Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (499)

Search Parameters:
Keywords = clay mineralogy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4848 KiB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 - 6 Aug 2025
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

29 pages, 4812 KiB  
Article
Geochemical Assessment of Long-Term CO2 Storage from Core- to Field-Scale Models
by Paa Kwesi Ntaako Boison, William Ampomah, Jason D. Simmons, Dung Bui, Najmudeen Sibaweihi, Adewale Amosu and Kwamena Opoku Duartey
Energies 2025, 18(15), 4089; https://doi.org/10.3390/en18154089 - 1 Aug 2025
Viewed by 190
Abstract
Numerical simulations enable us to couple multiphase flow and geochemical processes to evaluate how sequestration impacts brine chemistry and reservoir properties. This study investigates these impacts during CO2 storage at the San Juan Basin CarbonSAFE (SJB) site. The hydrodynamic model was calibrated [...] Read more.
Numerical simulations enable us to couple multiphase flow and geochemical processes to evaluate how sequestration impacts brine chemistry and reservoir properties. This study investigates these impacts during CO2 storage at the San Juan Basin CarbonSAFE (SJB) site. The hydrodynamic model was calibrated through history-matching, utilizing data from saltwater disposal wells to improve predictive accuracy. Core-scale simulations incorporating mineral interactions and equilibrium reactions validated the model against laboratory flow-through experiments. The calibrated geochemical model was subsequently upscaled into a field-scale 3D model of the SJB site to predict how mineral precipitation and dissolution affect reservoir properties. The results indicate that the majority of the injected CO2 is trapped structurally, followed by residual trapping and dissolution trapping; mineral trapping was found to be negligible in this study. Although quartz and calcite precipitation occurred, the dissolution of feldspars, phyllosilicates, and clay minerals counteracted these effects, resulting in a minimal reduction in porosity—less than 0.1%. The concentration of the various ions in the brine is directly influenced by dissolution/precipitation trends. This study provides valuable insights into CO2 sequestration’s effects on reservoir fluid dynamics, mineralogy, and rock properties in the San Juan Basin. It highlights the importance of reservoir simulation in assessing long-term CO2 storage effectiveness, particularly focusing on geochemical interactions. Full article
Show Figures

