Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,391)

Search Parameters:
Keywords = city-adjustments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 649 KiB  
Article
Investigating the Moderating Effect of Attitudes Toward One’s Own Aging on the Association Between Body Mass Index and Executive Function in Older Adults
by Akihiko Iwahara, Taketoshi Hatta, Reiko Nakayama, Takashi Miyawaki, Seiji Sakate, Junko Hatta and Takeshi Hatta
Geriatrics 2025, 10(4), 105; https://doi.org/10.3390/geriatrics10040105 - 6 Aug 2025
Abstract
Background: This cross-sectional study examined the association between body mass index (BMI) and executive function (EF) in older adults, with a focus on the moderating role of attitudes toward own aging (ATOA). Method: A total of 431 community-dwelling elderly individuals from Yakumo Town [...] Read more.
Background: This cross-sectional study examined the association between body mass index (BMI) and executive function (EF) in older adults, with a focus on the moderating role of attitudes toward own aging (ATOA). Method: A total of 431 community-dwelling elderly individuals from Yakumo Town and Kyoto City, Japan, participated between 2023 and 2024. EF was assessed using the Digit Cancellation Test (D-CAT), and ATOA was measured via a validated subscale of the Philadelphia Geriatric Center Morale Scale. Results: Multiple linear regression analyses adjusted for demographic and health covariates revealed a significant interaction between BMI and ATOA in the younger-old cohort. Specifically, higher BMI was associated with lower executive function only in individuals with lower ATOA scores. No such association was observed in those with more positive views on aging. Conclusions: These results indicate that positive psychological constructs, particularly favorable self-perceptions of aging, may serve as protective factors against the detrimental cognitive consequences of increased body mass index in younger-old populations. Full article
Show Figures

Figure 1

22 pages, 982 KiB  
Article
Cross-Cultural Adaptation and Validation of the Spanish HLS-COVID-Q22 Questionnaire for Measuring Health Literacy on COVID-19 in Peru
by Manuel Caipa-Ramos, Katarzyna Werner-Masters, Silvia Quispe-Prieto, Alberto Paucar-Cáceres and Regina Nina-Chipana
Healthcare 2025, 13(15), 1903; https://doi.org/10.3390/healthcare13151903 - 5 Aug 2025
Viewed by 33
Abstract
Background/Objectives: The social importance of health literacy (HL) is widely understood, and its measurement is the subject of various studies. Due to the recent pandemic, several instruments for measuring HL about COVID-19 have been proposed in different countries, including the HLS-COVID-Q22 questionnaire. The [...] Read more.
Background/Objectives: The social importance of health literacy (HL) is widely understood, and its measurement is the subject of various studies. Due to the recent pandemic, several instruments for measuring HL about COVID-19 have been proposed in different countries, including the HLS-COVID-Q22 questionnaire. The diversity of cultures and languages necessitates the cross-cultural adaptation of this instrument. Thus, the present study translates, adapts, and validates the psychometric properties of the HLS-COVID-Q22 questionnaire to provide its cross-cultural adaptation from English to Spanish (Peru). Methods: As part of ensuring that the final questionnaire accommodates the cultural nuances and idiosyncrasies of the target language, the following activities were carried out: (a) a survey of 40 respondents; and (b) a focus group with 10 participants, followed by expert approval. In addition, the validity and reliability of the health instrument have been ascertained through a further pilot test administered to 490 people in the city of Tacna in southern Peru. Results: The resulting questionnaire helps measure HL in Peru, aiding better-informed decision-making for individual health choices. Conclusions: The presence of such a tool is advantageous in case of similar global health emergencies, when the questionnaire can be made readily available to support a promotion of strategies towards better self-care. Moreover, it encourages other Latin American stakeholders to adjust the instrument to their own cultural, language, and socio-economic contexts, thus invigorating the regional and global expansion of the HL study network. Full article
Show Figures

