Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (903)

Search Parameters:
Keywords = circulation inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 486 KiB  
Review
Unraveling NETs in Sepsis: From Cellular Mechanisms to Clinical Relevance
by Giulia Pignataro, Stefania Gemma, Martina Petrucci, Fabiana Barone, Andrea Piccioni, Francesco Franceschi and Marcello Candelli
Int. J. Mol. Sci. 2025, 26(15), 7464; https://doi.org/10.3390/ijms26157464 (registering DOI) - 1 Aug 2025
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, frequently resulting in septic shock and multi-organ failure. Emerging evidence highlights the critical role of neutrophil extracellular traps (NETs) in the pathophysiology of sepsis. NETs are extracellular structures composed of [...] Read more.
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, frequently resulting in septic shock and multi-organ failure. Emerging evidence highlights the critical role of neutrophil extracellular traps (NETs) in the pathophysiology of sepsis. NETs are extracellular structures composed of chromatin DNA, histones, and granular proteins released by neutrophils through a specialized form of cell death known as NETosis. While NETs contribute to the containment of pathogens, their excessive or dysregulated production in sepsis is associated with endothelial damage, immunothrombosis, and organ dysfunction. Several NET-associated biomarkers have been identified, including circulating cell-free DNA (cfDNA), histones, MPO-DNA complexes, and neutrophil elastase–DNA complexes, which correlate with the disease severity and prognosis. Therapeutic strategies targeting NETs are currently under investigation. Inhibition of NET formation using PAD4 inhibitors or ROS scavengers has shown protective effects in preclinical models. Conversely, DNase I therapy facilitates the degradation of extracellular DNA, reducing the NET-related cytotoxicity and thrombotic potential. Additionally, heparin and its derivatives have demonstrated the ability to neutralize NET-associated histones and mitigate coagulopathy. Novel approaches include targeting upstream signaling pathways, such as TLR9 and IL-8/CXCR2, offering further therapeutic promise. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
10 pages, 1604 KiB  
Article
Anifrolumab Attenuates Follicular Helper T Cell Activation in Patients with Systemic Lupus Erythematosus
by Ádám Diós, Ágnes Gyetvai, Gábor Papp and Tünde Tarr
Int. J. Mol. Sci. 2025, 26(15), 7397; https://doi.org/10.3390/ijms26157397 (registering DOI) - 31 Jul 2025
Viewed by 71
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease characterized by autoantibody production and multi-organ involvement. Anifrolumab, a monoclonal antibody targeting the type I interferon (IFN) receptor, has been approved for the treatment of SLE. Our aim was to investigate the long-term effects [...] Read more.
Systemic lupus erythematosus (SLE) is a severe autoimmune disease characterized by autoantibody production and multi-organ involvement. Anifrolumab, a monoclonal antibody targeting the type I interferon (IFN) receptor, has been approved for the treatment of SLE. Our aim was to investigate the long-term effects of inhibited type I IFN signaling on circulating follicular helper T subsets (TFH), follicular regulatory T cells (TFR), and B lymphocyte subpopulations, reflecting the ongoing germinal center reactions in SLE patients. Peripheral blood samples were obtained from ten SLE patients before the initiation of anifrolumab treatment, and at months 6 and 12 of the intervention period. Flow cytometry analysis was performed to assess the frequencies of circulating TFH cell subsets, TFR cells, and certain B cell subpopulations. Serological parameters, including autoantibody levels and complement components, were determined as part of the routine diagnostic evaluation. We observed a significant and sustained reduction in the percentage of activated circulating TFH cells. Notably, the frequency of CXCR3CCR6+ TFH17 cells decreased, whereas the proportion of CXCR3+CCR6 TFH1 cells increased significantly. Furthermore, the proportion of the IgDCD27 double-negative B lymphocytes was also significantly reduced. These findings suggest that anifrolumab therapy attenuates TFH cell activation, which may contribute to its clinical efficacy by modulating germinal center responses in SLE. Full article
(This article belongs to the Special Issue Drug Therapy of Systemic Lupus Erythematosus)
Show Figures