Figure 1

17 pages, 6856 KiB  
Article
Selection of Optimal Parameters for Chemical Well Treatment During In Situ Leaching of Uranium Ores
by Kuanysh Togizov, Zhiger Kenzhetaev, Akerke Muzapparova, Shyngyskhan Bainiyazov, Diar Raushanbek and Yuliya Yaremkiv
Minerals 2025, 15(8), 811; https://doi.org/10.3390/min15080811 - 31 Jul 2025
Viewed by 180
Abstract
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and [...] Read more.
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and extend the uninterrupted operation period of wells, considering the clay content of the productive horizon, the geological characteristics of the ore-bearing layer, and the composition of precipitation-forming materials. The mineralogical characteristics of ore and precipitate samples formed during the in situ leaching of uranium under various mining and geological conditions at a uranium deposit in the Syrdarya depression were identified using an X-ray diffraction analysis. It was established that ores of the Santonian stage are relatively homogeneous and consist mainly of quartz. During well operation, the precipitates formed are predominantly gypsum, which has little impact on the filtration properties of the ore. Ores of the Maastrichtian stage are less homogeneous and mainly composed of quartz and smectite, with minor amounts of potassium feldspar and kaolinite. The leaching of these ores results in the formation of gypsum with quartz impurities, which gradually reduces the filtration properties of the ore. Ores of the Campanian stage are heterogeneous, consisting mainly of quartz with varying proportions of clay minerals and gypsum. The leaching of these ores generates a variety of precipitates that significantly reduce the filtration properties of the productive horizon. Effective compositions and concentrations of decolmatant (clog removal) solutions were selected under laboratory conditions using a specially developed methodology and a TESCAN MIRA scanning electron microscope. Based on a scanning electron microscope analysis of the samples, the effectiveness of a decolmatizing solution based on hydrochloric and hydrofluoric acids (taking into account the concentration of the acids in the solution) was established for the destruction of precipitate formation during the in situ leaching of uranium. Geological blocks were ranked by their clay content to select rational parameters of decolmatant solutions for the efficient enhancement of ore filtration properties and the prevention of precipitation formation. Pilot-scale testing of the selected decolmatant parameters under various mining and geological conditions allowed the optimal chemical treatment parameters to be determined based on the clay content and the composition of precipitates in the productive horizon. An analysis of pilot well trials using the new approach showed an increase in the uninterrupted operational period of wells by 30%–40% under average mineral acid concentrations and by 25%–45% under maximum concentrations with surfactant additives in complex geological settings. As a result, an effective methodology for ranking geological blocks based on their ore clay content and precipitate composition was developed to determine the rational parameters of decolmatant solutions, enabling a maximized filtration performance and an extended well service life. This makes it possible to reduce the operating costs of extraction, control the geotechnological parameters of uranium well mining, and improve the efficiency of the in situ leaching of uranium under complex mining and geological conditions. Additionally, the approach increases the environmental and operational safety during uranium ore leaching intensification. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 1959 KiB  
Article
Experimental Investigation of Environmental Factors Affecting Cable Bolt Corrosion in Simulated Underground Conditions
by Saisai Wu, Pengbo Cui, Chunshan Zheng, Krzysztof Skrzypkowski and Krzysztof Zagórski
Materials 2025, 18(15), 3460; https://doi.org/10.3390/ma18153460 - 23 Jul 2025
Viewed by 231
Abstract
Corrosion-related failures have emerged as a critical driver of premature support bolt failures in underground mines, emphasizing the urgency of understanding the phenomenon with respect to enhancing safety in underground environments. This study investigated key factors influencing bolt degradation through extensive experimental evaluation [...] Read more.
Corrosion-related failures have emerged as a critical driver of premature support bolt failures in underground mines, emphasizing the urgency of understanding the phenomenon with respect to enhancing safety in underground environments. This study investigated key factors influencing bolt degradation through extensive experimental evaluation of cable bolts in simulated underground bolt environments. Multi-stranded cable specimens were exposed to saturated clay, coal, mine water, and grout/cement environments. Water samples were collected weekly from critical packing sections and analyzed for pH, electrical conductivity, and dissolved oxygen. The mineralogy and atmospheric conditions were identified as principal corrosion factors, and clay-rich and coal matrices accelerated corrosion, linked to high ion mobility and oxygen diffusion. Secondary factors correlated context-dependently: pH was negatively associated with corrosion in mineral-packed environments, while conductivity was correlated with non-mineral matrices. Notably, multi-stranded cables exhibited higher localized galvanic corrosion in inter-strand zones, highlighting design vulnerabilities. This work provides pioneering evidence that geological conditions are primary drivers for corrosion-related failures, offering actionable guidance for corrosion mitigation strategies in mining infrastructure. Full article
Show Figures

Figure 1

26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 336
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

23 pages, 15083 KiB  
Article
Reactivity of Shale to Supercritical CO2: Insights from Microstructural Characterization and Mineral Phase Evolution in Caney Shales for CCUS Applications
by Loic Bethel Dje and Mileva Radonjic
Materials 2025, 18(14), 3382; https://doi.org/10.3390/ma18143382 - 18 Jul 2025
Viewed by 366
Abstract
Understanding mineral–fluid interactions in shale under supercritical CO2 (scCO2) conditions is relevant for assessing long-term geochemical containment. This study characterizes mineralogical transformations and elemental redistribution in five Caney Shale samples serving as proxies for reservoir (R1, R2, R3) and caprock [...] Read more.
Understanding mineral–fluid interactions in shale under supercritical CO2 (scCO2) conditions is relevant for assessing long-term geochemical containment. This study characterizes mineralogical transformations and elemental redistribution in five Caney Shale samples serving as proxies for reservoir (R1, R2, R3) and caprock (D1, D2) facies, subjected to 30-day static exposure to pure scCO2 at 60 °C and 17.23 MPa (2500 psi), with no brine or impurities introduced. SEM-EDS analyses were conducted before and after exposure, with mineral phases classified into silicates, carbonates, sulfides, and organic matter. Initial compositions were dominated by quartz (38–47 wt.%), illite (16–23 wt.%), carbonates (12–18 wt.%), and organic matter (8–11 wt.%). Post-exposure, carbonate loss ranged from 15 to 40% in reservoir samples and up to 20% in caprock samples. Illite and K-feldspar showed depletion of Fe2+, Mg2+, and K+ at grain edges and cleavages, while pyrite underwent oxidation with Fe redistribution. Organic matter exhibited scCO2-induced surface alteration and apparent sorption effects, most pronounced in R2 and R3. Elemental mapping revealed Ca2+, Mg2+, Fe2+, and Si4+ mobilization near reactive interfaces, though no secondary mineral precipitates formed. Reservoir samples developed localized porosity, whereas caprock samples retained more structural clay integrity. The results advance understanding of mineral reactivity and elemental fluxes in shale-based CO2 sequestration. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials—Second Edition)
Show Figures

