Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = claim cap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2177 KiB  
Article
Comparison of the Risk of Pneumonia Between Fluticasone Furoate/Umeclidinium/Vilanterol and Multiple-Inhaler Triple Therapy in Patients with COPD Using Health Insurance Claims Data: Final Analysis of Post-Marketing Database Surveillance in Japan
by Shoko Akiyama, Kenji Oda, Hiroko Mizohata, Natsuki Sasakura, Kenichi Hashimoto and Hiroki Maruoka
J. Clin. Med. 2025, 14(13), 4697; https://doi.org/10.3390/jcm14134697 - 2 Jul 2025
Viewed by 544
Abstract
Background/Objectives: Due to limited current evidence, this post-marketing database surveillance study aimed to investigate the occurrence of hospitalization due to community-acquired pneumonia (CAP) among patients with chronic obstructive pulmonary disease in Japan who received single-inhaler triple therapy (fluticasone furoate/umeclidinium/vilanterol; FF/UMEC/VI) or multiple-inhaler triple [...] Read more.
Background/Objectives: Due to limited current evidence, this post-marketing database surveillance study aimed to investigate the occurrence of hospitalization due to community-acquired pneumonia (CAP) among patients with chronic obstructive pulmonary disease in Japan who received single-inhaler triple therapy (fluticasone furoate/umeclidinium/vilanterol; FF/UMEC/VI) or multiple-inhaler triple therapy (MITT). Methods: This retrospective cohort study used health insurance claims data from the Medical Data Vision Co., Ltd. database (November 2017–April 2023) to identify overall and incident users of FF/UMEC/VI or MITT. Index date was the start of FF/UMEC/VI or MITT. Hazard ratios (HRs) for CAP hospitalization were assessed using inverse probability of treatment weighting based on propensity scores (PS). Incidence rates and time to occurrence of CAP hospitalization were also assessed. Adjustments were made to the PS model to address missing body mass index data. Results: In total, 8790 and 10,881 patients were included in the overall FF/UMEC/VI and MITT cohorts, and 3939 and 4017 patients were included in the incident FF/UMEC/VI and MITT cohorts, respectively. HR for CAP hospitalization among incident users ranged from 1.05 to 1.15 across all PS adjustments. Similar incidence rates of CAP hospitalization were reported among both cohorts and across all PS adjustments. The cumulative adjusted incidence rates of first CAP hospitalization at 360 days post-index among incident users was 0.060 and 0.054 in the FF/UMEC/VI and MITT cohorts, respectively. Conclusions: There was no difference in the risk of CAP between patients treated with FF/UMEC/VI and MITT. This safety information may help healthcare providers select appropriate treatments. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

33 pages, 3678 KiB  
Article
A Step Towards Neuroplasticity: Capsule Networks with Self-Building Skip Connections
by Nikolai A. K. Steur and Friedhelm Schwenker
AI 2025, 6(1), 1; https://doi.org/10.3390/ai6010001 - 24 Dec 2024
Viewed by 1568
Abstract
Background: Integrating nonlinear behavior into the architecture of artificial neural networks is regarded as essential requirement to constitute their effectual learning capacity for solving complex tasks. This claim seems to be true for moderate-sized networks, i.e., with a lower double-digit number of layers. [...] Read more.
Background: Integrating nonlinear behavior into the architecture of artificial neural networks is regarded as essential requirement to constitute their effectual learning capacity for solving complex tasks. This claim seems to be true for moderate-sized networks, i.e., with a lower double-digit number of layers. However, going deeper with neural networks regularly turns into destructive tendencies of gradual performance degeneration during training. To circumvent this degradation problem, the prominent neural architectures Residual Network and Highway Network establish skip connections with additive identity mappings between layers. Methods: In this work, we unify the mechanics of both architectures into Capsule Networks (CapsNet)s by showing their inherent ability to learn skip connections. As a necessary precondition, we introduce the concept of Adaptive Nonlinearity Gates (ANG)s which dynamically steer and limit the usage of nonlinear processing. We propose practical methods for the realization of ANGs including biased batch normalization, the Doubly-Parametric ReLU (D-PReLU) activation function, and Gated Routing (GR) dedicated to extremely deep CapsNets. Results: Our comprehensive empirical study using MNIST substantiates the effectiveness of our developed methods and delivers valuable insights for the training of very deep nets of any kind. The final experiments on Fashion-MNIST and SVHN demonstrate the potential of pure capsule-driven networks with GR. Full article
Show Figures