Figure 1

17 pages, 3208 KiB  
Article
The Spatiotemporal Evolution Characteristics of the Water Use Structure in Shandong Province, Northern China, Based on the Gini Coefficient
by Caihong Liu, Mingyuan Fan, Yongfeng Yang, Kairan Wang and Haijiao Liu
Water 2025, 17(15), 2315; https://doi.org/10.3390/w17152315 - 4 Aug 2025
Viewed by 164
Abstract
The spatiotemporal evolution of the regional water use structure holds significant theoretical value for optimizing regional water resource allocation, adjusting industrial structures, and achieving sustainable water resource development. Shandong Province, located at the lowest reach of the Yellow River Basin in China, is [...] Read more.
The spatiotemporal evolution of the regional water use structure holds significant theoretical value for optimizing regional water resource allocation, adjusting industrial structures, and achieving sustainable water resource development. Shandong Province, located at the lowest reach of the Yellow River Basin in China, is a major economic, agricultural, and populous province, as well as a region with one of the most prominent water supply–demand imbalances in the country. As a result, exploring how water use patterns change over time and space in this region has become crucial. Using analytical methods like the Lorenz curve, Gini coefficient, cluster analysis, and spatial statistics, we examine shifts in Shandong’s water use structure from 2001 to 2023. We find that while agriculture remained the largest water consumer over this period, industrial, household, and ecological water use steadily increased, signaling a move toward more balanced resource distribution. Across Shandong’s 16 regions (cities), the water use patterns varied considerably, particularly in terms of agriculture, industry, and ecological needs. Among these, agricultural, industrial, and domestic water use were distributed relatively evenly, whereas ecological water use showed greater regional disparities. These results may have the potential to guide policymakers in refining water allocation strategies, improving industrial planning, and boosting the water use efficiency in Shandong and the country ore broadly. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

15 pages, 428 KiB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 - 2 Aug 2025
Viewed by 487
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
Show Figures

Figure 1

14 pages, 996 KiB  
Article
CO2 Emissions and Scenario Analysis of Transportation Sector Based on STIRPAT Model: A Case Study of Xuzhou in Northern Jiangsu
by Jinxian He, Meng Wu, Wenjie Cao, Wenqiang Wang, Peilin Sun, Bin Luo, Xuejuan Song, Zhiwei Peng and Xiaoli Zhang
Eng 2025, 6(8), 175; https://doi.org/10.3390/eng6080175 - 1 Aug 2025
Viewed by 152
Abstract
To support carbon peaking and neutrality goals in the city transportation sector, this paper accounts for CO2 emissions from the transport sector in Xuzhou City, North Jiangsu Province, from 1995 to 2023. This study explores the relationship between transport-related carbon emissions and [...] Read more.
To support carbon peaking and neutrality goals in the city transportation sector, this paper accounts for CO2 emissions from the transport sector in Xuzhou City, North Jiangsu Province, from 1995 to 2023. This study explores the relationship between transport-related carbon emissions and economic growth, using the TAPIO decoupling index. Meanwhile, a carbon emission prediction model based on the STIRPAT framework is constructed, with scenario analysis applied to forecast future emissions. Results show three decoupling stages: the first, dominated by weak and expansive negative decoupling, reflects extensive economic growth; the second features weak decoupling with expansive coupling, indicating a more environmentally coordinated phase; the third transitions from expansive negative decoupling and weak decoupling to strong decoupling and expansive coupling, suggesting a shift in development patterns. Under the baseline, low-carbon, and enhanced low-carbon scenarios, by 2030, the CO2 emissions of the transportation industry in Xuzhou will be 10,154,700 tons, 9,072,500 tons, and 8,835,000 tons, respectively, and the CO2 emissions under the low-carbon scenario and the enhanced low-carbon scenario will be reduced by 10.66% and 13.00%, respectively. Based on these findings, the study proposes carbon reduction strategies for Xuzhou’s transport sector, focusing on policy regulation, energy use, and structural adjustments. Full article
(This article belongs to the Special Issue Advances in Decarbonisation Technologies for Industrial Processes)
Show Figures

