Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = climate impact on insects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4047 KiB  
Article
A Methodological Approach for the Integrated Assessment of the Condition of Field Protective Forest Belts in Southern Dobrudzha, Bulgaria
by Yonko Dodev, Georgi Georgiev, Margarita Georgieva, Veselin Ivanov and Lyubomira Georgieva
Forests 2025, 16(7), 1184; https://doi.org/10.3390/f16071184 - 18 Jul 2025
Viewed by 180
Abstract
A system of field protective forest belts (FPFBs) was created in the middle of the 20th century in Southern Dobrudzha (Northern Bulgaria) to reduce wind erosion, improve soil moisture storage, and increase agricultural crop yields. Since 2020, prolonged climatic drought during growing seasons [...] Read more.
A system of field protective forest belts (FPFBs) was created in the middle of the 20th century in Southern Dobrudzha (Northern Bulgaria) to reduce wind erosion, improve soil moisture storage, and increase agricultural crop yields. Since 2020, prolonged climatic drought during growing seasons and the advanced age of trees have adversely impacted the health status of planted species and resulted in the decline and dieback of the FPFBs. Physiologically stressed trees have become less able to resist pests, such as insects and diseases. In this work, an original new methodology for the integrated assessment of the condition of FPFBs and their protective capacity is presented. The presented methods include the assessment of structural and functional characteristics, as well as the health status of the dominant tree species. Five indicators were identified that, to the greatest extent, present the ability of forest belts to perform their protective functions. Each indicator was evaluated separately, and then an overlay analysis was applied to generate an integrated assessment of the condition of individual forest belts. Three groups of FPFBs were differentiated according to their condition: in good condition, in moderate condition, and in bad condition. The methodology was successfully tested in Southern Dobrudzha, but it could be applied to other regions in Bulgaria where FPFBs were planted, regardless of their location, composition, origin, and age. This methodological approach could be transferred to other countries after adapting to their geo-ecological and agroforest specifics. The methodological approach is an informative and useful tool to support decision-making about FPFB management, as well as the proactive planning of necessary forestry activities for the reconstruction of degraded belts. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

15 pages, 1097 KiB  
Article
Reduced Soil Moisture Decreases Nectar Sugar Resources Offered to Pollinators in the Popular White Mustard (Brassica alba L.) Crop: Experimental Evidence from Poland
by Bożena Denisow, Sławomir Michałek, Monika Strzałkowska-Abramek and Urszula Bronowicka-Mielniczuk
Sustainability 2025, 17(14), 6550; https://doi.org/10.3390/su17146550 - 17 Jul 2025
Viewed by 337
Abstract
Climate change can severely impact plant-pollinator interactions and have serious effects on ecosystem services such as pollination. This study was carried out in 2023 and 2024, and it examined the effects of drought on flowering and nectar production in one cultivar of white [...] Read more.
Climate change can severely impact plant-pollinator interactions and have serious effects on ecosystem services such as pollination. This study was carried out in 2023 and 2024, and it examined the effects of drought on flowering and nectar production in one cultivar of white mustard (Brassica alba cv. Palma), an important entomophilous crop of the temperate zone with several attributes that make it promising for sustainable agricultural practices. Drought-stressed plants delayed the flowering time, shortened the flowering duration, and developed significantly fewer flowers. Nectar production in white mustard depends on soil moisture levels and short-term changes in meteorological conditions (e.g., air humidity, air temperature). At reduced soil moisture, the total sugar yield per plant decreased by 60%, compared to control plants, resulting in lower availability of caloric food resources, which should be considered when developing strategies supporting pollinators. Changes in floral traits resulted in differences in the frequency of insect visits, which may exert a negative impact on white mustard pollination under drought stress and may have indirect consequences for seed yield resulting from increased drought intensity associated with climate change. The results provide important data for the management of the white mustard crop and indicate the need for broader evaluation of cultivars to promote drought-resistant B. alba cultivars. Full article
Show Figures