Figure 1

17 pages, 4244 KiB  
Article
Plasma Surface Modification of the Inner Wall of Montgomery’s Tracheal Implant (T-Tube)
by Konstantin G. Kostov, Ananias A. Barbosa, Fellype do Nascimento, Paulo F. G. Cardoso, Ana C. P. L. Almeida, Antje Quade, Daniel Legendre, Luiz R. O. Hein, Diego M. Silva and Cristiane Y. Koga-Ito
Polymers 2024, 16(22), 3223; https://doi.org/10.3390/polym16223223 - 20 Nov 2024
Viewed by 1259
Abstract
Tracheal stenosis (i.e., the abnormal narrowing of the trachea) can occur due to a variety of inflammatory and infectious processes as well as due to therapeutic procedures undertaken by the patient. The most common cause of tracheal obstruction in patients has been prolonged [...] Read more.
Tracheal stenosis (i.e., the abnormal narrowing of the trachea) can occur due to a variety of inflammatory and infectious processes as well as due to therapeutic procedures undertaken by the patient. The most common cause of tracheal obstruction in patients has been prolonged intubation. Depending on the extent of the stenosis and its exact location, the surgical insertion of a tracheal stent is the only option for addressing this issue. The Montgomery T-tube implant is a valuable tracheal stent made from medical-grade silicone that provides a functional airway while supporting the tracheal mucosa. However, its performance is subject to gradual deterioration due to biofilm colonization of the stent’s inner wall, which may explain the discomfort claimed by many patients and clinical failures. Recently, cold atmospheric plasmas (CAPs) have emerged as an alternative technology to many conventional medical procedures, such as wound healing, skin treatment, decontamination of medical devices, etc. Here, we report on plasma-induced surface modification of the inner wall of a T-tube implant, considering future biomedical applications. To generate the plasma, we employed a cold atmospheric pressure plasma jet in gas helium, which was directly inserted into the T-tube implant. To assess the treatment uniformity, the degree of surface modification and its extension along the stent’s inner wall was analyzed using different process parameters. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

