Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,170)

Search Parameters:
Keywords = city users

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 813 KiB  
Review
Exploring Design Thinking Methodologies: A Comprehensive Analysis of the Literature, Outstanding Practices, and Their Linkage to Sustainable Development Goals
by Matilde Martínez Casanovas
Sustainability 2025, 17(15), 7142; https://doi.org/10.3390/su17157142 - 6 Aug 2025
Abstract
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. [...] Read more.
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. Through inductive content analysis, 10 core DT principles—such as empathy, iteration, user-centeredness, and systems thinking—I identified and thematically mapped to specific SDGs, including goals related to health, education, innovation, and climate action. The study also presents five real-world cases from diverse sectors such as technology, healthcare, and urban planning, illustrating how DT has been applied to address practical challenges aligned with the SDGs. However, the review identifies persistent gaps in the field: the lack of standardized evaluation frameworks, limited integration across SDG domains, and weak adaptation of ethical and contextual considerations, particularly in vulnerable communities. As a response, this paper recommends the adoption of structured impact assessment tools (e.g., Cities2030, Responsible Design Thinking), integration of design justice principles, and the development of participatory, iterative ecosystems for innovation. By offering both conceptual synthesis and applied insights, this article positions Design Thinking as a strategic and systemic approach for driving sustainable transformation aligned with the 2030 Agenda. Full article
(This article belongs to the Section Sustainable Education and Approaches)
9 pages, 1406 KiB  
Proceeding Paper
Disaster-Based Mobile Learning System Using Technology Acceptance Model
by John A. Bacus
Eng. Proc. 2025, 103(1), 5; https://doi.org/10.3390/engproc2025103005 - 6 Aug 2025
Abstract
Recently, the usage of mobile phone-based games has increased due to the growing accessibility and convenience they provide. Using a descriptive-quantitative design, a disaster-based mobile application was developed in this study to enhance disaster literacy among the private senior high schools in science, [...] Read more.
Recently, the usage of mobile phone-based games has increased due to the growing accessibility and convenience they provide. Using a descriptive-quantitative design, a disaster-based mobile application was developed in this study to enhance disaster literacy among the private senior high schools in science, technology, engineering, and mathematics (STEM) education in Davao City, the Philippines. The developed application was provided together with survey questionnaires to 364 students randomly selected from different schools in Davao City usingF a simple random sampling method. The technology acceptance (TAM) model was used to explain how users accepted the new technology. The mobile application was designed with features in four disaster scenarios—fire, flood, volcano, and earthquake. The results revealed a high acceptance, with an average score of the perceived usefulness (PE) of 4.52, perceived ease of use (PEOU) of 4.44, and a behavioral intention (BI) of 4.12. The students accepted the application to enhance disaster risk reduction and management. Aligned with SDG 4 and SDG 11, the application can be used to equip users with the knowledge to respond to disasters and ensure community resilience. Full article
Show Figures

Figure 1

17 pages, 3816 KiB  
Article
Charging Station Siting and Capacity Determination Based on a Generalized Least-Cost Model of Traffic Distribution
by Mingzhao Ma, Feng Wang, Lirong Xiong, Yuhonghao Wang and Wenxin Li
Algorithms 2025, 18(8), 479; https://doi.org/10.3390/a18080479 - 4 Aug 2025
Viewed by 106
Abstract
With the popularization of electric vehicles and the continuous expansion of the electric vehicle market, the construction and management of charging facilities for electric vehicles have become important issues in research and practice. In some remote areas, the charging stations are idle due [...] Read more.
With the popularization of electric vehicles and the continuous expansion of the electric vehicle market, the construction and management of charging facilities for electric vehicles have become important issues in research and practice. In some remote areas, the charging stations are idle due to low traffic flow, resulting in a waste of resources. Areas with high traffic flow may have fewer charging stations, resulting in long queues and road congestion. The purpose of this study is to optimize the location of charging stations and the number of charging piles in the stations based on the distribution of traffic flow, and to construct a bi-level programming model by analyzing the distribution of traffic flow. The upper-level planning model is the user-balanced flow allocation model, which is solved to obtain the optimal traffic flow allocation of the road network, and the output of the upper-level planning model is used as the input of the lower-layer model. The lower-level planning model is a generalized minimum cost model with driving time, charging waiting time, charging time, and the cost of electricity consumed to reach the destination of the trip as objective functions. In this study, an empirical simulation is conducted on the road network of Hefei City, Anhui Province, utilizing three algorithms—GA, GWO, and PSO—for optimization and sensitivity analysis. The optimized results are compared with the existing charging station deployment scheme in the road network to demonstrate the effectiveness of the proposed methodology. Full article
Show Figures