Figure 1

14 pages, 400 KiB  
Article
Assessing Functional Independence and Associated Factors in Older Populations of Kazakhstan: Implications for Long-Term Care
by Gulzhainar Yeskazina, Ainur Yeshmanova, Gulnara Temirova, Elmira Myrzakhmet, Maya Alibekova, Aigul Tazhiyeva, Shynar Ryspekova, Akmaral Abdykulova, Ainur Nuftieva, Tamara Abdirova, Zhanar Mombiyeva and Indira Omarova
Healthcare 2025, 13(15), 1878; https://doi.org/10.3390/healthcare13151878 - 31 Jul 2025
Viewed by 236
Abstract
Background/Objectives: Accurately assessing the independence level of older adults using useful assessment tools is an important step toward providing them with the necessary care while preserving their dignity. These tools allow older adults to receive effective, personalized home care, which improves their [...] Read more.
Background/Objectives: Accurately assessing the independence level of older adults using useful assessment tools is an important step toward providing them with the necessary care while preserving their dignity. These tools allow older adults to receive effective, personalized home care, which improves their quality of life. This study aimed to clarify the current prevalence of severe and complete functional dependence and associated factors among Kazakhstan’s older adults aged >60 years. Methods: This cross-sectional study was conducted in several polyclinics and geriatric service care centers in two cities of Kazakhstan from March to May 2024. Functional status was assessed by the Barthel Index. We combined the selection into two categories: total dependency and severe dependency in the category “dependent”, and moderate dependency, slight dependency, and total independence in the category “active patients”. Results: Among the 642 older people in this study, 43.3% were dependent patients, and 56.7% were active patients. The odds of severe and total functional dependence are significantly higher for frail participants (adjusted odds ratio (AOR) = 2.96, 95% confidence interval (CI) [1.70, 5.16], p < 0.001) compared to those that are not frail; eleven times higher for those at home (AOR =11.90, 95% CI [5.77, 24.55], p < 0.001) than those in nursing homes; two times higher for participants with sarcopenia (AOR =2.61, 95% CI [1.49, 4.55], p < 0.001) compared to those with no sarcopenia; and three times higher for participants with high risk of fracture (AOR =3.30, 95% CI [1.94, 5.61], p < 0.001) compared to those with low risk. The odds of having severe and total functional dependence are significantly higher for participants with low dynamometry (AOR =1.05, 95% CI [1.03, 1.07], p < 0.001) compared to those with normal dynamometry. Conclusions: Old age, low dynamometry (for men ≤ 29 kg, for women ≤ 17 kg), frailty, being at home, high risk of fracture and osteoporosis, and sarcopenia were associated with increased risk of severe and total functional dependence. Full article
Show Figures

Figure 1

17 pages, 6360 KiB  
Article
Integrating Lanthanide-Reclaimed Wastewater and Lanthanide Phosphate in Corn Cultivation: A Novel Approach for Sustainable Agriculture
by George William Kajjumba, Savanna Vacek and Erica J. Marti
Sustainability 2025, 17(15), 6734; https://doi.org/10.3390/su17156734 - 24 Jul 2025
Viewed by 343
Abstract
With increasing global challenges related to water scarcity and phosphorus depletion, the recovery and reuse of wastewater-derived nutrients offer a sustainable path forward. This study evaluates the dual role of lanthanides (Ce3+ and La3+) in recovering phosphorus from municipal wastewater [...] Read more.
With increasing global challenges related to water scarcity and phosphorus depletion, the recovery and reuse of wastewater-derived nutrients offer a sustainable path forward. This study evaluates the dual role of lanthanides (Ce3+ and La3+) in recovering phosphorus from municipal wastewater and supporting corn (Zea mays) cultivation through lanthanide phosphate (Ln-P) and lanthanide-reclaimed wastewater (LRWW, wastewater spiked with lanthanide). High-purity precipitates of CePO4 (98%) and LaPO4 (92%) were successfully obtained without pH adjustment, as confirmed by X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS). Germination assays revealed that lanthanides, even at concentrations up to 2000 mg/L, did not significantly alter germination rates compared to traditional coagulants, though root and shoot development declined above this threshold—likely due to reduced hydrogen peroxide (H2O2) production and elevated total dissolved solids (TDSs), which induced physiological drought. Greenhouse experiments using desert-like soil amended with Ln-P and irrigated with LRWW showed no statistically significant differences in corn growth parameters—including plant height, stem diameter, leaf number, leaf area, and biomass—when compared to control treatments. Photosynthetic performance, including stomatal conductance, quantum efficiency, and chlorophyll content, remained unaffected by lanthanide application. Metal uptake analysis indicated that lanthanides did not inhibit phosphorus absorption and even enhanced the uptake of calcium and magnesium. Minimal lanthanide accumulation was detected in plant tissues, with most retained in the root zone, highlighting their limited mobility. These findings suggest that lanthanides can be safely and effectively used for phosphorus recovery and agricultural reuse, contributing to sustainable nutrient cycling and aligning with the United Nations’ Sustainable Development Goals of zero hunger and sustainable cities. Full article
Show Figures

