Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = circulating cell-free tumour DNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 925 KiB  
Article
Pre-Amplification of Cell-Free DNA: Balancing Amplification Errors with Enhanced Sensitivity
by Wei Yen Chan, Ashleigh Stewart, Russell J. Diefenbach, Elin S. Gray, Jenny H. Lee, Richard A. Scolyer, Georgina V. Long and Helen Rizos
Biomolecules 2025, 15(6), 883; https://doi.org/10.3390/biom15060883 - 17 Jun 2025
Viewed by 614
Abstract
Circulating tumour DNA (ctDNA) is a promising biomarker for personalised oncology. However, its clinical utility is limited by detection sensitivity, particularly in early-stage disease. T-Oligo Primed Polymerase Chain Reaction (TOP-PCR) is a commercial amplification approach utilising an efficient “half-adapter” ligation design and a [...] Read more.
Circulating tumour DNA (ctDNA) is a promising biomarker for personalised oncology. However, its clinical utility is limited by detection sensitivity, particularly in early-stage disease. T-Oligo Primed Polymerase Chain Reaction (TOP-PCR) is a commercial amplification approach utilising an efficient “half-adapter” ligation design and a single-primer-based PCR strategy. This study evaluated the clinical value and application of cell-free DNA (cfDNA) pre-amplification. cfDNA amplification with TOP-PCR preserved DNA size profiles and resulted in a 22 bp size increase due to the half-adaptor ligation. Gene target amplification rates varied, showing lower efficiency for the GC-rich TERT promoter amplicon and higher efficiency for the BRAF and TP53 amplicons. Optimised pre-amplification (20 ng cfDNA input and 5–7 cycles of PCR) enhanced ctDNA detection sensitivity and expanded sample availability for the detection of multiple tumour-informed mutations. Importantly, PCR errors emerged in pre-amplified cfDNA samples, underscoring the necessity for negative controls and the establishment of stringent mutation positivity thresholds. Full article
(This article belongs to the Special Issue Tumor Genomics and Liquid Biopsy in Cancer Biology)
Show Figures

Figure 1

17 pages, 559 KiB  
Review
The Application of Circulating Tumour DNA (ctDNA) in the Diagnosis, Prognosis, and Treatment Monitoring of Gynaecological and Breast Cancers (Review)
by Aleksandra Englisz, Marta Smycz-Kubańska, Patrycja Królewska-Daszczyńska, Magdalena Błaut, Agnieszka Duszyc and Aleksandra Mielczarek-Palacz
Diagnostics 2025, 15(10), 1289; https://doi.org/10.3390/diagnostics15101289 - 21 May 2025
Viewed by 968
Abstract
Gynaecological cancers, including endometrial, ovarian, and cervical cancers as well as breast cancer, despite numerous studies, still constitute a challenge for modern oncology. For this reason, research aimed at the application of modern diagnostic methods that are useful in early detection, prognosis, and [...] Read more.
Gynaecological cancers, including endometrial, ovarian, and cervical cancers as well as breast cancer, despite numerous studies, still constitute a challenge for modern oncology. For this reason, research aimed at the application of modern diagnostic methods that are useful in early detection, prognosis, and treatment monitoring deserves special attention, Great hopes are currently being placed on the use of liquid biopsy (LB), which examines various tumour components, including cell-free RNA (cfRNA), circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), exosomes, and tumour-educated platelets (TEPs). LB has shown promise as a minimally invasive means of early diagnosis of cancers, detection of recurrence, prediction of therapy response, treatment monitoring, and drug selection. The integration of this test into clinical practice in modern oncology is challenging, but offers many benefits, including reducing the risks associated with invasive procedures, improving diagnostic and therapeutic efficacy, and improving the quality of life of oncology patients. The aim of this review is to present recent reports on the use of ctDNA in diagnosing, predicting the outcome of, and monitoring the treatment of gynaecological and breast cancers. Full article
(This article belongs to the Special Issue Diagnosis and Management of Gynecological Cancers: Third Edition)
Show Figures