Figure 1

22 pages, 4856 KiB  
Article
In Vitro and In Vivo Evaluation of Alectinib-Loaded Dendrimer Nanoparticles as a Drug Delivery System for Non-Small Cell Lung Carcinoma
by Mahmood R. Atta, Israa Al-Ani, Ibrahim Aldeeb, Khaldun M. AlAzzam, Tha’er Ata, Mohammad A. Almullah, Enas Daoud and Feras Al-Hajji
Pharmaceutics 2025, 17(8), 974; https://doi.org/10.3390/pharmaceutics17080974 - 28 Jul 2025
Viewed by 217
Abstract
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy [...] Read more.
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy by formulating a G4-NH2-PAMAM dendrimer complex. Methods: The complex was prepared using the organic solvent evaporation method and characterized by DSC, FTIR, dynamic light scattering (DLS), and zeta potential measurements. A validated high-performance liquid chromatography (HPLC) method quantified the Alectinib. In vitro drug release studies compared free Alectinib with the G4-NH2-PAMAM dendrimer complex. Cytotoxicity against NSCLC cell line A549 was assessed using MTT assays, clonogenic assay, and scratch-wound assay. Xenograft effect was investigated in the H460 lung cell line. Pharmacokinetic parameters were evaluated in rats using LC–MS/MS. Results: Alectinib exhibited an encapsulation efficiency of 59 ± 5%. In vitro release studies demonstrated sustained drug release at pH 6.8 and faster degradation at pH 2.5. Anticancer activity in vitro showed comparable efficacy to free Alectinib, with 98% migration inhibition. In vivo tumor suppression studies revealed near-complete tumor regression (~100%) after 17 days of treatment, compared to 75% with free Alectinib. Pharmacokinetic analysis indicated enhanced absorption (shorter Tmax), prolonged systemic circulation (longer half-life), and higher bioavailability (increased AUC) for the dendrimer-complexed drug. Conclusions: These findings suggest that the G4-NH2-PAMAM dendrimer system significantly improves Alectinib’s pharmacokinetics and therapeutic potential, making it a promising approach for NSCLC treatment. Full article
Show Figures

Graphical abstract

17 pages, 4120 KiB  
Article
Albumin Reduces Hepatic Steatosis and Inflammation in High-Fat-Diet-Fed Mice
by Claire Rennie, Sheila Donnelly and Kristine McGrath
Int. J. Mol. Sci. 2025, 26(15), 7156; https://doi.org/10.3390/ijms26157156 - 24 Jul 2025
Viewed by 185
Abstract
There are currently no approved therapeutic treatments targeting metabolic dysfunction-associated steatotic liver disease (MASLD). Albumin, a liver-produced plasma protein with anti-inflammatory and antioxidant properties, is reduced in advanced liver disease. Considering the role of chronic obesity-induced inflammation in MASLD pathogenesis, we investigated whether [...] Read more.
There are currently no approved therapeutic treatments targeting metabolic dysfunction-associated steatotic liver disease (MASLD). Albumin, a liver-produced plasma protein with anti-inflammatory and antioxidant properties, is reduced in advanced liver disease. Considering the role of chronic obesity-induced inflammation in MASLD pathogenesis, we investigated whether albumin administration could prevent disease progression to metabolic dysfunction-associated steatohepatitis (MASH). MASLD was induced in mice using a high-fat and high-cholesterol (PC) treatment for 8 weeks, followed by treatment with bovine serum albumin (BSA; 0.8 mg/kg) every three days for another 8 weeks. This regimen prevented time-dependent weight gain, regardless of diet, with 57% and 27% reductions in mice fed a standard chow (Std Chow) or PC diet, respectively. Further, supplementation reduced nuclear factor kappa B (NF-κB) activation by 2.8-fold (p = 0.0328) in PC-fed mice, consistent with albumin’s known anti-inflammatory properties. Unexpectedly, albumin also reduced hepatic neutral lipid accumulation and circulating non-esterified fatty acids. While PC-fed mice did not exhibit full progression to MASH, albumin treatment significantly increased hepatic matrix metalloproteinase-2 expression, suggesting the inhibition of early fibrotic signalling. While further studies are needed to elucidate the underlying mechanisms, these findings offer new insight into the potential of albumin, either alone or in combination with other therapies, to reduce hepatic steatosis in MASLD. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