Graphical abstract

25 pages, 1084 KiB  
Article
Do China State-Level Economic and Technological Development Zones Have a Positive Effect on Regional Total Factor Productivity? A Perspective Based on the Moderating Effect of Transportation Infrastructure
by Mengshang Liang, Changxin Xu, Mingxian Li and Yang Lu
Systems 2025, 13(8), 620; https://doi.org/10.3390/systems13080620 - 23 Jul 2025
Viewed by 187
Abstract
With the deceleration of China’s economic growth, the crude economic model will progressively diminish in its competitive edge, thereby posing challenges for state-level economic and technological development zones (ETDZs) in terms of transitioning their development model and grappling with low levels of total [...] Read more.
With the deceleration of China’s economic growth, the crude economic model will progressively diminish in its competitive edge, thereby posing challenges for state-level economic and technological development zones (ETDZs) in terms of transitioning their development model and grappling with low levels of total factor productivity (TFP). This study aims to evaluate the TFP of prominent cities in China, examine the influence of the establishment of state-level ETDZs on urban TFP, and investigate the moderating effect of transportation infrastructure on this relationship. The results show that the aggregate TFP of Chinese urban areas declined from 1999 to 2020, a trend linked to structural economic adjustments and persistent underutilization of capital in several regions. The establishment of state-level ETDZs has been found to exert a notable positive influence on regional TFP. The presence of transportation infrastructure plays a moderating role in facilitating state-level ETDZs, thereby enhancing regional TFP. Among various modes of transportation, highways and railways are particularly prominent in this regard. These conclusions provide a theoretical basis and decision-making reference for further unleashing the policy potential of development zones in China. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

23 pages, 6199 KiB  
Article
PDAA: An End-to-End Polygon Dynamic Adjustment Algorithm for Building Footprint Extraction
by Longjie Luo, Jiangchen Cai, Bin Feng and Liufeng Tao
Remote Sens. 2025, 17(14), 2495; https://doi.org/10.3390/rs17142495 - 17 Jul 2025
Viewed by 235
Abstract
Buildings are a significant component of urban space and are essential to smart cities, catastrophe monitoring, and land use planning. However, precisely extracting building polygons from remote sensing images remains difficult because of the variety of building designs and intricate backgrounds. This paper [...] Read more.
Buildings are a significant component of urban space and are essential to smart cities, catastrophe monitoring, and land use planning. However, precisely extracting building polygons from remote sensing images remains difficult because of the variety of building designs and intricate backgrounds. This paper proposes an end-to-end polygon dynamic adjustment algorithm (PDAA) to improve the accuracy and geometric consistency of building contour extraction by dynamically generating and optimizing polygon vertices. The method first locates building instances through the region of interest (RoI) to generate initial polygons, and then uses four core modules for collaborative optimization: (1) the feature enhancement module captures local detail features to improve the robustness of vertex positioning; (2) the contour vertex tuning module fine-tunes vertex coordinates through displacement prediction to enhance geometric accuracy; (3) the learnable redundant vertex removal module screens key vertices based on a classification mechanism to eliminate redundancy; and (4) the missing vertex completion module iteratively restores missed vertices to ensure the integrity of complex contours. PDAA dynamically adjusts the number of vertices to adapt to the geometric characteristics of different buildings, while simplifying the prediction process and reducing computational complexity. Experiments on public datasets such as WHU, Vaihingen, and Inria show that PDAA significantly outperforms existing methods in terms of average precision (AP) and polygon similarity (PolySim). It is at least 2% higher than existing methods in terms of average precision (AP), and the generated polygonal contours are closer to the real building geometry. Values of 75.4% AP and 84.9% PolySim were achieved on the WHU dataset, effectively solving the problems of redundant vertices and contour smoothing, and providing high-precision building vector data support for scenarios such as smart cities and emergency response. Full article
Show Figures