26 pages, 10235 KiB  
Article
In Vitro Evaluation of Colistin Conjugated with Chitosan-Capped Gold Nanoparticles as a Possible Formulation Applied in a Metered-Dose Inhaler
by Narumon Changsan, Apichart Atipairin, Poowadon Muenraya, Rutthapol Sritharadol, Teerapol Srichana, Neelam Balekar and Somchai Sawatdee
Antibiotics 2024, 13(7), 630; https://doi.org/10.3390/antibiotics13070630 - 6 Jul 2024
Cited by 7 | Viewed by 2238
Abstract
Inhaled colistin is used to treat pneumonia and respiratory infections through nebulization or dry powder inhalers. Nevertheless, the development of a metered-dose inhaler (MDI) for colistin, which could enhance patient convenience and treatment efficacy, has not yet been developed. Colistin is known for [...] Read more.
Inhaled colistin is used to treat pneumonia and respiratory infections through nebulization or dry powder inhalers. Nevertheless, the development of a metered-dose inhaler (MDI) for colistin, which could enhance patient convenience and treatment efficacy, has not yet been developed. Colistin is known for its ability to induce cellular toxicity. Gold nanoparticles (AuNPs) can potentially mitigate colistin toxicity. Therefore, this study aimed to evaluate the antimicrobial effectiveness of colistin conjugated with chitosan-capped gold nanoparticles (Col-CS-AuNPs) and their potential formulation for use with MDIs to deliver the aerosol directly to the deep lung. Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and elemental analysis were used to characterize the synthesized Col-CS-AuNPs. Drug release profiles fitted with the most suitable release kinetic model were evaluated. An MDI formulation containing 100 µg of colistin per puff was prepared. The aerosol properties used to determine the MDI performance included the fine particle fraction, mass median aerodynamic diameter, and geometric standard deviation, which were evaluated using the Andersen Cascade Impactor. The delivered dose uniformity was also determined. The antimicrobial efficacy of the Col-CS-AuNP formulation in the MDI was assessed. The chitosan-capped gold nanoparticles (CS-AuNPs) and Col-CS-AuNPs had particle sizes of 44.34 ± 1.02 and 174.50 ± 4.46 nm, respectively. CS-AuNPs effectively entrapped 76.4% of colistin. Col-CS-AuNPs exhibited an initial burst release of up to 60% colistin within the first 6 h. The release mechanism was accurately described by the Korsmeyer–Peppas model, with an R2 > 0.95. The aerosol properties of the Col-CS-AuNP formulation in the MDI revealed a high fine particle fraction of 61.08%, mass median aerodynamic diameter of 2.34 µm, and geometric standard deviation of 0.21, with a delivered dose uniformity within 75–125% of the labeled claim. The Col-CS-AuNP MDI formulation completely killed Escherichia coli at 5× and 10× minimum inhibitory concentrations after 6 and 12 h of incubation, respectively. The toxicity of CS-AuNP and Col-CS-AuNP MDI formulations in upper and lower respiratory tract cell lines was lower than that of free colistin. The stability of the Col-CS-AuNP MDI formulation was maintained for at least 3 months. The Col-CS-AuNP MDI formulation effectively eradicated bacteria over a 12-h period, showing promise for advancing lung infection treatments. Full article
Show Figures

Figure 1

17 pages, 2158 KiB  
Article
How Credible Is the 25-Year Photovoltaic (PV) Performance Warranty?—A Techno-Financial Evaluation and Implications for the Sustainable Development of the PV Industry
by Pao-Hsiang Hsi and Joseph C. P. Shieh
Sustainability 2024, 16(9), 3880; https://doi.org/10.3390/su16093880 - 6 May 2024
Cited by 2 | Viewed by 2883
Abstract
To support the bankability of PV projects, PV manufacturers have been offering one of the longest warranties in the world, typically in the range of 25–30 years. During the warranty period, PV manufacturers guarantee that the degradation of PV modules will not exceed [...] Read more.
To support the bankability of PV projects, PV manufacturers have been offering one of the longest warranties in the world, typically in the range of 25–30 years. During the warranty period, PV manufacturers guarantee that the degradation of PV modules will not exceed 0.4–0.6% each year, or the buyer can at any time make a claim to the manufacturer for replacement or compensation for the shortfall. Due to its popularity, the performance warranty terms have become more and more competitive each year. However, long-term PV operating data have been very limited and bankruptcy of PV manufacturers has been quite common. Without a proper methodology to assess the adequacy of PV manufacturer’s warranty fund (WF) reserve, the 25-year performance warranty can become empty promises. To ensure sustainable development of the PV industry, this study develops a probability-weighted expected value method to determine the necessary WF reserve based on benchmark field degradation data and prevailing degradation cap of 0.55% per year. The simulation result shows that, unless the manufacturer’s degradation pattern is significantly better than the benchmark degradation profile, 1.302% of the sales value is required for the WF reserve. To the best of our knowledge, this is the first study that provides WF reserve requirement estimation for 25-year PV performance warranty. The result will provide transparency for PV investors and motivation for PV manufacturers for continuous quality improvement as all such achievement can now be reflected in manufacturers’ annual report result. Full article
(This article belongs to the Collection Solar Energy Utilization and Sustainable Development)
Show Figures