Figure 1

19 pages, 1118 KiB  
Article
Assessing the Environmental Impacts of the Black Soldier Fly-Based Circular Economy and Decentralized System in Singapore: A Case Study
by Remondah R. Ramzy, Vartika Goenka, Marco A. El-Dakar and Janice Ser Huay Lee
Sustainability 2025, 17(13), 6115; https://doi.org/10.3390/su17136115 - 3 Jul 2025
Viewed by 700
Abstract
Food waste management is a major global issue, and alternative protein sources like insect farming offer a sustainable solution. This study investigated the environmental impacts of black soldier fly larvae (BSFL) production using a Life Cycle Assessment (LCA), evaluating its role in both [...] Read more.
Food waste management is a major global issue, and alternative protein sources like insect farming offer a sustainable solution. This study investigated the environmental impacts of black soldier fly larvae (BSFL) production using a Life Cycle Assessment (LCA), evaluating its role in both protein production and food waste treatment. The assessment considered three functional units: FU1 (1 kg of dried larvae), FU2 (per kg of protein), and FU3 (treatment of 1 ton of food waste). The results indicate that larvae rearing is the largest contributor to emissions in FU1 (46% of 18.51 kg CO2 eq). In FU2, BSFL protein shows a higher climate impact (49.41 kg CO2 eq) than fishmeal or soybean meal but requires significantly less land. FU3 demonstrates that BSFL-based composting can achieve net negative emissions (~−24.8 kg CO2 eq), outperforming conventional waste treatment. An optimized scenario (Scenario A) shows marked improvements across all units compared to a Business-as-Usual case, including a 79% reduction in FU1 emissions and a 577% increase in FU3 carbon savings. These findings underline the environmental advantages of BSFL systems, especially in Singapore, and support their potential as sustainable alternatives for protein production and food waste management. Full article
Show Figures

Figure 1

34 pages, 8670 KiB  
Article
Assessing Climate Impact on Heritage Buildings in Trentino—South Tyrol with High-Resolution Projections
by Camille Luna Stella Blavier, Elena Maines, Piero Campalani, Harold Enrique Huerto-Cardenas, Claudio Del Pero and Fabrizio Leonforte
Atmosphere 2025, 16(7), 799; https://doi.org/10.3390/atmos16070799 - 1 Jul 2025
Viewed by 502
Abstract
Climate variations impact the preservation of heritage buildings, necessitating a strategic understanding of potential effects to effectively guide preservation efforts. This study analyzes temperature- and precipitation-dependent climate-heritage indices in Trentino–South Tyrol using EURO-CORDEX regional climate models for the period 1971–2100 under RCP 4.5 [...] Read more.
Climate variations impact the preservation of heritage buildings, necessitating a strategic understanding of potential effects to effectively guide preservation efforts. This study analyzes temperature- and precipitation-dependent climate-heritage indices in Trentino–South Tyrol using EURO-CORDEX regional climate models for the period 1971–2100 under RCP 4.5 and RCP 8.5 scenarios. The selected indices were calculated with climdex-kit and relied on bias-adjusted temperature and precipitation data with a 1 km spatial resolution. The obtained results indicate a geographically punctuated increase in biomass accumulation on horizontal surfaces, a slight decreasing trend in freeze–thaw events, an increase in growing degree days indicating a small, heightened insect activity, and a rise in heavy precipitation days. The Scheffer Index shows a significantly increased potential for wood degradation, particularly under the RCP 8.5 scenario, while the Wet-Frost Index remains consistently low. Finally, according to each identified hazard, adaptive solutions are suggested. These findings provide critical insights into future climate impacts on heritage buildings in the region, aiding stakeholders in planning targeted interventions. The study emphasizes the crucial role of integrating detailed climate data into heritage preservation strategies, advocating for the inclusion of future risk analysis in the “knowledge path” in order to enhance the resilience of buildings. Full article
(This article belongs to the Special Issue Climate Change Challenges for Heritage Architecture)
Show Figures