Figure 1

31 pages, 1059 KiB  
Article
Adaptive Traffic Light Management for Mobility and Accessibility in Smart Cities
by Malik Almaliki, Amna Bamaqa, Mahmoud Badawy, Tamer Ahmed Farrag, Hossam Magdy Balaha and Mostafa A. Elhosseini
Sustainability 2025, 17(14), 6462; https://doi.org/10.3390/su17146462 - 15 Jul 2025
Viewed by 607
Abstract
Urban road traffic congestion poses significant challenges to sustainable mobility in smart cities. Traditional traffic light systems, reliant on static or semi-fixed timers, fail to adapt to dynamic traffic conditions, exacerbating congestion and limiting inclusivity. To address these limitations, this paper proposes H-ATLM [...] Read more.
Urban road traffic congestion poses significant challenges to sustainable mobility in smart cities. Traditional traffic light systems, reliant on static or semi-fixed timers, fail to adapt to dynamic traffic conditions, exacerbating congestion and limiting inclusivity. To address these limitations, this paper proposes H-ATLM (a hybrid adaptive traffic lights management), a system utilizing the deep deterministic policy gradient (DDPG) reinforcement learning algorithm to optimize traffic light timings dynamically based on real-time data. The system integrates advanced sensing technologies, such as cameras and inductive loops, to monitor traffic conditions and adaptively adjust signal phases. Experimental results demonstrate significant improvements, including reductions in congestion (up to 50%), increases in throughput (up to 149%), and decreases in clearance times (up to 84%). These findings open the door for integrating accessibility-focused features such as adaptive signaling for accessible vehicles, dedicated lanes for paratransit services, and prioritized traffic flows for inclusive mobility. Full article
Show Figures

Figure 1

15 pages, 6454 KiB  
Article
xLSTM-Based Urban Traffic Flow Prediction for Intelligent Transportation Governance
by Chung-I Huang, Jih-Sheng Chang, Jun-Wei Hsieh, Jyh-Horng Wu and Wen-Yi Chang
Appl. Sci. 2025, 15(14), 7859; https://doi.org/10.3390/app15147859 - 14 Jul 2025
Viewed by 373
Abstract
Urban traffic congestion poses persistent challenges to mobility, public safety, and governance efficiency in metropolitan areas. This study proposes an intelligent traffic flow forecasting framework based on an extended Long Short-Term Memory (xLSTM) model, specifically designed for real-time congestion prediction and proactive police [...] Read more.
Urban traffic congestion poses persistent challenges to mobility, public safety, and governance efficiency in metropolitan areas. This study proposes an intelligent traffic flow forecasting framework based on an extended Long Short-Term Memory (xLSTM) model, specifically designed for real-time congestion prediction and proactive police dispatch support. Utilizing a real-world dataset collected from over 300 vehicle detector (VD) sensors, the proposed model integrates vehicle volume, speed, and lane occupancy data at five-minute intervals. Methodologically, the xLSTM model incorporates matrix-based memory cells and exponential gating mechanisms to enhance spatio-temporal learning capabilities. Model performance is evaluated using multiple metrics, including congestion classification accuracy, F1-score, MAE, RMSE, and inference latency. The xLSTM model achieves a congestion prediction accuracy of 87.3%, an F1-score of 0.882, and an average inference latency of 41.2 milliseconds—outperforming baseline LSTM, GRU, and Transformer-based models in both accuracy and speed. These results validate the system’s suitability for real-time deployment in police control centers, where timely prediction of traffic congestion enables anticipatory patrol allocation and dynamic signal adjustment. By bridging AI-driven forecasting with public safety operations, this research contributes a validated and scalable approach to intelligent transportation governance, enhancing the responsiveness of urban mobility systems and advancing smart city initiatives. Full article
Show Figures