Figure 1

20 pages, 8930 KiB  
Article
Beyond Homogeneous Perception: Classifying Urban Visitors’ Forest-Based Recreation Behavior for Policy Adaptation
by Young-Jo Yun, Ga Eun Choi, Ji-Ye Lee and Yun Eui Choi
Land 2025, 14(8), 1584; https://doi.org/10.3390/land14081584 - 3 Aug 2025
Viewed by 197
Abstract
Urban forests, as a form of green infrastructure, play a vital role in enhancing urban resilience, environmental health, and quality of life. However, users perceive and utilize these spaces in diverse ways. This study aims to identify latent perception types among urban forest [...] Read more.
Urban forests, as a form of green infrastructure, play a vital role in enhancing urban resilience, environmental health, and quality of life. However, users perceive and utilize these spaces in diverse ways. This study aims to identify latent perception types among urban forest visitors and analyze their behavioral, demographic, and policy-related characteristics in Incheon Metropolitan City (Republic of Korea). Using latent class analysis, four distinct visitor types were identified: multipurpose recreationists, balanced relaxation seekers, casual forest users, and passive forest visitors. Multipurpose recreationists preferred active physical use and sports facilities, while balanced relaxation seekers emphasized emotional well-being and cultural experiences. Casual users engaged lightly with forest settings, and passive forest visitors exhibited minimal recreational interest. Satisfaction with forest elements such as vegetation, facilities, and management conditions varied across visitor types and age groups, especially among older adults. These findings highlight the need for perception-based green infrastructure planning. Policy recommendations include expanding accessible neighborhood green spaces for aging populations, promoting community-oriented events, and offering participatory forest programs for youth engagement. By integrating user segmentation into urban forest planning and governance, this study contributes to more inclusive, adaptive, and sustainable management of urban green infrastructure. Full article
Show Figures

Graphical abstract

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 200
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

24 pages, 3559 KiB  
Article
Advancing Online Road Safety Education: A Gamified Approach for Secondary School Students in Belgium
by Imran Nawaz, Ariane Cuenen, Geert Wets, Roeland Paul and Davy Janssens
Appl. Sci. 2025, 15(15), 8557; https://doi.org/10.3390/app15158557 (registering DOI) - 1 Aug 2025
Viewed by 194
Abstract
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 [...] Read more.
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 years) in Belgium. The program incorporates gamified e-learning modules containing, among others, podcasts, interactive 360° visuals, and virtual reality (VR), to enhance traffic knowledge, situation awareness, risk detection, and risk management. This study was conducted across several cities and municipalities within Belgium. More than 600 students from school years 3 to 6 completed the platform and of these more than 200 students filled in a comprehensive questionnaire providing detailed feedback on platform usability, preferences, and behavioral risk assessments. The results revealed shortcomings in traffic knowledge and skills, particularly among older students. Gender-based analysis indicated no significant performance differences overall, though females performed better in risk management and males in risk detection. Furthermore, students from cities outperformed those from municipalities. Feedback on the R2S platform indicated high usability and engagement, with VR-based simulations receiving the most positive reception. In addition, it was highlighted that secondary school students are high-risk groups for distraction and red-light violations as cyclists and pedestrians. This study demonstrates the importance of gamified, technology-enhanced road safety education while underscoring the need for module-specific improvements and regional customization. The findings support the broader application of e-learning methodologies for sustainable, behavior-oriented traffic safety education targeting adolescents. Full article
(This article belongs to the Special Issue Technology Enhanced and Mobile Learning: Innovations and Applications)
Show Figures