25 pages, 8728 KiB  
Article
Trans-Sodium Crocetinate Ameliorates High-Altitude Acute Lung Injury via Modulating EGFR/PI3K/AKT/NF-κB Signaling Axis
by Keke Liang, Yanlin Ta, Liang Xu, Shuhe Ma, Renjie Wang, Chenrong Xiao, Yue Gao and Maoxing Li
Nutrients 2025, 17(15), 2406; https://doi.org/10.3390/nu17152406 - 23 Jul 2025
Viewed by 311
Abstract
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of [...] Read more.
Objectives: Saffron, a traditional Chinese medicine, is renowned for its pharmacological effects in promoting blood circulation, resolving blood stasis, regulating menstruation, detoxification, and alleviating mental disturbances. Trans-crocetin, its principal bioactive component, exhibits significant anti-hypoxic activity. The clinical development and therapeutic efficacy of trans-crocetin are limited by its instability, poor solubility, and low bioavailability. Conversion of trans-crocetin into trans-sodium crocetinate (TSC) enhances its solubility, stability, and bioavailability, thereby amplifying its anti-hypoxic potential. Methods: This study integrates network pharmacology with in vivo and in vitro validation to elucidate the molecular targets and mechanisms underlying TSC’s therapeutic effects against high-altitude acute lung injury (HALI), aiming to identify novel treatment strategies. Results: TSC effectively reversed hypoxia-induced biochemical abnormalities, ameliorated lung histopathological damage, and suppressed systemic inflammation and oxidative stress in HALI rats. In vitro, TSC mitigated CoCl2-induced hypoxia injury in human pulmonary microvascular endothelial cells (HPMECs) by reducing inflammatory cytokines, oxidative stress, and ROS accumulation while restoring mitochondrial membrane potential. Network pharmacology and pathway analysis revealed that TSC primarily targets the EGFR/PI3K/AKT/NF-κB signaling axis. Molecular docking and dynamics simulations demonstrated stable binding interactions between TSC and key components of this pathway. ELISA and RT-qPCR confirmed that TSC significantly downregulated the expression of EGFR, PI3K, AKT, NF-κB, and their associated mRNAs. Conclusions: TSC alleviates high-altitude hypoxia-induced lung injury by inhibiting the EGFR/PI3K/AKT/NF-κB signaling pathway, thereby attenuating inflammatory responses, oxidative stress, and restoring mitochondrial function. These findings highlight TSC as a promising therapeutic agent for HALI. Full article
(This article belongs to the Special Issue Natural Active Compounds in Inflammation and Metabolic Diseases)
Show Figures

Figure 1

23 pages, 1713 KiB  
Review
Targeted and Biomimetic Nanoparticles for Atherosclerosis Therapy: A Review of Emerging Strategies
by Dorota Bartusik-Aebisher, Rafał Podgórski, Iga Serafin and David Aebisher
Biomedicines 2025, 13(7), 1720; https://doi.org/10.3390/biomedicines13071720 - 14 Jul 2025
Viewed by 561
Abstract
Atherosclerosis, a chronic inflammatory disease, remains a leading cause of cardiovascular mortality worldwide. Despite standard treatments like statins and percutaneous coronary intervention (PCI), significant residual risk and therapeutic limitations underscore the need for innovative strategies. This review summarizes recent advances in nanoparticle-based therapies [...] Read more.
Atherosclerosis, a chronic inflammatory disease, remains a leading cause of cardiovascular mortality worldwide. Despite standard treatments like statins and percutaneous coronary intervention (PCI), significant residual risk and therapeutic limitations underscore the need for innovative strategies. This review summarizes recent advances in nanoparticle-based therapies for atherosclerosis, focusing on key developments from the last five years. We discuss various nanoplatforms designed to selectively target key cellular players in plaque pathogenesis, including macrophages, endothelial cells, and vascular smooth muscle cells (VSMCs), to inhibit inflammation, modulate cellular phenotypes, and stabilize plaques. A significant focus is placed on the emerging field of biomimetic nanoparticles, where therapeutic cores are camouflaged with cell membranes derived from macrophages, platelets, neutrophils, or erythrocytes. This approach leverages the natural biological functions of the source cells to achieve enhanced immune evasion, prolonged circulation, and precise targeting of atherosclerotic lesions. Furthermore, the review covers nanoparticles engineered for specific functional interventions, such as lowering LDL levels and exerting direct anti-inflammatory and anti-oxidative effects. Finally, we address the critical challenges hindering clinical translation, including nanotoxicity, biodistribution, and manufacturing scalability. In conclusion, nanotechnology offers a versatile and powerful platform for atherosclerosis therapy, with targeted and biomimetic strategies holding immense promise to revolutionize future cardiovascular medicine. Full article
Show Figures