Figure 1

14 pages, 5551 KiB  
Article
Analysis of CO2 Concentration and Fluxes of Lisbon Portugal Using Regional CO2 Assimilation Method Based on WRF-Chem
by Jiuping Jin, Yongjian Huang, Chong Wei, Xinping Wang, Xiaojun Xu, Qianrong Gu and Mingquan Wang
Atmosphere 2025, 16(7), 847; https://doi.org/10.3390/atmos16070847 - 11 Jul 2025
Viewed by 200
Abstract
Cities house more than half of the world’s population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, [...] Read more.
Cities house more than half of the world’s population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, should allow us to monitor changes in global fossil fuel CO2 emissions in an independent, objective way. The study adopted a high-spatiotemporal-resolution regional assimilation method using satellite observation data and atmospheric transport model WRF-Chem/DART to assimilate CO2 concentration and fluxes in Lisbon, a major city in Portugal. It is based on Zhang’s assimilation method, combined OCO-2 XCO2 retrieval data, ODIAC 1 km anthropogenic CO2 emissions and Ensemble Adjustment Kalman Filter Assimilation. By employing three two-way nested domains in WRF-Chem, we refined the spatial resolution of the CO2 concentrations and fluxes over Lisbon to 3 km. The spatiotemporal distribution characteristics and main driving factors of CO2 concentrations and fluxes in Lisbon and its surrounding cities and countries were analyzed in March 2020, during the period affected by COVID-19 pandemic. The results showed that the monthly average CO2 and XCO2 concentrations in Lisbon were 420.66 ppm and 413.88 ppm, respectively, and the total flux was 0.50 Tg CO2. From a wider perspective, the findings provide a scientific foundation for urban carbon emission management and policy-making. Full article
Show Figures

Figure 1

41 pages, 4123 KiB  
Article
Optimal D-STATCOM Operation in Power Distribution Systems to Minimize Energy Losses and CO2 Emissions: A Master–Slave Methodology Based on Metaheuristic Techniques
by Rubén Iván Bolaños, Cristopher Enrique Torres-Mancilla, Luis Fernando Grisales-Noreña, Oscar Danilo Montoya and Jesús C. Hernández
Sci 2025, 7(3), 98; https://doi.org/10.3390/sci7030098 - 11 Jul 2025
Viewed by 374
Abstract
In this paper, we address the problem of intelligent operation of Distribution Static Synchronous Compensators (D-STATCOMs) in power distribution systems to reduce energy losses and CO2 emissions while improving system operating conditions. In addition, we consider the entire set of constraints inherent [...] Read more.
In this paper, we address the problem of intelligent operation of Distribution Static Synchronous Compensators (D-STATCOMs) in power distribution systems to reduce energy losses and CO2 emissions while improving system operating conditions. In addition, we consider the entire set of constraints inherent in the operation of such networks in an environment with D-STATCOMs. To solve such a problem, we used three master–slave methodologies based on sequential programming methods. In the proposed methodologies, the master stage solves the problem of intelligent D-STATCOM operation using the continuous versions of the Monte Carlo (MC) method, the population-based genetic algorithm (PGA), and the Particle Swarm Optimizer (PSO). The slave stage, for its part, evaluates the solutions proposed by the algorithms to determine their impact on the objective functions and constraints representing the problem. This is accomplished by running an Hourly Power Flow (HPF) based on the method of successive approximations. As test scenarios, we employed the 33- and 69-node radial test systems, considering data on power demand and CO2 emissions reported for the city of Medellín in Colombia (as documented in the literature). Furthermore, a test system was adapted in this work to the demand characteristics of a feeder located in the city of Talca in Chile. This adaptation involved adjusting the conductors and voltage limits to include a test system with variations in power demand due to seasonal changes throughout the year (spring, winter, autumn, and summer). Demand curves were obtained by analyzing data reported by the local network operator, i.e., Compañía General de Electricidad. To assess the robustness and performance of the proposed optimization approach, each scenario was simulated 100 times. The evaluation metrics included average solution quality, standard deviation, and repeatability. Across all scenarios, the PGA consistently outperformed the other methods tested. Specifically, in the 33-node system, the PGA achieved a 24.646% reduction in energy losses and a 0.9109% reduction in CO2 emissions compared to the base case. In the 69-node system, reductions reached 26.0823% in energy losses and 0.9784% in CO2 emissions compared to the base case. Notably, in the case of the Talca feeder—particularly during summer, the most demanding season—the PGA yielded the most significant improvements, reducing energy losses by 33.4902% and CO2 emissions by 1.2805%. Additionally, an uncertainty analysis was conducted to validate the effectiveness and robustness of the proposed optimization methodology under realistic operating variability. A total of 100 randomized demand profiles for both active and reactive power were evaluated. The results demonstrated the scalability and consistent performance of the proposed strategy, confirming its effectiveness under diverse and practical operating conditions. Full article
(This article belongs to the Section Computer Sciences, Mathematics and AI)
Show Figures