Figure 1

19 pages, 18773 KiB  
Article
Comprehensive Benefit Analysis of Port Shore Power Based on Carbon Trading
by Yang He and Yun Zhu
Energies 2023, 16(6), 2755; https://doi.org/10.3390/en16062755 - 15 Mar 2023
Cited by 7 | Viewed by 2354
Abstract
The concept of “oil to electricity” is crucial for expanding the share of electricity in final energy consumption as well as for encouraging energy efficiency and emission reduction. Initially, a multidimensional strategy analysis is conducted for the government, ports, and ships concerned. From [...] Read more.
The concept of “oil to electricity” is crucial for expanding the share of electricity in final energy consumption as well as for encouraging energy efficiency and emission reduction. Initially, a multidimensional strategy analysis is conducted for the government, ports, and ships concerned. From an economics perspective, a mathematical model of electricity substitution benefit analysis based on multiagent cooperative game theory under cap and trade and carbon tax policies is constructed, and the effect of carbon emissions caused by ships on the environment and society is converted into economic value. How several variables, such as transformation costs, ship electricity consumption, subsidy rates, carbon tax prices, and the ratio of shore power usage time to berthing time, affect the functioning of shore power is analyzed. The best electricity price under various circumstances is determined while considering the benefits of the three parties to maximize social welfare. The reduction in carbon dioxide and pollutant emissions is calculated. Meanwhile, the environmental advantages of the “replacement of oil with electricity” procedure are estimated. An example supports the claim that the suggested modeling approach can successfully resolve the economic benefits of each participant for the period that fosters the growth of electricity replacement projects and offers a sound scientific foundation for the formation of pertinent legislation. Full article
(This article belongs to the Special Issue Modeling Energy–Environment–Economy Interrelations)
Show Figures

Figure 1

25 pages, 3460 KiB  
Article
Life Cycle Cost Analysis for Scotland Short-Sea Ferries
by Insik Hwang, Chybyung Park and Byongug Jeong
J. Mar. Sci. Eng. 2023, 11(2), 424; https://doi.org/10.3390/jmse11020424 - 15 Feb 2023
Cited by 14 | Viewed by 4340
Abstract
The pathway to zero carbon emissions passing through carbon emissions reduction is mandatory in the shipping industry. Regarding the various methodologies and technologies reviewed for this purpose, Life Cycle Cost Analysis (LCCA) has been used as an excellent tool to determine economic feasibility [...] Read more.
The pathway to zero carbon emissions passing through carbon emissions reduction is mandatory in the shipping industry. Regarding the various methodologies and technologies reviewed for this purpose, Life Cycle Cost Analysis (LCCA) has been used as an excellent tool to determine economic feasibility and sustainability and to present directions. However, insufficient commercial applications cause a conflict of opinion on which fuel is the key to decarbonisation. Many LCCA comparison studies about eco-friendly ship propulsion claim different results. In order to overcome this and discover the key factors that affect the overall comparative analysis and results in the maritime field, it is necessary to conduct the comparative analysis considering more diverse case ships, case routes, and various types that combine each system. This study aims to analyse which greener fuels are most economically beneficial for the shipping sector and prove the factors influencing different results in LCCA. This study was conducted on hydrogen, ammonia, and electric energy, which are carbon-free fuels among various alternative fuels that are currently in the limelight. As the power source, a PEMFC and battery were used as the main power source, and a solar PV system was installed as an auxiliary power source to compare economic feasibility. Several cost data for LCCA were selected from various feasible case studies. As the difficulty caused by the storage and transportation of hydrogen and ammonia should not be underestimated, in this study, the LCCA considers not only the CapEx and OpEx but also fuel transport costs. As a result, fuel cell propulsion systems with hydrogen as fuel proved financial effectiveness for short-distance ferries as they are more inexpensive than ammonia-fuelled PEMFCs and batteries. The fuel cost takes around half of the total life-cycle cost during the life span. Full article
(This article belongs to the Special Issue Marine Alternative Fuels and Environmental Protection II)
Show Figures