Figure 1

10 pages, 1380 KiB  
Brief Report
Bridging Continents: The Expansion and Establishment of the House Bunting (Emberiza sahari) from North Africa to Europe
by Antonio-Román Muñoz, Darío Delgado, Pablo Ortega, Julio Ortega, Antonio Sepúlveda, Pedro Barón, Eva Bratek, Javier Elorriaga, Cristina Malia, Ricky Owen, Miguel Puerta, Alejandra Cerezo, Juan Ramírez, Yeray Seminario and Miguel González
Birds 2025, 6(2), 29; https://doi.org/10.3390/birds6020029 - 11 Jun 2025
Viewed by 2188
Abstract
Range expansions driven by global warming are increasingly documented, particularly in birds and insects. The House Bunting, a species native to North Africa, has recently established the first confirmed breeding population in mainland Europe in Algeciras, southern Spain. This study presents the results [...] Read more.
Range expansions driven by global warming are increasingly documented, particularly in birds and insects. The House Bunting, a species native to North Africa, has recently established the first confirmed breeding population in mainland Europe in Algeciras, southern Spain. This study presents the results of the first systematic survey of this population, conducted in December 2024. Using a standardized survey method across a grid of hexagonal sampling units, we recorded a minimum of 18 individuals, including juveniles, indicating both successful reproduction and possible new arrivals. Observations were concentrated in low-rise urban areas, mirroring the species’ preferred habitats in Morocco. The presence of individuals with juvenile plumage in December suggests an extended breeding season, which may facilitate population growth. Given the geographical proximity to North Africa and predicted increases in aridity due to climate change, further expansion into Iberia appears likely. Although no immediate ecological impacts have been detected, the potential for interactions with resident species justifies continued monitoring. This study provides a baseline for assessing the establishment and growth of this population, contributing to a broader understanding of how climate change influences species distributions and the colonization dynamics of expanding bird populations. Full article
Show Figures

Figure 1

20 pages, 1819 KiB  
Article
Hypersalinity Drives Dramatic Shifts in the Invertebrate Fauna of Estuaries
by Ben J. Roots, Ruth Lim, Stephanie A. Fourie, Essie M. Rodgers, Emily J. Stout, Sorcha Cronin-O’Reilly and James R. Tweedley
Animals 2025, 15(11), 1629; https://doi.org/10.3390/ani15111629 - 1 Jun 2025
Cited by 1 | Viewed by 517
Abstract
In some estuaries, low inflow and/or isolation from the ocean can result in evapoconcentration and hypersalinity (≥40 ppt). This can create osmoregulatory and energetic challenges for the faunal community, leading to reductions in diversity as more species pass their thresholds. As climate change [...] Read more.
In some estuaries, low inflow and/or isolation from the ocean can result in evapoconcentration and hypersalinity (≥40 ppt). This can create osmoregulatory and energetic challenges for the faunal community, leading to reductions in diversity as more species pass their thresholds. As climate change is increasing the magnitude and duration of hypersaline conditions, we used benthic macroinvertebrate data from 12 estuaries across a Mediterranean climatic region (southwestern Australia) to assess the influence of salinity (0–122 ppt) on the invertebrate fauna. Taxa richness and diversity were highest in salinities between 0 and 39 ppt, peaking at salinities closest to seawater, while total density peaked at 40–49 ppt. Beyond 50 ppt, these measures declined significantly. Community composition changed markedly along the salinity gradient. In lower salinities, communities were diverse, comprising polychaetes, malacostracans, hexapods, ostracods, bivalves, and gastropods. However, in salinities ≥50 ppt, many taxa declined, leading to communities dominated by polychaetes (mainly Capitella spp.) and hexapods (mostly larval chironomids). At 90 ppt, only polychaetes and hexapods remained, and at ≥110 ppt, only the latter taxon persisted. This faunal shift towards insect dominance in hypersaline conditions mirrors observations in other Mediterranean and arid/semi-arid regions, with the resulting communities resembling saline wetlands or salt lakes. This loss of invertebrates can substantially impact ecosystem functioning and trophic pathways, and the findings of this study provide a basis for predicting how these communities will respond to increasing hypersalinity driven by climate change. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