Figure 1

28 pages, 1328 KiB  
Review
Security Issues in IoT-Based Wireless Sensor Networks: Classifications and Solutions
by Dung T. Nguyen, Mien L. Trinh, Minh T. Nguyen, Thang C. Vu, Tao V. Nguyen, Long Q. Dinh and Mui D. Nguyen
Future Internet 2025, 17(8), 350; https://doi.org/10.3390/fi17080350 - 1 Aug 2025
Viewed by 205
Abstract
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to [...] Read more.
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to be important components of the IoT system (WSN-IoT) to create smart applications and automate processes. As the number of connected IoT devices increases, privacy and security issues become more complicated due to their external working environments and limited resources. Hence, solutions need to be updated to ensure that data and user privacy are protected from threats and attacks. To support the safety and reliability of such systems, in this paper, security issues in the WSN-IoT are addressed and classified as identifying security challenges and requirements for different kinds of attacks in either WSNs or IoT systems. In addition, security solutions corresponding to different types of attacks are provided, analyzed, and evaluated. We provide different comparisons and classifications based on specific goals and applications that hopefully can suggest suitable solutions for specific purposes in practical. We also suggest some research directions to support new security mechanisms. Full article
Show Figures

Figure 1

40 pages, 1548 KiB  
Article
Real-Time Service Migration in Edge Networks: A Survey
by Yutong Zhang, Ke Zhao, Yihong Yang and Zhangbing Zhou
J. Sens. Actuator Netw. 2025, 14(4), 79; https://doi.org/10.3390/jsan14040079 - 1 Aug 2025
Viewed by 291
Abstract
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, [...] Read more.
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, the dynamic nature and limited resources of edge networks bring challenges such as load imbalance and high latency while satisfying user requests. Service migration, the dynamic redeployment of service instances across distributed edge nodes, has become a key enabler for solving these challenges and optimizing edge network characteristics. Moreover, the low-latency nature of edge computing requires that service migration strategies must be in real time in order to ensure latency requirements. Thus, this paper presents a systematic survey of real-time service migration in edge networks. Specifically, we first introduce four network architectures and four basic models for real-time service migration. We then summarize four research motivations for real-time service migration and the real-time guarantee introduced during the implementation of migration strategies. To support these motivations, we present key techniques for solving the task of real-time service migration and how these algorithms and models facilitate the real-time performance of migration. We also explore latency-sensitive application scenarios, such as smart cities, smart homes, and smart manufacturing, where real-time service migration plays a critical role in sustaining performance and adaptability under dynamic conditions. Finally, we summarize the key challenges and outline promising future research directions for real-time service migration. This survey aims to provide a structured and in-depth theoretical foundation to guide future research on real-time service migration in edge networks. Full article
Show Figures

Figure 1

27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 (registering DOI) - 1 Aug 2025
Viewed by 154
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 - 1 Aug 2025
Viewed by 283
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

22 pages, 1007 KiB  
Systematic Review
Mapping Drone Applications in Rural and Regional Cities: A Scoping Review of the Australian State of Practice
by Christine Steinmetz-Weiss, Nancy Marshall, Kate Bishop and Yuan Wei
Appl. Sci. 2025, 15(15), 8519; https://doi.org/10.3390/app15158519 (registering DOI) - 31 Jul 2025
Viewed by 140
Abstract
Consumer-accessible and user-friendly smart products such as unmanned aerial vehicles (UAVs), or drones, have become widely used, adaptable, and acceptable devices to observe, assess, measure, and explore urban and natural environments. A drone’s relatively low cost and flexibility in the level of expertise [...] Read more.
Consumer-accessible and user-friendly smart products such as unmanned aerial vehicles (UAVs), or drones, have become widely used, adaptable, and acceptable devices to observe, assess, measure, and explore urban and natural environments. A drone’s relatively low cost and flexibility in the level of expertise required to operate it has enabled users from novice to industry professionals to adapt a malleable technology to various disciplines. This review examines the academic literature and maps how drones are currently being used in 93 rural and regional city councils in New South Wales, Australia. Through a systematic review of the academic literature and scrutiny of current drone use in these councils using publicly available information found on council websites, findings reveal potential uses of drone technology for local governments who want to engage with smart technology devices. We looked at how drones were being used in the management of the council’s environment; health and safety initiatives; infrastructure; planning; social and community programmes; and waste and recycling. These findings suggest that drone technology is increasingly being utilised in rural and regional areas. While the focus is on rural and regional New South Wales, a review of the academic literature and local council websites provides a snapshot of drone use examples that holds global relevance for local councils in urban and remote areas seeking to incorporate drone technology into their daily practice of city, town, or region governance. Full article
Show Figures