Figure 1

12 pages, 1782 KiB  
Article
Hand-Portable Miniaturized Liquid Chromatography for the Determination of Chlorogenic Acids in Dietary Supplements
by Camila Soto, Henry Daniel Ponce-Rodríguez, Jorge Verdú-Andrés, Pilar Campíns-Falcó and Rosa Herráez-Hernández
Antioxidants 2022, 11(12), 2408; https://doi.org/10.3390/antiox11122408 - 5 Dec 2022
Cited by 5 | Viewed by 2369
Abstract
With the explosive growth of the dietary supplements industry, new demands have emerged that cannot be faced with the sophisticated instrumentation available in well-equipped laboratories. In particular, there is a demand for simplified and easy-to-use instruments, capable of providing results in short times [...] Read more.
With the explosive growth of the dietary supplements industry, new demands have emerged that cannot be faced with the sophisticated instrumentation available in well-equipped laboratories. In particular, there is a demand for simplified and easy-to-use instruments, capable of providing results in short times of analysis. In this study, a hand-portable miniaturized liquid chromatograph (portable LC) has been tested for the determination of chlorogenic acids (CGAs) in products intended to supplement the diet and elaborated with green coffee extracts. CGAs offer several health benefits due to their antioxidant properties, and an increasing number of dietary supplements are marketed with claimed high contents of these compounds. The results obtained with the proposed portable LC approach have been compared with those obtained with two other miniaturized benchtop liquid chromatography instruments, namely, a capillary liquid chromatograph (capLC) and a nano liquid chromatograph (nanoLC). Although compared with the methods that used the benchtop instruments, the sensitivity attainable was lower, the portable LC instrument provided a comparable analytical performance for the quantification of the main GCAs at low mg g−1 levels, and it was clearly superior in terms of speed. The proposed portable LC-based method can be applied to assess the content and distribution profile of the predominant CGAs in this kind of dietary supplement. It can be also used to estimate the antioxidant power due to CGAs, as well as their preservation state. Full article
Show Figures

Figure 1

18 pages, 2343 KiB  
Article
Development of Iron Nanoparticles (FeNPs) Using Biomass of Enterobacter: Its Characterization, Antimicrobial, Anti-Alzheimer’s, and Enzyme Inhibition Potential
by Sania Zafar, Shah Faisal, Hasnain Jan, Riaz Ullah, Muhammad Rizwan, Abdullah, Amal Alotaibi, Nadia Bibi, Amin Ur Rashid and Aishma Khattak
Micromachines 2022, 13(8), 1259; https://doi.org/10.3390/mi13081259 - 5 Aug 2022
Cited by 58 | Viewed by 3577
Abstract
Nanotechnology is a new field that has gained considerable importance due to its potential uses in the field of biosciences, medicine, engineering, etc. In the present study, bio-inspired metallic iron nanoparticles (FeNPs) were prepared using biomass of Enterobacter train G52. The prepared particles [...] Read more.
Nanotechnology is a new field that has gained considerable importance due to its potential uses in the field of biosciences, medicine, engineering, etc. In the present study, bio-inspired metallic iron nanoparticles (FeNPs) were prepared using biomass of Enterobacter train G52. The prepared particles were characterized by UV-spectroscopy, TGA, XRD, SEM, EDX, and FTIR techniques. The crystalline nature of the prepared FeNPs was confirmed by XRD. The SEM techniques revealed the particles size to be 23 nm, whereas in FTIR spectra the peaks in the functional group region indicated the involvement of bioactive compounds of selected bacterial strains in the capping of FeNPs. The EDX confirmed the presence of iron in the engineered FeNPs. The FeNPs were then evaluated for its antibacterial, antifungal, antioxidant, anti-inflammatory, anti-Alzheimer’s, anti-larvicidal, protein kinase inhibition, anti-diabetic, and biocompatibility potentials using standard protocols. Substantial activities were observed in almost all biological assays used. The antioxidant, anti-cholinesterase, and anti-diabetic potential of the prepared nanoparticles were high in comparison to other areas of biological potential, indicating that the FeNPs are capable of targeting meditators of oxidative stress leading to diabetes and Alzheimer’s disease. However, the claim made needs some further experimentation to confirm the observed potential in in vivo animal models. Full article
(This article belongs to the Special Issue Cutting-Edge Microtechnology in Medical Applications)
Show Figures