18 pages, 6962 KiB  
Article
Future Range Shifts in Major Maize Insect Pests Suggest Their Increasing Impacts on Global Maize Production
by Qiance Wei, Xueyou Zhang, Fang Yang, Sixi Duan, Zejian Fan, Peixiao Nie, Zhihong Chen and Jianmeng Feng
Insects 2025, 16(6), 568; https://doi.org/10.3390/insects16060568 - 28 May 2025
Viewed by 612
Abstract
Maize is one of the three staple grains, and its global demand has risen sharply in recent decades. However, insect pests are causing significant production losses. Despite this, few studies have yet investigated future range shifts in major insect pests affecting maize. Here, [...] Read more.
Maize is one of the three staple grains, and its global demand has risen sharply in recent decades. However, insect pests are causing significant production losses. Despite this, few studies have yet investigated future range shifts in major insect pests affecting maize. Here, we used a unified framework to build 24 multi-algorithm models to forecast their future range shifts under future climate change scenarios (SSP126 and SSP585, representing optimistic and pessimistic scenarios, respectively). Habitat suitability was projected to increase in most regions. Significant range expansions were identified for all of them, with future climate changes being the primary driver for most. High-range overlaps were predominantly observed in the USA, Mexico, and other regions. We also identified species showing the largest ranges and range shifts, suggesting the priority species in our strategies against their impacts on maize. The relative roles of climate and crop availability in the range dynamics of major insect pests affecting maize could be, to a certain extent, determined by whether they are monophagous on crop hosts or not. High-range overlap in key maize-producing regions highlights the substantial threat they pose to global maize production. Therefore, mitigating future climate changes could be a crucial strategy to reduce their impacts on future maize production. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 1170 KiB  
Article
Impacts of Climate Change on Chinese Cabbage (Brassica rapa) Yields and Damages from Insects
by Dongwoo Kim, Chang-gi Back, Sojung Kim and Sumin Kim
Agronomy 2025, 15(6), 1264; https://doi.org/10.3390/agronomy15061264 - 22 May 2025
Viewed by 812
Abstract
Chinese cabbage (Brassica rapa) is one of the most important fall vegetables in South Korea. Recently, cabbage yields fluctuated due to climate change, leading to an unstable supply and increased prices. Additionally, raised temperatures led to increased beet armyworm (Spodoptera [...] Read more.
Chinese cabbage (Brassica rapa) is one of the most important fall vegetables in South Korea. Recently, cabbage yields fluctuated due to climate change, leading to an unstable supply and increased prices. Additionally, raised temperatures led to increased beet armyworm (Spodoptera exigua) populations, resulting in greater plant damage. In this study, the Agricultural Policy/Environmental Extender (APEX) model was employed to develop the cabbage growth model. To enhance model accuracy, 4 years of field data collected from multiple locations in South Korea were utilized for model validation and calibration. The model goodness of fit tests revealed R2 values between 0.9485 and 0.9873. Two different cabbage models, representing the physiological characteristics of common varieties cultivated in Korea, were applied to assess growth patterns under two distinct climate change scenarios, SSP245 and SSP585. A larval duration prediction model was formulated using previous field data. Under future climate conditions, simulation results indicate that as temperatures rise, Chinese cabbage yields will likely decrease continually, with increasing plant damage from insects. The modeling results can help farmers to control and manage crop insect pests under varying environmental conditions. Full article
(This article belongs to the Special Issue Advanced Machine Learning in Agriculture)
Show Figures