Graphical abstract

18 pages, 2765 KiB  
Article
The Effects of Burning Intensity on the Soil C-Related Properties and Mineralogy of Two Contrasting Forest Soils from Chilean National Parks
by Karla Erazo, Clara Martí-Dalmau, David Badía-Villas, Silvia Quintana-Esteras, Blanca Bauluz and Carolina Merino
Fire 2025, 8(7), 277; https://doi.org/10.3390/fire8070277 - 12 Jul 2025
Viewed by 564
Abstract
Forest fires alter multiple soil properties, from those related to the carbon cycle to mineralogy; however, the responses of various soils to thermal impact remain unclear. This study examined the impact of fire-induced heating (300, 600, and 900 °C) on the properties of [...] Read more.
Forest fires alter multiple soil properties, from those related to the carbon cycle to mineralogy; however, the responses of various soils to thermal impact remain unclear. This study examined the impact of fire-induced heating (300, 600, and 900 °C) on the properties of two contrasted soils (Andisol and Inceptisol) with regard to soil organic carbon (SOC), total organic carbon (TOC), dissolved organic carbon (DOC), recalcitrant organic carbon (ROC), soil pH, electrical conductivity (EC), soil water repellency (SWR), soil aggregate stability (SAS), and mineralogy using X-ray diffraction (XRD). SOC and TOC decreased as temperatures increased, with a more pronounced decrease in Andisol (90% loss) than in Inceptisol (80% loss). DOC and SWR peaked at 300 °C but disappeared above 600 °C. Further, ROC increased at 300 °C in both soils, but behaved differently at higher temperatures, remaining stable in Inceptisol and being eliminated in Andisol. Soil pH increased at 600 and 900 °C; meanwhile, EC increased progressively in Andisol but peaked at 300 °C in Inceptisol. SAS remained high in both soils (between 85 and 95%) despite heating. The mineralogical analysis demonstrated how heating induced transformations in iron minerals into more oxidized forms (as hematite and maghemite) in the Andisol, while clay minerals and gibbsite decreased feldspar and quartz accumulation promotion in the Inceptisol. In summary, the initial properties of each soil influenced their respective responses to fire. Full article
Show Figures