Figure 1

23 pages, 5023 KiB  
Article
Assessing the Impact of Design Quality Attributes of Public Open Spaces on Users’ Satisfaction: Insights from a Case Study in Saudi Arabia
by Omar S. Asfour and Sharif Tousif Hossain
Architecture 2025, 5(3), 55; https://doi.org/10.3390/architecture5030055 - 29 Jul 2025
Viewed by 209
Abstract
Public open spaces have recently attracted significant attention in the national development programs aimed at improving urban livability and quality of life in Saudi Arabia. While many studies have examined the design quality of public open spaces in the country, a contextualized evaluation [...] Read more.
Public open spaces have recently attracted significant attention in the national development programs aimed at improving urban livability and quality of life in Saudi Arabia. While many studies have examined the design quality of public open spaces in the country, a contextualized evaluation index that takes into account users’ preferences and the nation’s social context is still lacking. This gap calls for additional field studies to better understand users’ needs and their interactions with the current urban design practices of public open spaces. This study provides deeper insights into the design quality of public open spaces in Saudi Arabia. The study first identified 16 attributes of design quality of public open spaces, and then assessed a case study, Alrabie Park in Al-Khobar city, based on field observation and a survey of users’ satisfaction levels in relation to these quality attributes The findings revealed that the average of users’ satisfaction was 3.76 out of 5.0, indicating a neutral to satisfied response. Key strengths were noted in accessibility and users’ comfort, while areas needing improvement included environmental quality and amenities and services. The study recommends the development of a national evaluation index for public open spaces to create inclusive, safe, and vibrant environments that reflect Saudi Arabia’s urban and socio-cultural context. It also emphasizes the importance of community engagement in this regard to ensure that the design of public spaces aligns well with the users’ needs and helps to create sustainable urban spaces in the city. Full article
Show Figures

Figure 1

36 pages, 1201 KiB  
Article
Between Smart Cities Infrastructure and Intention: Mapping the Relationship Between Urban Barriers and Bike-Sharing Usage
by Radosław Wolniak and Katarzyna Turoń
Smart Cities 2025, 8(4), 124; https://doi.org/10.3390/smartcities8040124 - 29 Jul 2025
Viewed by 363
Abstract
Society’s adaptation to shared mobility services is a growing topic that requires detailed understanding of the local circumstances of potential and current users. This paper focuses on analyzing barriers to the adoption of urban bike-sharing systems in post-industrial cities, using a case study [...] Read more.
Society’s adaptation to shared mobility services is a growing topic that requires detailed understanding of the local circumstances of potential and current users. This paper focuses on analyzing barriers to the adoption of urban bike-sharing systems in post-industrial cities, using a case study of the Silesian agglomeration in Poland. Methodologically, the article integrates quantitative survey methods with multivariate statistical analysis to analyze the demographic, socioeconomic, and motivational factors that underline the adoption of shared micromobility. The study highlights a detailed segmentation of users by income, age, professional status, and gender, as well as the observation of profound disparities in access and perceived usefulness. Of note is the study’s identification of a highly concentrated segment of young, low-income users (mostly students), which largely accounts for the general perception of economic and infrastructural barriers. These include the use of factor analysis and regression to plot the interaction patterns between individual user characteristics and certain system-level constraints, such as cost, infrastructure coverage, weather, and health. The study’s findings prioritize problem-specific interventions in urban mobility planning: bridging equity gaps between user groups. This research contributes to the current literature by providing detailed insights into the heterogeneity of user mobility behavior, offering evidence-based recommendations for inclusive and adaptive options for shared transportation infrastructure in a changing urban context. Full article
Show Figures