Figure 1

26 pages, 5129 KiB  
Article
HEC-RAS-Based Evaluation of Water Supply Reliability in the Dry Season of a Cold-Region Reservoir in Mudanjiang, Northeast China
by Peng-Fei Lu, Chang-Lei Dai, Yuan-Ming Wang, Xiao Yang and Xin-Yu Wang
Sustainability 2025, 17(14), 6302; https://doi.org/10.3390/su17146302 - 9 Jul 2025
Viewed by 339
Abstract
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking [...] Read more.
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking Linhai Reservoir as the core, it integrates the HEC-RAS hydrodynamic model with multi-source data such as basin topography, hydro-meteorological data, and water conservancy project parameters to construct a multi-scenario water supply scheduling model during the dry season. The aim is to provide scientific recommendations for different reservoir operation strategies in response to varying frequencies of upstream inflow, based on simulations conducted after the reservoir’s completion. Taking into account winter runoff reduction characteristics and engineering parameters, we simulated the relationships between water level and flow, ecological flow requirements, and urban water shortages. The results indicate that in both flood and normal years, dynamic coordination of storage and discharge can achieve a daily water supply of 120,000 cubic meters, with 100% compliance for the ecological flow rate. For mild and moderate drought years, additional water diversion becomes necessary to achieve 93.5% and 89% supply reliability, respectively. During severe and extreme droughts, significantly reduced reservoir inflows lower ecological compliance rates, necessitating emergency measures, such as utilizing dead storage capacity and exploring alternative water sources. The study proposes operational strategies tailored to different drought intensities: initiating storage adjustments in September for mild droughts and implementing peak-shifting measures by mid-October for extreme droughts. These approaches enhance storage efficiency and mitigate ice blockage risks. This research supports the water supply security and river ecological health of urban and rural areas in Mudanjiang City and Hailin City and provides a certain scientific reference basis for the multi-objective coordinated operation of reservoirs in the same type of high-latitude cold regions. Full article
Show Figures

Figure 1

25 pages, 2747 KiB  
Article
Comparative Evaluation of Fuzzy Logic and Q-Learning for Adaptive Urban Traffic Signal Control
by Ioana-Miruna Vlasceanu, Vasilica-Cerasela-Doinita Ceapa, Ioan Stefan Sacala, Constantin Florin Caruntu, Andreea-Ioana Udrea, Nicolae Constantin and Mircea Segarceanu
Electronics 2025, 14(14), 2759; https://doi.org/10.3390/electronics14142759 - 9 Jul 2025
Viewed by 268
Abstract
In recent years, the number of vehicles in cities has visibly increased, leading to continuous modifications in general mobility. Pollution levels and congestion cases are reaching higher numbers as well, pointing to a need for better optimization solutions. Several existing control systems still [...] Read more.
In recent years, the number of vehicles in cities has visibly increased, leading to continuous modifications in general mobility. Pollution levels and congestion cases are reaching higher numbers as well, pointing to a need for better optimization solutions. Several existing control systems still rely on fixed timings for traffic lights, lacking an adaptive approach that can adjust the timers depending on real-time conditions. This study aims to provide a design for such a tool, by implementing two different approaches: Fuzzy Logic Optimization and an Adaptive Traffic Management strategy. The first controller involves Fuzzy Logic based on rule-based that adjust green and red-light timings depending on the number of vehicles at an intersection. The second model provides traffic adjustments based on external equipment such as road sensors and cameras, offering dynamic solutions tailored to current traffic conditions. Both methods are tested in a simulated environment using SUMO (Simulation of Urban Mobility). They were evaluated according to key efficiency indicators, namely average waiting time, lost time per cycle, number of stops per intersection, and overall traffic fluidity. Results demonstrate that Q-learning maintains consistent waiting times between 2.57 and 3.71 s across all traffic densities while achieving Traffic Flow Index values above 85%, significantly outperforming Fuzzy Logic, which shows greater variability and lower efficiency under high-density conditions. Full article
Show Figures

Figure 1

Back to TopTop