Graphical abstract

23 pages, 2482 KiB  
Article
Electromechanical Behavior of Afyonkarahisar Clay Under Varying Stress and Moisture Conditions
by Ahmet Raif Boğa, Süleyman Gücek, Bojan Žlender and Tamara Bračko
Appl. Sci. 2025, 15(14), 7766; https://doi.org/10.3390/app15147766 - 10 Jul 2025
Viewed by 224
Abstract
Clay is a widely used material with unique properties that vary depending on water content and applied pressure. In this study, the electromechanical behavior of clay samples from Afyonkarahisar, Turkey, is investigated by examining the relationship between electrical resistivity, water content, and mechanical [...] Read more.
Clay is a widely used material with unique properties that vary depending on water content and applied pressure. In this study, the electromechanical behavior of clay samples from Afyonkarahisar, Turkey, is investigated by examining the relationship between electrical resistivity, water content, and mechanical loading under uniaxial pressure. The samples with a water content of 10%, 20%, and 30% were tested using a uniaxial loading machine in accordance with ASTM D 2216 and the Turkish standard TS 1900-1. The analysis included measurements of stress, deformation, and electrical conductivity of the soil. A comparative assessment of samples with varying water content revealed that at low moisture levels (10%), the specific electrical resistivity initially decreases due to soil compaction and reduced porosity. However, as stress increases further, resistivity rises significantly as microcracks begin to develop, disrupting conductive pathways. In contrast, at higher water contents (20% and 30%), resistivity consistently decreases with increasing stress, while conductivity increases markedly. This indicates that at elevated saturation levels, the presence of water facilitates charge carrier mobility through ionic conduction, resulting in lower resistivity and higher conductivity. Comparisons with previous studies on clays such as bentonite and kaolinite reveal similar qualitative trends, although differences in the rate of resistivity change suggest a distinct mineralogical influence in Afyonkarahisar clay. This study contributes to a deeper understanding of the geotechnical behavior of this regional clay and supports more accurate performance predictions in engineering and construction applications. Full article
Show Figures

Figure 1

21 pages, 4087 KiB  
Article
Performance Evaluation of Low-Grade Clay Minerals in LC3-Based Cementitious Composites
by Nosheen Blouch, Syed Noman Hussain Kazmi, Nijah Akram, Muhammad Junaid Saleem, Imran Ahmad Khan, Kashif Javed, Sajjad Ahmad and Asfandyar Khan
Solids 2025, 6(3), 35; https://doi.org/10.3390/solids6030035 - 10 Jul 2025
Viewed by 368
Abstract
The cements industry is increasingly under pressure to reduce carbon emissions while maintaining performance standards. Limestone calcined clay cement (LC3) presents a promising low-carbon alternative; however, its performance depends significantly on the type and reactivity of clay used. This study investigates [...] Read more.
The cements industry is increasingly under pressure to reduce carbon emissions while maintaining performance standards. Limestone calcined clay cement (LC3) presents a promising low-carbon alternative; however, its performance depends significantly on the type and reactivity of clay used. This study investigates the effect of three common low-grade clay minerals—kaolinite, montmorillonite, and illite—on the behavior of LC3 blends. The clays were thermally activated and characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray fluorescence spectroscopy (XRF), and Blaine air permeability testing to evaluate their mineralogical composition, thermal behavior, chemical content, and fineness. Pozzolanic reactivity was assessed using the modified Chapelle test. Microstructural development was examined through scanning electron microscopy (SEM) of the hydrated specimens at 28 days. The results confirmed a strong correlation between clay reactivity and hydration performance. Kaolinite showed the highest reactivity and fineness, contributing to a dense microstructure with reduced portlandite and enhanced formation of calcium silicate hydrate. Montmorillonite demonstrated comparable strength and favorable hydration characteristics, while illite, though less reactive initially, showed acceptable long-term behavior. Although kaolinite delivered the best overall performance, its limited availability and higher cost suggest that montmorillonite and illite represent viable and cost-effective alternatives, particularly in regions where kaolinite is scarce. This study highlights the suitability of regionally available, low-grade clays for use in LC3 systems, supporting sustainable and economically viable cement production. Full article
(This article belongs to the Topic Novel Cementitious Materials)
Show Figures