Figure 1

20 pages, 4390 KiB  
Article
Ergonomic Design of a Workplace Using Virtual Reality and a Motion Capture Suit
by Ilona Kačerová, Jan Kubr, Petr Hořejší and Jana Kleinová
Appl. Sci. 2022, 12(4), 2150; https://doi.org/10.3390/app12042150 - 18 Feb 2022
Cited by 36 | Viewed by 8322
Abstract
Musculoskeletal disorders are some of the most frequent manual work disorders. Employers worldwide pay high costs for their treatment and prevention. We present an innovative method for designing an ergonomic workplace. This method uses new technologies and supports not only ergonomics, but also [...] Read more.
Musculoskeletal disorders are some of the most frequent manual work disorders. Employers worldwide pay high costs for their treatment and prevention. We present an innovative method for designing an ergonomic workplace. This method uses new technologies and supports not only ergonomics, but also a general improvement in the designing of the manufacturing process. Although many researchers claim that there is a huge potential for using new disruptive technologies like virtual reality and motion capture in ergonomics, there is still a lack of a comprehensive methodological basis for implementing these technologies. Our approach was designed using the expert group method. We can validate the manufacturing process and the ergonomics using a motion capture (MoCap) suit and a head-mounted display (HMD). There are no legislative restrictions for the tools which are used for ergonomic analyses, so we can use our outputs for workplace scoring. Firstly, we measure the anthropometrics of the proband. Then the proband is immersed in virtual reality and they go through a manufacturing process during which ergonomics data are collected. The design of a particular workplace or multiple workplaces can be validated based on the reactions, measurements, and input in real-time. After processing the data, the workplace can be adjusted accordingly. The proposed method has a time and economic benefit for workplace design, optimisation of workplace ergonomics, and shortens the time required for designing the production line layout. It also includes optional steps for validation using conventional methods. These steps were used for method validation on a representative workplace using on-site experiments. We validated it on a group of 20 healthy operators working in automotive production (age 22 to 35). A comparison study describes the classic methods of workplace ergonomics evaluation, compares the classic evaluation using biomechanical analysis, modern evaluation using a MoCap suit, and connection with virtual reality. We have proved the validity of the method using the comparison study. The results also showed other potential issues which can be further examined: like the role of peripheral vision or haptic feedback. Full article
(This article belongs to the Special Issue AR, VR: From Latest Technologies to Novel Applications)
Show Figures

Figure 1

12 pages, 495 KiB  
Article
Optimal Claim Settlement Strategies under Constraint of Cap on Claim Loss
by Hong Mao and Krzysztof Ostaszewski
Mathematics 2021, 9(24), 3284; https://doi.org/10.3390/math9243284 - 17 Dec 2021
Viewed by 2214
Abstract
In this paper, we examine the question of how to devise an optimal insurance claim settlement scheme under the constraint of a cap on the amount of the claim payment. We establish objective functions to maximize the net benefit due to exaggerated claims [...] Read more.
In this paper, we examine the question of how to devise an optimal insurance claim settlement scheme under the constraint of a cap on the amount of the claim payment. We establish objective functions to maximize the net benefit due to exaggerated claims while at the same time maximizing the total expected wealth of the insured. Then, we establish a dual objective function to minimize the total expected loss, including the perspective of the insurer. Finally, we illustrate applications of our work and provide numerical analysis of it along with an example. Full article
(This article belongs to the Special Issue Mathematical Economics and Insurance)
Show Figures