Figure 1

22 pages, 4650 KiB  
Article
The Impact of Liquid Biopsy in Advanced Ovarian Cancer Care
by Antoni Llueca, Sarai Canete-Mota, Anna Jaureguí, Manuela Barneo, Maria Victoria Ibañez, Alexander Neef, Enrique Ochoa, Sarai Tomas-Perez, Josep Mari-Alexandre, Juan Gilabert-Estelles, Anna Serra, Maria Teresa Climent, Carla Bellido, Nuria Ruiz, Blanca Segarra-Vidal and Maria Llueca
Diagnostics 2024, 14(17), 1868; https://doi.org/10.3390/diagnostics14171868 - 26 Aug 2024
Cited by 2 | Viewed by 2033
Abstract
Introduction: Ovarian cancer is the third most common gynaecological cancer and has a very high mortality rate. The cornerstone of treatment is complete debulking surgery plus chemotherapy. Even with treatment, 80% of patients have a recurrence. Circulating tumour DNA (ctDNA) has been shown [...] Read more.
Introduction: Ovarian cancer is the third most common gynaecological cancer and has a very high mortality rate. The cornerstone of treatment is complete debulking surgery plus chemotherapy. Even with treatment, 80% of patients have a recurrence. Circulating tumour DNA (ctDNA) has been shown to be useful in the control and follow-up of some tumours. It could be an option to define complete cytoreduction and for the early diagnosis of recurrence. Objective: We aimed to demonstrate the usefulness of ctDNA and cell-free DNA (cfDNA) as a marker of complete cytoreduction and during follow-up in patients with advanced ovarian cancer. Material and Methods: We selected 22 women diagnosed with advanced high-grade serous ovarian cancer, of which only 4 had complete records. We detected cfDNA by polymerase chain reaction (PCR), presented as ng/mL, and detected ctDNA with droplet digital PCR (ddPCR). We calculated Pearson correlation coefficients to evaluate correlations among cfDNA, ctDNA, and cancer antigen 125 (CA125), a biomarker. Results: The results obtained in the evaluation of cfDNA and ctDNA and their correlation with tumour markers and the radiology of patients with complete follow-up show disease progression during the disease, stable disease, or signs of recurrence. cfDNA and ctDNA correlated significantly with CA125. Following cfDNA and ctDNA over time indicated a recurrence several months earlier than computed tomography and CA125 changes. Conclusion: An analysis of cfDNA and ctDNA offers a non-invasive clinical tool for monitoring the primary tumour to establish a complete cytoreduction and to diagnose recurrence early. Full article
(This article belongs to the Special Issue Pathology and Diagnosis of Ovarian Cancer)
Show Figures

Figure 1

13 pages, 2279 KiB  
Article
Diagnostic and Prognostic Value of Circulating DNA Fragments in Glioblastoma Multiforme Patients
by Pawel Jarmuzek, Edyta Wawrzyniak-Gramacka, Barbara Morawin, Anna Tylutka and Agnieszka Zembron-Lacny
Int. J. Mol. Sci. 2024, 25(8), 4221; https://doi.org/10.3390/ijms25084221 - 11 Apr 2024
Cited by 3 | Viewed by 1834
Abstract
Novel blood-circulating molecules, as potential biomarkers for glioblastoma multiforme (GBM) diagnosis and monitoring, are attracting particular attention due to limitations of imaging modalities and invasive tissue biopsy procedures. This study aims to assess the diagnostic and prognostic values of circulating cell-free DNA (cfDNA) [...] Read more.
Novel blood-circulating molecules, as potential biomarkers for glioblastoma multiforme (GBM) diagnosis and monitoring, are attracting particular attention due to limitations of imaging modalities and invasive tissue biopsy procedures. This study aims to assess the diagnostic and prognostic values of circulating cell-free DNA (cfDNA) in relation to inflammatory status in GBM patients and to determine the concentration and average size of DNA fragments typical of tumour-derived DNA fractions. Preoperative plasma samples from 40 patients (GBM 65.0 ± 11.3 years) and 40 healthy controls (HC 70.4 ± 5.4 years) were compared. The cfDNA concentrations and lengths were measured using the electrophoresis platform, and inflammatory indices (NLR, PLR, LMR, and SII) were calculated from complete blood cell analysis. More fragmented cfDNA and 4-fold higher 50–700 bp cfDNA concentrations were detected in GBM patients than in healthy controls. The average cfDNA size in the GBM group was significantly longer (median 336 bp) than in the HC group (median 271 bp). Optimal threshold values were 1265 pg/μL for 50–700 bp cfDNA (AUC = 0.857) and 290 bp for average cfDNA size (AUC = 0.814). A Kaplan–Meier survival curves analysis also demonstrated a higher mortality risk in the GBM group with a cut-off >303 bp cfDNA. This study is the first to have revealed glioblastoma association with high levels of cfDNA > 1000 pg/μL of 50–700 bp in length, which can be aggravated by immunoinflammatory reactivity. Full article
Show Figures