Figure 1

21 pages, 2362 KiB  
Article
Stabilization of Expansive Clay Using Volcanic Ash
by Svetlana Melentijević, Aitor López Marcos, Roberto Ponce and Sol López-Andrés
Geosciences 2025, 15(7), 261; https://doi.org/10.3390/geosciences15070261 - 8 Jul 2025
Cited by 2 | Viewed by 380
Abstract
Considering the increasing requirements for the recovery of different natural and industrial waste materials, the application of volcanic ash as an alternative sustainable binder to traditionally employed lime and cement is proposed for soil stabilization for geotechnical engineering purposes, thus providing a reduction [...] Read more.
Considering the increasing requirements for the recovery of different natural and industrial waste materials, the application of volcanic ash as an alternative sustainable binder to traditionally employed lime and cement is proposed for soil stabilization for geotechnical engineering purposes, thus providing a reduction in carbon emissions. Soil stabilization was performed on natural clays with very high swelling potential, i.e. those classified as inadequate for reuse as a building material for geotechnical purposes. A mineralogical and chemical characterization of raw materials was carried out prior to the performance of different geotechnical laboratory tests, i.e., testing Atterberg limits, compaction, swelling potential, compressibility and resistance parameters over naturally remolded clay and soil mixtures with different binders. The swelling potential was reduced with an increase in the amount of applied binder, necessitating the addition of 10, 20, and 30% of volcanic ash compared to 3% lime, 3% cement and 5% lime, respectively, for a similar reduction in swelling potential. An investigation of the resistance parameters for soil mixture specimens that provided a suitable reduction in swelling potential for their reuse was performed, and a comparison to the parameters of naturally remolded clay was made. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

18 pages, 4306 KiB  
Article
Optimizing the Thermal Treatment of Mining-Waste-Amended Clays for Ceramic Aggregates in Pavement Applications
by Murilo Miguel Narciso, Lisley Madeira Coelho, Sergio Neves Monteiro and Antônio Carlos Rodrigues Guimarães
Materials 2025, 18(13), 3180; https://doi.org/10.3390/ma18133180 - 4 Jul 2025
Viewed by 329
Abstract
Mining activities generate large volumes of tailings with significant environmental impact but also the potential for sustainable reuse in construction materials. This study evaluates the production of ceramic aggregates from mixtures of clay, sand, and iron ore waste subjected to thermal treatment at [...] Read more.
Mining activities generate large volumes of tailings with significant environmental impact but also the potential for sustainable reuse in construction materials. This study evaluates the production of ceramic aggregates from mixtures of clay, sand, and iron ore waste subjected to thermal treatment at temperatures ranging from 600 to 1100 °C. The influence of calcination temperature on mineralogical transformations and mechanical integrity was investigated using X-ray diffraction (XRD) and the α-Treton parameter, derived from standardized impact resistance testing. The results indicate that the formation of metakaolinite between 700 and 900 °C enhances mechanical resistance, while higher temperatures (>900 °C) lead to structural degradation, followed by partial recovery due to mullite crystallization. The α-Treton curve exhibited clear correlation with the phase changes identified by XRD, demonstrating its applicability as a low-cost, sensitive proxy for optimizing thermal activation. A simplified methodology is proposed to optimize the thermal activation of such materials by correlating firing temperature with mineralogical evolution and mechanical integrity, contributing to the development of sustainable ceramic aggregates for pavement applications. Full article
Show Figures