Figure 1

13 pages, 707 KiB  
Article
Incidence of Circulating Antibodies Against Hemagglutinin of Influenza Viruses in Epidemic Season 2023/2024 in Poland
by Katarzyna Kondratiuk, Aleksander Masny, Anna Poznańska, Karol Szymański, Katarzyna Łuniewska, Emilia Czajkowska, Bartosz Mańkowski and Lidia B. Brydak
Biomolecules 2025, 15(7), 977; https://doi.org/10.3390/biom15070977 - 7 Jul 2025
Viewed by 376
Abstract
The aim of this study was to determine the level of anti-hemagglutinin antibodies using the hemagglutination inhibition test (HAI) in the blood sera of patients collected during the 2023/2024 epidemic season in Poland. This data is valuable for assessing the level of population [...] Read more.
The aim of this study was to determine the level of anti-hemagglutinin antibodies using the hemagglutination inhibition test (HAI) in the blood sera of patients collected during the 2023/2024 epidemic season in Poland. This data is valuable for assessing the level of population immunity to influenza viruses circulating in Poland during this epidemic season. The study material consisted of serum samples collected across the country and divided into seven age groups. The test results confirmed the presence of anti-hemagglutinin antibodies for the antigens included in the quadrivalent influenza vaccine recommended by the World Health Organization (WHO) for the 2023/2024 epidemic season: A/Victoria/4897/2022 (H1N1)pdm09, A/Darwin/9/2021 (H3N2), B/Austria/1359417/2021 (B/Victoria lineage) and B/Phuket/3073/2013 (B/Yamagata lineage). The highest values of the geometric mean (GMT = 121.0 [95% CI: 108.5–134.9]) and protective factor (70 [95% CI: 67–74]%) were recorded for the A/H3N2/influenza virus antigen. In Poland, the vaccination rate of the general population in the discussed season was only 5.52%. The obtained results can therefore be interpreted as a response of the immune system, consisting of the production of anti-hemagglutinin antibodies in patients who had previously had an infection caused by the influenza virus. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Viral Infections)
Show Figures

Figure 1

15 pages, 3669 KiB  
Article
Effect of Hepatic Impairment on the Pharmacokinetics of Baicalin in Rats: Critical Roles of Gut Microbiota and Hepatic Transporters
by Ping Li, Yihua Tian, Hong Wang, Yuting Ji, Huiying Zeng, Shengman Zhang, Xiuli Gao and Xiaoyan Chen
Pharmaceutics 2025, 17(7), 851; https://doi.org/10.3390/pharmaceutics17070851 - 29 Jun 2025
Viewed by 391
Abstract
Background: Baicalin (BG) has been used in the treatment of many diseases. However, the effect of hepatic insufficiency on its pharmacokinetics has not been reported, and there is a lack of clinical guidance for the use of BG in patients with hepatic [...] Read more.
Background: Baicalin (BG) has been used in the treatment of many diseases. However, the effect of hepatic insufficiency on its pharmacokinetics has not been reported, and there is a lack of clinical guidance for the use of BG in patients with hepatic impairment. Methods: Carbon tetrachloride (CCl4)-induced rat models were used to simulate hepatic failure patients to assess the effect of hepatic impairment on the pharmacokinetics and distribution of BG. In vitro metabolism and transporter studies were employed to elucidate the potential mechanisms. Results: After intragastric administration of 10 mg/kg of BG, the peak plasma concentration and exposure (AUC0–t) of BG decreased by 64.6% and 52.6%, respectively, in CCl4-induced rats. After intravenous administration, the AUC0–t decreased by 73.6%, and unlike in the control group, the second absorption peak of BG was not obvious in the concentration–time curve of CCl4-induced rats. The cumulative excretion of BG in the feces increased, but that in the bile decreased. In vivo data indicated that the absorption and enterohepatic circulation of BG were affected. In vitro studies found that the hydrolysis of BG to the aglycone baicalein decreased significantly in the intestinal tissues and contents of the CCl4-induced rats. And BG was identified as a substrate for multiple efflux and uptake transporters, such as breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), organic anion transporting polypeptides (OATP1B1, 1B3, 2B1), and organic anion transporters (OATs). The bile acids accumulated by liver injury inhibited the uptake of BG by OATPs, especially that by OATP2B1. Conclusions: Hepatic impairment reduced BG hydrolysis by intestinal microflora and inhibited its transporter-mediated biliary excretion, which synergistically led to the attenuation of the enterohepatic circulation of BG, which altered its pharmacokinetics. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract

8 pages, 1848 KiB  
Article
Different Kinetics of Complement Opsonization, Immune Uptake, and IL-6 Cytokine Response After Bolus Injection of Superparamagnetic Iron Oxide Nanoworms in Mice
by Yue Li and Dmitri Simberg
J. Nanotheranostics 2025, 6(3), 16; https://doi.org/10.3390/jnt6030016 - 27 Jun 2025
Cited by 1 | Viewed by 314 | Correction
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles are a promising platform for drug delivery and magnetic resonance imaging (MRI). However, complement activation and immune recognition remain major barriers to their clinical translation. Previously, we reported that dextran-coated SPIO nanoworms (NWs) trigger potent complement activation and [...] Read more.
Superparamagnetic iron oxide (SPIO) nanoparticles are a promising platform for drug delivery and magnetic resonance imaging (MRI). However, complement activation and immune recognition remain major barriers to their clinical translation. Previously, we reported that dextran-coated SPIO nanoworms (NWs) trigger potent complement activation and infusion reactions. Here, we systematically map the temporal sequence of immune events following SPIO NW administration, including C3 opsonization, granulocyte uptake, and cytokine release. In both in vitro and in vivo models, C3 deposition occurred rapidly, peaking at approximately 5 min post-incubation or post-injection. Higher Fe/plasma ratios led to reduced C3 deposition per particle, although the absolute amount of C3 bound was greater in vivo than in vitro. Notably, C3 dissociation from the particle surface exhibited a consistent half-life of ~14 min, independent of the NW injected dose and circulation time. Immune uptake by blood granulocytes was delayed relative to opsonization, becoming prominent only at 60 min post-injection. Further, cytokine release, measured by plasma IL-6 levels, displayed an even slower profile, with peak expression at 6 h post-injection. Together, these results reveal a distinct sequential immune response to SPIO NWs: rapid C3 opsonization, delayed cellular uptake, and late cytokine response. Understanding these dynamics provides a basis for developing strategies to inhibit complement activation and improve the hemocompatibility of SPIO-based theranostic agents. Full article
Show Figures

Figure 1

18 pages, 965 KiB  
Review
Refining Criteria for Choosing the First-Line Treatment for Real-World Patients with Advanced ALK-Rearranged NSCLC
by Edyta Maria Urbanska, Peter Rindom Koffeldt, Morten Grauslund, Linea Cecilie Melchior, Jens Benn Sørensen and Eric Santoni-Rugiu
Int. J. Mol. Sci. 2025, 26(13), 5969; https://doi.org/10.3390/ijms26135969 - 21 Jun 2025
Viewed by 693
Abstract
Choosing the optimal first-line treatment for patients with advanced non-small cell lung cancer (NSCLC) with anaplastic lymphoma kinase (ALK) rearrangements can be challenging in daily practice. Although clinical trials with next-generation ALK-tyrosine kinase inhibitors (TKIs) have played a key role in [...] Read more.
Choosing the optimal first-line treatment for patients with advanced non-small cell lung cancer (NSCLC) with anaplastic lymphoma kinase (ALK) rearrangements can be challenging in daily practice. Although clinical trials with next-generation ALK-tyrosine kinase inhibitors (TKIs) have played a key role in evaluating their efficacy and safety, which patients benefit from a specific ALK-TKI may still be questioned. The methodological inconsistencies in these trials, which led to the inclusion of different patient populations, appear to have been inadequately addressed. ALK-rearranged NSCLC is a heterogeneous disease, and co-existing molecular alterations may affect the outcome. The questions explored in these trials appear insufficient to support a personalized approach to the first-line treatment, while defining long-term responders and early progressors would be clinically useful. This narrative review presents several considerations from oncologists’ and pathologists’ perspectives. We propose defining favorable and unfavorable features, such as histology, type of ALK fusion, co-existing molecular alterations, plasma circulating tumor DNA (ctDNA, performance status, and brain metastases, to help identify patients with lower and higher risk of progression. Consequently, the most potent ALK-TKI to date, Lorlatinib, may be considered as the first-line treatment for high-risk patients with unfavorable features, while sequencing of ALK-TKIs may be appropriate for low-risk patients with favorable features. Although ALK signal inhibition is critical in this disease, it may not be sufficient for clinical control due to de novo co-alterations. A more personalized approach to first-line therapy requires consideration of risk factors for each patient. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