Figure 1

12 pages, 1594 KiB  
Proceeding Paper
The Association of the Global Climate Crisis with Environmental Risks and the Impact of Heat Stress on Occupational Safety, Health, and Hygiene
by Ioannis Adamopoulos, Niki Syrou, George Mpourazanis, Theodoros C. Constantinidis and George Dounias
Med. Sci. Forum 2025, 33(1), 2; https://doi.org/10.3390/msf2025033002 - 21 May 2025
Viewed by 900
Abstract
The relationship between the global climate crisis, which is associated with environmental risks, and occupational hygiene has not been extensively studied. This study develops a framework for identifying how climate change and the climate crisis could impact the workplace environment, workers, and occupational [...] Read more.
The relationship between the global climate crisis, which is associated with environmental risks, and occupational hygiene has not been extensively studied. This study develops a framework for identifying how climate change and the climate crisis could impact the workplace environment, workers, and occupational morbidity, mortality, and injury. A framework is used in this paper that is based on a review of the scientific literature published from 2014 to 2024, addressing climate risks, their interaction with occupational hazards, and their effects on the workforce. Eight categories of climate-related hazards are identified: increasingly high temperatures, dust and air pollution, sun and cosmic ultraviolet exposure, pandemics and infectious diseases, diseases transmitted by insects and changes in ecosystems, industrial occupational diseases, changes and crises in the built environment, and extreme weather events. Policies need to consider the gaps in the possibility of interactions between known hazards and new conditions and the productivity of workers, especially those who are most at risk of heat-related illnesses. Full article
Show Figures

Figure 1

24 pages, 2316 KiB  
Review
The Application of Cold Atmospheric Plasma (CAP) in Barley Processing as an Environmentally Friendly Alternative
by Norman Barner, Michael Nelles and Leif-Alexander Garbe
Foods 2025, 14(9), 1635; https://doi.org/10.3390/foods14091635 - 6 May 2025
Viewed by 644
Abstract
Cold atmospheric plasma (CAP) is a novel and versatile technology, which is not yet used in the food and agricultural sector for barley processing. In lab-scale applications, the technology shows potential in extending shelf life and ensuring food safety and quality, e.g., during [...] Read more.
Cold atmospheric plasma (CAP) is a novel and versatile technology, which is not yet used in the food and agricultural sector for barley processing. In lab-scale applications, the technology shows potential in extending shelf life and ensuring food safety and quality, e.g., during storage. CAP reactive nature counteracts insect pests, fungi, and bacteria, but also improves seed germination and facilitates plant growth not only under stress conditions. Its generation does not require water, chemicals, or solvents and consumes little energy due to low operating temperatures (<60 °C) with a short time span that makes additional production steps (e.g., cooling) obsolete. Therefore, CAP is a sustainable technology capable of further optimising the use of limited resources with the potential of offering solutions for upcoming environmental challenges and political requirements for replacing existing practices and technologies due to the growing impact of climate change. This review summarises recent developments and findings concerning CAP application in barley production and processing with air as the process gas. Furthermore, this comprehensive overview could help identify further research needs to overcome its current technical limitations, e.g., efficiency, capacity, etc., that hamper the upscale and market introduction of this environmentally friendly technology. Full article
Show Figures

Figure 1

16 pages, 4519 KiB  
Article
Plant Functional Traits Better Explain the Global Latitudinal Patterns of Leaf Insect Herbivory than Climatic Factors
by Yuhui Ji, Xiaoxu Yan, Jiali Xu, Mira Jumak, Ruizhi Zhang, Lan Wang and Jie Gao
Plants 2025, 14(9), 1303; https://doi.org/10.3390/plants14091303 - 25 Apr 2025
Viewed by 759
Abstract
Herbivory reflects the interaction between plants and insects in ecosystems, and its latitudinal patterns at the global scale have attracted widespread attention. While many studies support the latitudinal herbivory hypothesis, it remains contentious. This study, based on a global dataset of 1206 herbivory [...] Read more.
Herbivory reflects the interaction between plants and insects in ecosystems, and its latitudinal patterns at the global scale have attracted widespread attention. While many studies support the latitudinal herbivory hypothesis, it remains contentious. This study, based on a global dataset of 1206 herbivory records, explored the global latitudinal patterns of insect herbivory on leaves and their influencing factors. We found that herbivory decreased with increasing latitude from the equator to the poles, supporting the latitudinal herbivory hypothesis. Latitude affected the variation in climate, soil nutrients, and plant functional traits, which ultimately affected herbivory. Plant functional traits were the key factors affecting the global latitudinal patterns of herbivory, with climatic factors playing an important regulatory role, while soil nutrients had a relatively minor impact, explaining 7.3%, 4.66%, and 0.98% of the latitudinal variation in herbivory, respectively. Specifically, plant height and mean annual temperature were the most important drivers of the global latitudinal patterns of herbivory, explaining 3.39% and 3.03%, respectively. Our study focused on two new perspectives—plant functional traits and soil nutrients. Although soil nutrients had a relatively minor influence on the latitudinal patterns of herbivory, we emphasized the significant impact of plant functional traits on the latitudinal patterns of herbivory. Our findings provide new insights into understanding and predicting the geographic patterns of herbivory and ecological interactions in the context of global climate change, offering important references and ecological significance. Full article
Show Figures