Figure 1

21 pages, 19015 KiB  
Article
Lithofacies Types and Pore Structure Characteristics of Marine Shale in the Lower Cambrian Shuijingtuo Formation, Middle Yangtze Region, China
by Jialin Fan, Wei Liu, Yujing Qian, Jinku Li, Qin Zhou and Ping Gao
J. Mar. Sci. Eng. 2025, 13(7), 1292; https://doi.org/10.3390/jmse13071292 - 30 Jun 2025
Viewed by 255
Abstract
The lithofacies and pore structural characteristics of shale reservoirs directly affect the exploration and development of shale gas. To clarify the exploration and development potential of the Lower Cambrian Shuijingtuo Formation (SJT) shale in the Middle Yangtze region, China, this study employs integrated [...] Read more.
The lithofacies and pore structural characteristics of shale reservoirs directly affect the exploration and development of shale gas. To clarify the exploration and development potential of the Lower Cambrian Shuijingtuo Formation (SJT) shale in the Middle Yangtze region, China, this study employs integrated experimental approaches, including optical and scanning electron microscopy (SEM) observations, X-ray diffraction (XRD) mineralogical analysis, and low-pressure gas (N2/CO2) adsorption, to classify mudstone lithofacies within the SJT and elucidate pore structural characteristics and dominant geological control across different lithofacies. The research results show that (1) Six main types of shale lithofacies are found in the STJ, including low-TOC massive calcareous mudstone (LMCM), low-TOC laminated mixed mudstone (LLMM), medium-TOC massive mixed mudstone (MMMM), high-TOC massive mixed mudstone (HMMM), high-TOC laminated siliceous mudstone (HLSM), and laminated argillaceous mudstone (LAM). (2) The pore types of SJT mudstone primarily include organic pores, intragranular clay mineral pores, and microfractures. The pore structure of mudstone is mainly controlled by clay mineral content and TOC content. However, the controlling factors of pore structure vary among different mudstone lithofacies. LMCM and LLMM are dominated by intragranular clay mineral pores, with their pore structures mainly controlled by clay mineral content. The pore types of HLMM and HLSM are organic pores, with pore structures predominantly controlled by TOC content. (3) The SJT mudstone gas reservoir exhibits diverse types, including HLSM, LAM, and LLMM. HLSM is characterized by the highest brittleness index and elevated pore volume (PV) and it can be considered the optimum lithofacies in the study area. Additionally, LLMM has the highest PV and relatively high brittleness index, positioning it as another significant reservoir target in the study area. Therefore, the Lower Cambrian shale gas reservoirs in the Middle Yangtze region exhibit diverse reservoir types. These research findings provide a scientific basis for the next phase of shale gas exploration planning in the Lower Cambrian. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

22 pages, 5737 KiB  
Article
Geophysical Log Responses and Predictive Modeling of Coal Quality in the Shanxi Formation, Northern Jiangsu, China
by Xuejuan Song, Meng Wu, Nong Zhang, Yong Qin, Yang Yu, Yaqun Ren and Hao Ma
Appl. Sci. 2025, 15(13), 7338; https://doi.org/10.3390/app15137338 - 30 Jun 2025
Viewed by 294
Abstract
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal [...] Read more.
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal quality prediction. By integrating scanning electron microscopy (SEM), X-ray analysis, and optical microscopy with interdisciplinary methodologies spanning mathematics, mineralogy, and applied geophysics, this research analyzes the coal quality and mineral composition of the Shanxi Formation coal seams in northern Jiangsu, China. A predictive model linking geophysical logging responses to coal quality parameters was established to delineate relationships between subsurface geophysical data and material properties. The results demonstrate that the Shanxi Formation coals are gas coal (a medium-metamorphic bituminous subclass) characterized by low sulfur content, low ash yield, low fixed carbon, high volatile matter, and high calorific value. Mineralogical analysis identifies calcite, pyrite, and clay minerals as the dominant constituents. Pyrite occurs in diverse microscopic forms, including euhedral and semi-euhedral fine grains, fissure-filling aggregates, irregular blocky structures, framboidal clusters, and disseminated particles. Systematic relationships were observed between logging parameters and coal quality: moisture, ash content, and volatile matter exhibit an initial decrease, followed by an increase with rising apparent resistivity (LLD) and bulk density (DEN). Conversely, fixed carbon and calorific value display an inverse trend, peaking at intermediate LLD/DEN values before declining. Total sulfur increases with density up to a threshold before decreasing, while showing a concave upward relationship with resistivity. Negative correlations exist between moisture, fixed carbon, calorific value lateral resistivity (LLS), natural gamma (GR), short-spaced gamma-gamma (SSGG), and acoustic transit time (AC). In contrast, ash yield, volatile matter, and total sulfur correlate positively with these logging parameters. These trends are governed by coalification processes, lithotype composition, reservoir physical properties, and the types and mass fractions of minerals. Validation through independent two-sample t-tests confirms the feasibility of the neural network model for predicting coal quality parameters from geophysical logging data. The predictive model provides technical and theoretical support for advancing intelligent coal mining practices and optimizing efficiency in coal chemical industries, enabling real-time subsurface characterization to facilitate precision resource extraction. Full article
Show Figures