13 pages, 2624 KiB  
Article
A Dual-Targeting Peptide Inhibitor Simultaneously Blocking Viral Attachment and Membrane Fusion for Broad-Spectrum Inhibition of SARS-CoV-2
by Wenwen Bi, Tao Zhu, Yawen Xu and Jianmin Li
Int. J. Mol. Sci. 2025, 26(12), 5729; https://doi.org/10.3390/ijms26125729 - 15 Jun 2025
Viewed by 552
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with enhanced transmissibility and immune evasion underscores the urgent need for broad-spectrum antiviral therapeutics. In this study, we strategically engineered a novel dual-targeting peptide inhibitor, R1L25HR2, by conjugating the receptor-binding domain (RBD)-targeting [...] Read more.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with enhanced transmissibility and immune evasion underscores the urgent need for broad-spectrum antiviral therapeutics. In this study, we strategically engineered a novel dual-targeting peptide inhibitor, R1L25HR2, by conjugating the receptor-binding domain (RBD)-targeting peptide R1 with the heptad repeat 1 (HR1)-targeting peptide HR2 through an optimized 25-mer flexible linker (GGGGS)5, aiming to simultaneously block viral attachment and membrane fusion. R1L25HR2 potently and broadly inhibits the infection of SARS-CoV-2 and its emerging variants, including recent circulating strains JN.1 and KP.2, with IC50 values ranging from 5.3 to 253.5 nM, which is significantly more effective than HR2 and R1 alone. Mechanistically, R1L25HR2 inhibits viral attachment and membrane fusion by binding to both RBD and HR1 with low nanomolar affinity. These results highlight the innovative strategy of dual-targeting the RBD and HR1 domains as an effective approach to overcome viral resistance and achieve broad-spectrum antiviral activity. Full article
(This article belongs to the Special Issue Novel Antivirals against Respiratory Viruses)
Show Figures

Figure 1

12 pages, 564 KiB  
Article
An Epidemic of Parvovirus B19-Induced Aplastic Crises in Pediatric Patients with Hereditary Spherocytosis Following the COVID-19 Pandemic: A Single-Center Retrospective Study
by Paola Giordano, Valentina Palladino, Giuseppe Lassandro, Stella Spina and Giovanni Carlo Del Vecchio
Children 2025, 12(6), 772; https://doi.org/10.3390/children12060772 - 13 Jun 2025
Viewed by 611
Abstract
Background: Parvovirus B19 is the major cause of transient aplastic crisis in children with hereditary spherocytosis (HS) inhibiting erythropoiesis and leading to a severe drop in hemoglobin levels, requiring hospitalization and transfusional support. During the COVID-19 pandemic, the circulation of non-COVID respiratory viruses, [...] Read more.
Background: Parvovirus B19 is the major cause of transient aplastic crisis in children with hereditary spherocytosis (HS) inhibiting erythropoiesis and leading to a severe drop in hemoglobin levels, requiring hospitalization and transfusional support. During the COVID-19 pandemic, the circulation of non-COVID respiratory viruses, such as parvovirus B19, initially declined but subsequently increased abruptly following the relaxation of containment strategies. Moreover, it remains unclear whether this has resulted in a rise in parvovirus B19-induced aplastic crises among individuals with HS. Methods: This retrospective, single-center study conducted at the Pediatric University Hospital of Bari (Italy) aims to describe the clinical characteristics and frequency of parvovirus B19-induced aplastic crises in pediatric patients with HS before and after the COVID-19 Public Health Emergency of International Concern (PHEIC, 30 January 2020–5 May 2023). The study was divided into four distinct periods: Period A: from 1 December 2018 to 31 December 2019, representing one year before the declaration of the PHEIC; Period B: from 1 June 2023 to 30 June 2024, representing one year after the cessation of the PHEIC; Period C: before 1 December 2018; Period D: from 1 January 2020 to 31 May 2023, which refers to the pandemic period. Results: A total of 30 patients (55% of the study population, n = 55) experienced a parvovirus B19-induced aplastic crisis. The frequency of these crises in Period B was significantly higher than in Period A (p < 0.0001). Conclusions: This study suggests a substantial increase in parvovirus B19-induced aplastic crises among children with HS following the COVID-19 outbreak indicating a potential impact of public health containment strategies on parvovirus B19 infection rates. Full article
(This article belongs to the Section Pediatric Hematology & Oncology)
Show Figures