Figure 1

21 pages, 2737 KiB  
Article
Progress in Grassland Cover Conservation in Southern European Mountains by 2020: A Transboundary Assessment in the Iberian Peninsula with Satellite Observations (2002–2019)
by Antonio T. Monteiro, Cláudia Carvalho-Santos, Richard Lucas, Jorge Rocha, Nuno Costa, Mariasilvia Giamberini, Eduarda Marques da Costa and Francesco Fava
Remote Sens. 2021, 13(15), 3019; https://doi.org/10.3390/rs13153019 - 1 Aug 2021
Cited by 5 | Viewed by 3452
Abstract
Conservation and policy agendas, such as the European Biodiversity strategy, Aichi biodiversity (target 5) and Common Agriculture Policy (CAP), are overlooking the progress made in mountain grassland cover conservation by 2020, which has significant socio-ecological implications to Europe. However, because the existing data [...] Read more.
Conservation and policy agendas, such as the European Biodiversity strategy, Aichi biodiversity (target 5) and Common Agriculture Policy (CAP), are overlooking the progress made in mountain grassland cover conservation by 2020, which has significant socio-ecological implications to Europe. However, because the existing data near 2020 is scarce, the shifting character of mountain grasslands remains poorly characterized, and even less is known about the conservation outcomes because of different governance regimes and map uncertainty. Our study used Landsat satellite imagery over a transboundary mountain region in the northwestern Iberian Peninsula (Peneda-Gerês) to shed light on these aspects. Supervised classifications with a multiple classifier ensemble approach (MCE) were performed, with post classification comparison of maps established and bias-corrected to identify the trajectory in grassland cover, including protected and unprotected governance regimes. By analysing class-allocation (Shannon entropy), creating 95% confidence intervals for the area estimates, and evaluating the class-allocation thematic accuracy relationship, we characterized uncertainty in the findings. The bias-corrected estimates suggest that the positive progress claimed internationally by 2020 was not achieved. Our null hypothesis to declare a positive progress (at least equality in the proportion of grassland cover of 2019 and 2002) was rejected (X2 = 1972.1, df = 1, p < 0.001). The majority of grassland cover remained stable (67.1 ± 10.1 relative to 2002), but loss (−32.8 ± 7.1% relative to 2002 grasslands cover) overcame gain areas (+11.4 ± 6.6%), indicating net loss as the prevailing pattern over the transboundary study area (−21.4%). This feature prevailed at all extents of analysis (lowlands, −22.9%; mountains, −17.9%; mountains protected, −14.4%; mountains unprotected, −19.7%). The results also evidenced that mountain protected governance regimes experienced a lower decline in grassland extent compared to unprotected. Shannon entropy values were also significantly lower in correctly classified validation sites (z = −5.69, p = 0.0001, n = 708) suggesting a relationship between the quality of pixel assignment and thematic accuracy. We therefore encourage a post-2020 conservation and policy action to safeguard mountain grasslands by enhancing the role of protected governance regimes. To reduce uncertainty, grassland gain mapping requires additional remote sensing research to find the most adequate spatial and temporal data resolution to retrieve this process. Full article
Show Figures

Figure 1

26 pages, 1352 KiB  
Article
Design Flaws in United Kingdom Renewable Energy Support Scheme
by Lawrence Haar
Energies 2021, 14(6), 1657; https://doi.org/10.3390/en14061657 - 17 Mar 2021
Cited by 2 | Viewed by 2624
Abstract
Soon after the UK’s Feed-in Tariff (FiT) Scheme providing incentive prices for renewable energy was introduced in 2010, adjustments and modifications were made to eligibility criteria and incentive prices. Prices paid for renewable energy (RE) under the scheme were cut, deployment caps were [...] Read more.
Soon after the UK’s Feed-in Tariff (FiT) Scheme providing incentive prices for renewable energy was introduced in 2010, adjustments and modifications were made to eligibility criteria and incentive prices. Prices paid for renewable energy (RE) under the scheme were cut, deployment caps were introduced, and preliminary accreditation and efficiency standards were imposed. Controversy ensued as supporters sought help for the nascent RE technologies, while detractors claimed that the scheme was a wasteful means of reducing greenhouse gases. In this research, we examine how RE was incentivized under the FiT Scheme and its wider impact upon various stakeholders to assess its compatibility with liberalized electricity markets of the UK. We employ a financial performance metric to measure the direct costs of RE in compensation to investors and financial option theory to analyze the externalities of RE generation. As a means of reducing atmospheric CO2, the FiT Scheme was expensive, and the externalities imposed upon stakeholders were large. Whilst the UK scheme was effective in delivering RE capacity, our findings show that the scheme was flawed because the compensation provided to investors was greater than required while large indirect costs were ignored. Although eventually reducing feed-in tariffs addressed direct costs in compensation to RE investors, the externalities arising from stochastic renewable output under dispatch prioritization remain. Given the magnitude of externalities, large volumes of RE may be incompatible with the current design of electricity markets. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