Figure 1

24 pages, 3561 KiB  
Article
Controlling Parameters of Acoustic Velocity in Organic-Rich Mudstones (Vaca Muerta Formation, Argentina)
by Mustafa Kamil Yuksek, Gregor P. Eberli, Donald F. McNeill and Ralf J. Weger
Minerals 2025, 15(7), 694; https://doi.org/10.3390/min15070694 - 28 Jun 2025
Viewed by 294
Abstract
We conducted ultrasonic (1-MHz) laboratory measurements on 210 samples from the Vaca Muerta Formation (Neuquén Basin, Argentina) to determine the factors influencing acoustic velocities in siliciclastic–carbonate mudstone. We quantitatively assessed the calcium carbonate and total organic carbon (TOC) content and qualitatively identified the [...] Read more.
We conducted ultrasonic (1-MHz) laboratory measurements on 210 samples from the Vaca Muerta Formation (Neuquén Basin, Argentina) to determine the factors influencing acoustic velocities in siliciclastic–carbonate mudstone. We quantitatively assessed the calcium carbonate and total organic carbon (TOC) content and qualitatively identified the quartz and clay mineralogy. For brine-saturated samples, P-wave velocities ranged from 2826 to 6816 m/s, S-wave velocities ranged from 1474 to 3643 m/s, and porosity values ranged from 0.01 to 19.4%. Carbonate content percentages, found to be critically important, vary widely from 0.08 to 98.0%, while TOC ranged from 0 to 5.3%. Velocity was primarily controlled by carbonate content and, to a lesser extent, by the non-carbonate mineralogy of the rock (e.g., quartz, clay minerals). TOC content had little effect on the acoustic properties. Due to the low porosity of most samples, mineral composition had a stronger influence on velocity than porosity or pore geometry. The Vp/Vs ratio of dry samples ranged from 1.38 to 1.97 and decreased as porosity increased. In saturated samples, the Vp/Vs ratio ranged from 1.46 to 2.06 and appeared independent of porosity. A clear distinction between carbonate and mixed lithofacies under both saturated and dry conditions was observed in all samples. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

17 pages, 4654 KiB  
Article
Pore Structure and Fractal Characteristics of the Permian Shales in Northeastern Sichuan Basin, China
by Guanping Wang, Qian Zhang, Baojian Shen, Pengwei Wang, Wei Du, Lu Wang, Min Li and Chengxiang Wan
Minerals 2025, 15(7), 684; https://doi.org/10.3390/min15070684 - 27 Jun 2025
Viewed by 330
Abstract
The complexity of the pore system hindered our understanding of the storage and transport properties of organic-rich shales, which in turn brought challenges to the efficient exploration and development of shale oil and gas. This study, based on elemental, mineralogical, petrographic, and petrophysical [...] Read more.
The complexity of the pore system hindered our understanding of the storage and transport properties of organic-rich shales, which in turn brought challenges to the efficient exploration and development of shale oil and gas. This study, based on elemental, mineralogical, petrographic, and petrophysical approaches, attempts to reveal the pore structure and fractal characteristics of a suite of Permian shales collected from the northeastern Sichuan Basin, China. The results showed that meso-pores make up the main proportion of the total pore volume in the Permian shale in this study; most of the pore size distribution patterns for micro pores and meso-macropores are bimodal. Pores related to clay minerals, organic matter pores, and intragranular dissolution pores are the main storage spaces in these shales. In these samples, ink-bottle pores dominate, with some slit and wedge-shaped ones developed. The morphology of the pores in the studied shales is mainly ink-bottle pores, with some slit-shaped and wedge-shaped pores. The fractal dimension D2 is greater than D1, indicating that the homogeneity of pore space is stronger than that of the specific surface area. Quartz in Permian shales inhibits the development of macro- and mesopore spaces and enhances pore heterogeneity, while clay minerals facilitate the development of macro- and mesopore spaces and attenuate pore heterogeneity. The organic matter content shows a negative impact on the macropore volume due to the stripped occurrence and matrix filling. This study has a vital significance for current exploration and development of shale gas in Permian strata in the Sichuan Basin and offers insights for Permian shales in other basins all over the world. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Graphical abstract

Back to TopTop