Figure 1

21 pages, 2197 KiB  
Article
Production and Immune Response Against Pandemic Influenza Candidate Vaccines as Preparedness Against the Circulating H5N1 Influenza Viruses
by Paulo Lee Ho, Yordanka Medina-Armenteros, Lívia Mendonça Munhoz Dati, Daniela Cajado-Carvalho, Christian Savio Silva, Pollyanna Fernandes Campos, Patrícia Antonia Estima Abreu, Júlia Tavares de Castro, Paulo Newton Tonolli, Mahyumi Fujimori, Rhubia Silveira Martins Rosa, Soledad Palameta, Michael Edward Miller, Vitor Anselmo Sakihara, Fernanda de Lima Valadares, Fabiana Lauretti Ferreira, Bianca Pereira Carvalho Holanda, Douglas Gonçalves de Macedo, Priscila Comone, Natully de Souza Suffert Fogaça, Alexandre Bimbo, Felipe Catanzaro De Moraes, Stephane Tereza Queiroz de Andrade, Helena Lage Ferreira, Edison Luiz Durigon, Clarice Weis Arns, Esper George Kallás, Milena Apetito Akamatsu and Ricardo das Neves Oliveiraadd Show full author list remove Hide full author list
Vaccines 2025, 13(6), 620; https://doi.org/10.3390/vaccines13060620 - 8 Jun 2025
Viewed by 1744
Abstract
Background/Objectives:H5N1 influenza viruses are spreading worldwide and threaten global public health. Preparedness is necessary to mitigate the worst-case scenario should an H5N1 influenza pandemic occur and justify the development of vaccines against circulating H5N1 viruses of concern. Methods: The production and characterization [...] Read more.
Background/Objectives:H5N1 influenza viruses are spreading worldwide and threaten global public health. Preparedness is necessary to mitigate the worst-case scenario should an H5N1 influenza pandemic occur and justify the development of vaccines against circulating H5N1 viruses of concern. Methods: The production and characterization of egg-based split and inactivated H5Nx of three distinct monovalent antigens from clades 2.3.4.4b, 2.3.2.1c, and 2.3.4 were performed at an industrial scale. These antigens were formulated and their immune responses, when combined or not with IB160 squalene-based oil-in-water emulsion adjuvant in a rat model, were evaluated in a one- or two-dose immunization schedule. IgG antibodies, hemagglutination inhibitions, and microneutralization titers were measured for vaccine-induced immunity and cross-reactivity. Results: Three monovalent vaccines from clades 2.3.4.4b, 2.3.2.1c, and 2.3.4 were produced at an industrial scale and characterized. The immune responses against the monovalent vaccines showed a clade-specific antibody response and the need to combine with IB160 adjuvant for a required immune response. Conclusions: Considering the candidate vaccine viruses (CVVs) with the testing potency reagents available and that the antibody response obtained against the CVVs produced was clade-specific, IDCDC RG-71A is the indicated CVV for the predominant currently circulating H5N1 influenza virus of clade 2.3.4.4b and must be combined with adjuvant to induce a higher and efficacious immune response in a two-dose immunization protocol. Full article
(This article belongs to the Special Issue Vaccine Development for Influenza Virus)
Show Figures