Figure 1

14 pages, 1144 KiB  
Review
Silicon-Mediated Interactions Between Plant Antagonists
by Marie-Emma Denarié, Uffe N. Nielsen, Susan E. Hartley and Scott N. Johnson
Plants 2025, 14(8), 1204; https://doi.org/10.3390/plants14081204 - 14 Apr 2025
Cited by 2 | Viewed by 816
Abstract
The prolonged arms race between plants and their antagonists has resulted in the evolution of multiple plant defence mechanisms to combat attacks by pests and pathogens. Silicon (Si) accumulation occurs mainly in grasses and provides a physical barrier against antagonists. Biochemical pathways may [...] Read more.
The prolonged arms race between plants and their antagonists has resulted in the evolution of multiple plant defence mechanisms to combat attacks by pests and pathogens. Silicon (Si) accumulation occurs mainly in grasses and provides a physical barrier against antagonists. Biochemical pathways may also be involved in Si-mediated plant resistance, although the precise mode of action in this case is less clear. Most studies have focussed on Si-based effects against single attackers. In this review, we consider how Si-based plant resistance operates when simultaneously and/or sequentially attacked by insect herbivores, fungal phytopathogens, and plant parasitic nematodes and how the plant hormones jasmonic acid (JA) and salicylic acid (SA) are involved. Si defence may mediate both intra- and interspecific competition and facilitation. Si has been found to impact plant-mediated interactions between insect herbivores within the same feeding guild and across different feeding guilds, with varying patterns of JA and SA. These results suggest that hormonal crosstalk may play a role in the Si-mediated effects, although this finding varied between studies. While some reports support the notion that JA is linked to Si responses, others indicate that Si supplementation reduces JA production. In terms of phytopathogens, SA has not been found to be involved in Si-mediated defences. Improving our understanding of Si-mediated plant defence could be beneficial for sustainable agriculture under future climates. Full article
(This article belongs to the Special Issue Biochemical Defenses of Plants)
Show Figures