12 pages, 447 KiB  
Article
Factor-Based Optimization of a Fundamentally-Weighted Portfolio in the Illiquid and Undeveloped Stock Market
by Davor Zoričić, Denis Dolinar and Zrinka Lovretin Golubić
J. Risk Financial Manag. 2020, 13(12), 302; https://doi.org/10.3390/jrfm13120302 - 1 Dec 2020
Cited by 1 | Viewed by 2878
Abstract
In this paper, the possibility of using fundamental weighting as a tool to intentionally tilt a portfolio toward specific and unobservable risk factors in the illiquid and undeveloped Croatian stock market is explored. Thus far, fundamental-weighting has been shown to be able to [...] Read more.
In this paper, the possibility of using fundamental weighting as a tool to intentionally tilt a portfolio toward specific and unobservable risk factors in the illiquid and undeveloped Croatian stock market is explored. Thus far, fundamental-weighting has been shown to be able to outperform the cap-weighted index in such environments but no attempt regarding control for implicit factor exposure of such portfolios has been reported. Therefore, in this study principal component analysis is performed to capture the underlying risk factors of the fundamentally-weighted portfolio in order to optimize the portfolio’s performance by minimizing its volatility. Previous attempts focusing purely on portfolio risk reduction by estimating minimum variance portfolios failed both from an in-sample and out-of-sample perspective. Results in this study are based on 22 in-sample and out-of-sample tests in the period from March 2009 till March 2020. On the in-sample estimation basis, the proposed approach significantly improves the portfolio’s performance and, if restrictions to weights are imposed, it can outperform the cap-weighted benchmark. However, out-of-sample testing yielded poor results both in terms of risk and return. Such results are in contrast to findings for the developed markets but corroborate the claim that a broad investment base is needed for successful risk exposure in the long run. Full article
(This article belongs to the Special Issue Modern Portfolio Theory)
Show Figures

Figure 1

33 pages, 2531 KiB  
Article
On the Anti-Cancer Effect of Cold Atmospheric Plasma and the Possible Role of Catalase-Dependent Apoptotic Pathways
by Charlotta Bengtson and Annemie Bogaerts
Cells 2020, 9(10), 2330; https://doi.org/10.3390/cells9102330 - 21 Oct 2020
Cited by 20 | Viewed by 3432
Abstract
Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail [...] Read more.
Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail and consists of a very complex network of reactions that are claimed to account for the anti-cancer effect of CAP. Here, the key concept is a reactivation of two specific apoptotic cell signaling pathways through catalase inactivation caused by CAP. Thus, it is postulated that the anti-cancer effect of CAP is due to its ability to inactivate catalase, either directly or indirectly. A theoretical investigation of the proposed theory, especially the role of catalase inactivation, can contribute to the understanding of the underlying cause of the anti-cancer effect of CAP. In the present study, we develop a mathematical model to analyze the proposed catalase-dependent anti-cancer effect of CAP. Our results show that a catalase-dependent reactivation of the two apoptotic pathways of interest is unlikely to contribute to the observed anti-cancer effect of CAP. Thus, we believe that other theories of the underlying cause should be considered and evaluated to gain knowledge about the principles of CAP-induced cancer cell death. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

Back to TopTop