Psychol. Sci. 2012, 20, 875–882. [Google Scholar] [CrossRef]
- Treisman, M. Temporal discrimination and the indifference interval: Implications for a model of the “internal clock”. Psychol. Monogr. Gen. Appl. 1963, 77, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Hertzum, M.; Holmegaard, K.D. Perceived time as a measure of mental workload: Effects of time constraints and task success. Int. J. Hum.-Comput. Interact. 2013, 29, 26–39. [Google Scholar] [CrossRef]
- Vallesi, A.; Binns, M.A.; Shallice, T. An effect of spatial-temporal association of response codes: Understanding the cognitive representations of time. Cognition 2008, 107, 501–527. [Google Scholar] [CrossRef]
Time Change Direction | Time Display Format | Time Interval | RT (ms) | ACC |
---|---|---|---|---|
Advance | Digital display | 1~10 min | 4869.04 ± 260.17 | 0.93 ± 0.02 |
11~20 min | 6128.29 ± 339.75 | 0.96 ± 0.02 | ||
21~30 min | 6955.88 ± 359.59 | 0.94 ± 0.02 | ||
Analog clock display | 1~10 min | 3208.83 ± 221.93 | 0.97 ± 0.02 | |
11~20 min | 4155.29 ± 360.02 | 0.96 ± 0.02 | ||
21~30 min | 4815.54 ± 316.24 | 0.95 ± 0.01 | ||
Delay | Digital display | 1~10 min | 4123.92 ± 309.20 | 0.95 ± 0.02 |
11~20 min | 6653.96 ± 312.94 | 0.88 ± 0.03 | ||
21~30 min | 6799.04 ± 333.44 | 0.83 ± 0.02 | ||
Analog clock display | 1~10 min | 2182.00 ± 142.32 | 0.99 ± 0.01 | |
11~20 min | 4320.00 ± 326.22 | 0.97 ± 0.01 | ||
21~30 min | 4146.25 ± 287.76 | 0.97 ± 0.01 |
Time Display Format | Delay Time | Without Time Pressure (24 People) | With Time Pressure (24 People) | ||
---|---|---|---|---|---|
RT (ms) | Distance Deviation Value (nmi) | RT (ms) | Distance Deviation Value (nmi) | ||
Analog clock display | Short | 5134.33 ± 560.21 | 6.17 ± 2.89 | 3701.38 ± 403.43 | 4.42 ± 1.79 |
Medium | 8847.63 ± 764.85 | 18.29 ± 13.62 | 6462.79 ± 652.83 | 13.08 ± 4.15 | |
Long | 10,500.42 ± 1015.17 | 15.33 ± 6.51 | 10,049.79 ± 833.31 | 25.29 ± 7.71 | |
Digital display | Short | 5909.67 ± 377.95 | 4.25 ± 2.32 | 4562.46 ± 438.57 | 5.04 ± 1.69 |
Medium | 10,663.46 ± 684.18 | 9.79 ± 4.68 | 7817.42 ± 676.69 | 26.25 ± 6.91 | |
Long | 12,886.75 ± 881.67 | 15.75 ± 4.18 | 10,716.63 ± 960.83 | 34.00 ± 8.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Wang, Y.; Li, Y. The Effect of Time Display Format on Cognitive Performance of Integrated Meteorological Radar Information. Behav. Sci. 2024, 14, 847. https://doi.org/10.3390/bs14090847
Liu B, Wang Y, Li Y. The Effect of Time Display Format on Cognitive Performance of Integrated Meteorological Radar Information. Behavioral Sciences. 2024; 14(9):847. https://doi.org/10.3390/bs14090847
Chicago/Turabian StyleLiu, Bo, Yunhe Wang, and Yongxin Li. 2024. "The Effect of Time Display Format on Cognitive Performance of Integrated Meteorological Radar Information" Behavioral Sciences 14, no. 9: 847. https://doi.org/10.3390/bs14090847
APA StyleLiu, B., Wang, Y., & Li, Y. (2024). The Effect of Time Display Format on Cognitive Performance of Integrated Meteorological Radar Information. Behavioral Sciences, 14(9), 847. https://doi.org/10.3390/bs14090847