Figure 1

15 pages, 3599 KiB  
Article
Impact of Soil-Applied Biopesticides on Yield and the Postharvest Quality of Strawberry Fruits in Southeast Texas
by Maryuri T. Nuñez de González, Peter A. Y. Ampim, Rahmat Attaie, Eric Obeng, Selamawit Woldesenbet, Adela Mora-Gutierrez, Russell Wallace and Yoonsung Jung
Plants 2025, 14(8), 1197; https://doi.org/10.3390/plants14081197 - 11 Apr 2025
Viewed by 542
Abstract
The production of organic strawberries (Fragaria × ananassa) in Texas is becoming more popular because consumers prefer locally grown berries and are willing to pay premium prices. However, local climatic conditions pose a high risk for insect problems and fungal diseases; [...] Read more.
The production of organic strawberries (Fragaria × ananassa) in Texas is becoming more popular because consumers prefer locally grown berries and are willing to pay premium prices. However, local climatic conditions pose a high risk for insect problems and fungal diseases; hence, effective pest and disease management strategies are needed. Developing effective and safe methods of producing organic strawberries is necessary for meeting local consumer demand. Therefore, the objective of this study was to evaluate the impacts of selected commercially available soil-applied biopesticides on yield and the quality of Camino Real strawberries established using bare roots on plastic mulch-covered beds with drip irrigation. The ten biopesticide treatments were replicated three times in a completely randomized design. The berries used for this study were subsampled from harvests made in mid-April, late April, and mid-May 2019. Yield, biometrical characteristics, and physicochemical analyses such as pH, acidity, total soluble solids, sugars and organic acid contents, firmness, and instrumental color were determined for fresh strawberries after each harvest period. Experimental data were analyzed using the PROC Mixed model procedure. The effects of the soil-applied biopesticide treatments on strawberry yield varied. The results of strawberry yield suggest that biopesticides applied at the right time and frequency have the potential to perform at similar levels to their conventional counterparts. Camino Real strawberries treated with biopesticides, harvested during mid-April, late April, or mid-May, exhibited acceptable flavor based on the recommended values of TA and TSS for strawberries. The biopesticides showed no negative effects on yield and fruit quality and thus they could serve as alternatives to conventional products used. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

32 pages, 5647 KiB  
Article
Tidal Exclusion Barriers Fragment an Invertebrate Community into Taxonomically and Functionally Distinct Estuarine and Wetland Assemblages
by Sorcha Cronin-O’Reilly, Alan Cottingham, Linda H. Kalnejais, Kath Lynch and James R. Tweedley
J. Mar. Sci. Eng. 2025, 13(4), 635; https://doi.org/10.3390/jmse13040635 - 22 Mar 2025
Cited by 2 | Viewed by 546
Abstract
Various types of tidal barriers are used in estuaries to reduce saltwater intrusion and regulate freshwater discharge, but they often alter the physicochemical environment and faunal composition. With the use of these structures expected to increase due to climate change, there is a [...] Read more.
Various types of tidal barriers are used in estuaries to reduce saltwater intrusion and regulate freshwater discharge, but they often alter the physicochemical environment and faunal composition. With the use of these structures expected to increase due to climate change, there is a need to understand their impacts. A tidal exclusion barrier in the Ramsar-listed Vasse–Wonnerup Estuary (Australia) was found to act as an ecotone, fragmenting the estuarine gradient into two distinct components, a relatively stable marine-like environment downstream and a highly variable oligohaline to hypersaline (~0 to >100 ppt) environment upstream. The downstream regions contained a speciose and functionally rich estuarine fauna, comprising mainly polychaetes and bivalves. The upstream regions were taxonomically and functionally depauperate, containing insects, gastropods, and ostracods typically found in saline wetlands. The fragmentation of the estuary has likely impacted the provision of ecosystem services, with the fauna downstream mainly comprising burrowing species that bioturbate and, thus, aid in nutrient cycling. In contrast, the environmental conditions caused by the barrier and the resultant epifaunal invertebrate assemblages upstream aid little in bioturbation, but provide nutrition for avian fauna. These results may help in understanding the impacts of constructing new barriers in coastal ecosystems in response to climate change. Full article
(This article belongs to the Special Issue Benthic Ecology in Coastal and Brackish Systems—2nd Edition)
Show Figures

Graphical abstract

65 pages, 2112 KiB  
Review
Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability
by Riccardo Moretti, Jue Tao Lim, Alvaro Gil Araujo Ferreira, Luigi Ponti, Marta Giovanetti, Chow Jo Yi, Pranav Tewari, Maria Cholvi, Jacob Crawford, Andrew Paul Gutierrez, Stephen L. Dobson and Perran A. Ross
Pathogens 2025, 14(3), 285; https://doi.org/10.3390/pathogens14030285 - 14 Mar 2025
Cited by 1 | Viewed by 3152
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several [...] Read more.
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise—ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens—becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change. Full article
(This article belongs to the Special Issue Surveillance and Control Strategies to Fight Mosquito-Borne Diseases)
Show Figures

Figure 1

Back to TopTop