Figure 1

52 pages, 3733 KiB  
Article
A Hybrid Deep Reinforcement Learning and Metaheuristic Framework for Heritage Tourism Route Optimization in Warin Chamrap’s Old Town
by Rapeepan Pitakaso, Thanatkij Srichok, Surajet Khonjun, Natthapong Nanthasamroeng, Arunrat Sawettham, Paweena Khampukka, Sairoong Dinkoksung, Kanya Jungvimut, Ganokgarn Jirasirilerd, Chawapot Supasarn, Pornpimol Mongkhonngam and Yong Boonarree
Heritage 2025, 8(8), 301; https://doi.org/10.3390/heritage8080301 - 28 Jul 2025
Viewed by 636
Abstract
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework [...] Read more.
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework that integrates Deep Reinforcement Learning (DRL) for policy-guided initialization, an Improved Multiverse Optimizer (IMVO) for global search, and a Generative Adversarial Network (GAN) for local refinement and solution diversity. The model operates within a digital twin of Warin Chamrap’s old town, leveraging 92 POIs, congestion heatmaps, and behaviorally clustered tourist profiles. The proposed method was benchmarked against seven state-of-the-art techniques, including PSO + DRL, Genetic Algorithm with Multi-Neighborhood Search (Genetic + MNS), Dual-ACO, ALNS-ASP, and others. Results demonstrate that DRL–IMVO–GAN consistently dominates across key metrics. Under equal-objective weighting, it attained the highest heritage score (74.2), shortest travel time (21.3 min), and top satisfaction score (17.5 out of 18), along with the highest hypervolume (0.85) and Pareto Coverage Ratio (0.95). Beyond performance, the framework exhibits strong generalization in zero- and few-shot scenarios, adapting to unseen POIs, modified constraints, and new user profiles without retraining. These findings underscore the method’s robustness, behavioral coherence, and interpretability—positioning it as a scalable, intelligent decision-support tool for sustainable and user-centered cultural tourism planning in secondary cities. Full article
(This article belongs to the Special Issue AI and the Future of Cultural Heritage)
Show Figures

Figure 1

19 pages, 3492 KiB  
Article
Deep Learning-Based Rooftop PV Detection and Techno Economic Feasibility for Sustainable Urban Energy Planning
by Ahmet Hamzaoğlu, Ali Erduman and Ali Kırçay
Sustainability 2025, 17(15), 6853; https://doi.org/10.3390/su17156853 - 28 Jul 2025
Viewed by 241
Abstract
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is [...] Read more.
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is estimated using deep learning models. In order to identify roof areas, high-resolution open-source images were manually labeled, and the training dataset was trained with DeepLabv3+ architecture. The developed model performed roof area detection with high accuracy. Model outputs are integrated with a user-friendly interface for economic analysis such as cost, profitability, and amortization period. This interface automatically detects roof regions in the bird’s-eye -view images uploaded by users, calculates the total roof area, and classifies according to the potential of the area. The system, which is applied in 81 provinces of Turkey, provides sustainable energy projections such as PV installed capacity, installation cost, annual energy production, energy sales revenue, and amortization period depending on the panel type and region selection. This integrated system consists of a deep learning model that can extract the rooftop area with high accuracy and a user interface that automatically calculates all parameters related to PV installation for energy users. The results show that the DeepLabv3+ architecture and the Adam optimization algorithm provide superior performance in roof area estimation with accuracy between 67.21% and 99.27% and loss rates between 0.6% and 0.025%. Tests on 100 different regions yielded a maximum roof estimation accuracy IoU of 84.84% and an average of 77.11%. In the economic analysis, the amortization period reaches the lowest value of 4.5 years in high-density roof regions where polycrystalline panels are used, while this period increases up to 7.8 years for thin-film panels. In conclusion, this study presents an interactive user interface integrated with a deep learning model capable of high-accuracy rooftop area detection, enabling the assessment of sustainable PV energy potential at the city scale and easy economic analysis. This approach is a valuable tool for planning and decision support systems in the integration of renewable energy sources. Full article
Show Figures

Figure 1

Back to TopTop