Figure 1

12 pages, 1489 KiB  
Article
IL-6R Signaling Is Associated with PAD4 and Neutrophil Extracellular Trap Formation in Patients with STEMI
by Kristine Mørk Kindberg, Jostein Nordeng, Miriam Sjåstad Langseth, Hossein Schandiz, Borghild Roald, Svein Solheim, Ingebjørg Seljeflot, Mathis Korseberg Stokke and Ragnhild Helseth
Int. J. Mol. Sci. 2025, 26(11), 5348; https://doi.org/10.3390/ijms26115348 - 2 Jun 2025
Viewed by 589
Abstract
Inflammation contributes to myocardial injury in ST-elevation myocardial infarction (STEMI). Interleukin-6 receptor (IL-6R) inhibition has been shown to mitigate myocardial injury and reduce levels of the prothrombotic and inflammatory mediator, neutrophil extracellular traps (NETs). The enzyme peptidylarginine deiminase 4 (PAD4) is central in [...] Read more.
Inflammation contributes to myocardial injury in ST-elevation myocardial infarction (STEMI). Interleukin-6 receptor (IL-6R) inhibition has been shown to mitigate myocardial injury and reduce levels of the prothrombotic and inflammatory mediator, neutrophil extracellular traps (NETs). The enzyme peptidylarginine deiminase 4 (PAD4) is central in NET formation. We hypothesized that PAD4 links IL-6R activation and NET formation. Methods: We conducted thrombus aspiration and peripheral blood sampling in 33 STEMI patients. In thrombi and leukocytes, we quantified the mRNA of IL-6, IL-6R, and PAD4. In peripheral blood, the protein levels of IL-6, IL-6R, PAD4, dsDNA, H3Cit, MPO-DNA, and troponin T were quantified. Results: In thrombi and circulating leukocytes, PAD4 mRNA was associated with IL-6R mRNA (thrombi: β = 0.34, 95% CI [0.16–0.53], p = 0.001, circulating leukocytes: β = 0.92, 95% CI [0.07–1.77], p = 0.036). There were no correlations between PAD4 and IL-6 in thrombi and leukocytes. The protein levels of IL-6R were associated with the NET marker H3Cit (rs = 0.40, p = 0.02). In thrombi, PAD4 mRNA was associated with high levels of troponin T (β = 1.15 95% CI [0.27–2.04], p = 0.013). Conclusion: We demonstrate an association between PAD4, IL-6R, and troponin release in STEMI patients. Our findings indicate a PAD4-mediated connection between IL-6R and NET formation and highlight PAD4 as a potential treatment target for mitigating inflammation and myocardial injury in STEMI. Full article
(This article belongs to the Special Issue Molecular Pharmacology and Interventions in Cardiovascular Disease)
Show Figures

Graphical abstract

9 pages, 511 KiB  
Brief Report
Immunotherapeutic Blockade of CD47 Increases Virus Neutralization Antibodies
by Lamin B. Cham, Thamer A. Hamdan, Hilal Bhat, Bello Sirajo, Murtaza Ali, Khaled Saeed Tabbara, Eman Farid, Mohamed-Ridha Barbouche and Tom Adomati
Vaccines 2025, 13(6), 602; https://doi.org/10.3390/vaccines13060602 - 31 May 2025
Viewed by 710
Abstract
Background/Objectives: CD47 is a cell surface glycoprotein moderately expressed in healthy cells and upregulated in cancer and viral infected cells. CD47’s interaction with signal regulatory protein alpha (SIRPα) inhibits phagocytic cells and its interaction with thrombospondin-1 inhibits T cell response. Experimental evidence has [...] Read more.
Background/Objectives: CD47 is a cell surface glycoprotein moderately expressed in healthy cells and upregulated in cancer and viral infected cells. CD47’s interaction with signal regulatory protein alpha (SIRPα) inhibits phagocytic cells and its interaction with thrombospondin-1 inhibits T cell response. Experimental evidence has revealed that the blockade of CD47 resulted in the increased activation and function of both innate and adaptive immune cells, therefore exerting antitumoral and antiviral effects. Recent studies have shown that the combination of vaccines and immune checkpoint inhibitors could be a promising approach to increasing vaccine immunogenicity. Here, we investigated the vaccinal effect of anti-CD47 antibodies and discussed the possibilities of combining anti-CD47 treatments with vaccines. Methods: Using vesicular stomatitis virus (VSV), a widely used replication-competent vaccine vector, we evaluated the impact of the immunotherapeutic blockade of CD47 on cellular, humoral, and protective immunity. We infected C57BL/6 mice with VSV, treated them with anti-CD47 antibodies or an isotype, and evaluated the total immunoglobulin (Ig), IgG neutralizing antibodies, B cell activation, CD8+ T cell effector function, and survival of the mice. Results: We found that the treatments of anti-CD47 antibodies led to significantly increased Ig and IgG neutralizing antibody levels compared to the isotype treatment. Flow cytometric analysis of B cells revealed no difference in the number of circulating B cells; however, we observed an increased surface expression of CD80 and CD86 in B cells among anti-CD47-treated mice. Further analysis of the impact of CD47 blockade on T immunity revealed a significantly higher percentage of IFN-γ+ CD4 and IFN-γ+ CD8 T cells in anti-CD47-treated mice. Upon infecting mice with a lethal VSV dose, we observed a significantly higher survival rate among the anti-CD47-treated mice compared to control mice. Conclusions: Our results indicate that anti-CD47 treatment induces a stronger cellular and humoral immune response, leading to better protection. As such, immunotherapy by CD47 blockade in combination with vaccines could be a promising approach to improve vaccine efficacy. Full article
(This article belongs to the Section Vaccines against Infectious Diseases)
Show Figures

Figure 1

Back to TopTop