Figure 1

19 pages, 2914 KiB  
Article
Blood-Based DNA Methylation Analysis by Multiplexed OBBPA-ddPCR to Verify Indications for Prostate Biopsies in Suspected Prostate Cancer Patients
by Markus Friedemann, Carsten Jandeck, Lars Tautz, Katharina Gutewort, Lisa von Rein, Olga Sukocheva, Susanne Fuessel and Mario Menschikowski
Cancers 2024, 16(7), 1324; https://doi.org/10.3390/cancers16071324 - 28 Mar 2024
Cited by 4 | Viewed by 1992
Abstract
Current prostate carcinoma (PCa) biomarkers, including total prostate-specific antigen (tPSA), have unsatisfactory diagnostic sensitivity and specificity resulting in overdiagnosis and overtreatment. Previously, we described an optimised bias-based preamplification–digital droplet PCR (OBBPA-ddPCR) technique, which detects tumour DNA in blood-derived cell-free DNA (cfDNA) of cancer [...] Read more.
Current prostate carcinoma (PCa) biomarkers, including total prostate-specific antigen (tPSA), have unsatisfactory diagnostic sensitivity and specificity resulting in overdiagnosis and overtreatment. Previously, we described an optimised bias-based preamplification–digital droplet PCR (OBBPA-ddPCR) technique, which detects tumour DNA in blood-derived cell-free DNA (cfDNA) of cancer patients. The current study investigated the performance of newly developed OBBPA-ddPCR-based biomarkers. Blood plasma samples from healthy individuals (n = 90, controls) and PCa (n = 39) and benign prostatic hyperplasia patients (BPH, n = 40) were analysed. PCa and BPH patients had tPSA values within a diagnostic grey area of 2–15 ng/mL, for whom further diagnostic validation is most crucial. Methylation levels of biomarkers RASSF1A, MIR129-2, NRIP3, and SOX8 were found significantly increased in PCa patients compared to controls. By combining classical PCa risk factors (percentage of free PSA compared to tPSA (QfPSA) and patient’s age) with cfDNA-based biomarkers, we developed PCa risk scores with improved sensitivity and specificity compared to established tPSA and QfPSA single-marker analyses. The diagnostic specificity was increased to 70% with 100% sensitivity for clinically significant PCa patients. Thus, prostate biopsies could be avoided for 28 out of 40 BPH patients. In conclusion, the newly developed risk scores may help to confirm the clinical decision and prevent unnecessary prostate biopsy. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

15 pages, 816 KiB  
Review
Current Applications and Challenges of Next-Generation Sequencing in Plasma Circulating Tumour DNA of Ovarian Cancer
by Ricardo Roque, Ilda Patrícia Ribeiro, Margarida Figueiredo-Dias, Charlie Gourley and Isabel Marques Carreira
Biology 2024, 13(2), 88; https://doi.org/10.3390/biology13020088 - 31 Jan 2024
Cited by 3 | Viewed by 4369
Abstract
Circulating tumour DNA (ctDNA) facilitates longitudinal study of the tumour genome, which, unlike tumour tissue biopsies, globally reflects intratumor and intermetastatis heterogeneity. Despite its costs, next-generation sequencing (NGS) has revolutionised the study of ctDNA, ensuring a more comprehensive and multimodal approach, increasing data [...] Read more.
Circulating tumour DNA (ctDNA) facilitates longitudinal study of the tumour genome, which, unlike tumour tissue biopsies, globally reflects intratumor and intermetastatis heterogeneity. Despite its costs, next-generation sequencing (NGS) has revolutionised the study of ctDNA, ensuring a more comprehensive and multimodal approach, increasing data collection, and introducing new variables that can be correlated with clinical outcomes. Current NGS strategies can comprise a tumour-informed set of genes or the entire genome and detect a tumour fraction as low as 10−5. Despite some conflicting studies, there is evidence that ctDNA levels can predict the worse outcomes of ovarian cancer (OC) in both early and advanced disease. Changes in those levels can also be informative regarding treatment efficacy and tumour recurrence, capable of outperforming CA-125, currently the only universally utilised plasma biomarker in high-grade serous OC (HGSOC). Qualitative evaluation of sequencing shows that increasing copy number alterations and gene variants during treatment may correlate with a worse prognosis in HGSOC. However, following tumour clonality and emerging variants during treatment poses a more unique opportunity to define treatment response, select patients based on their emerging resistance mechanisms, like BRCA secondary mutations, and discover potential targetable variants. Sequencing of tumour biopsies and ctDNA is not always concordant, likely as a result of clonal heterogeneity, which is better captured in the plasma samples than it is in a large number of biopsies. These incoherences may reflect tumour clonality and reveal the acquired alterations that cause treatment resistance. Cell-free DNA methylation profiles can be used to distinguish OC from healthy individuals, and NGS methylation panels have been shown to have excellent diagnostic capabilities. Also, methylation signatures showed promise in explaining treatment responses, including BRCA dysfunction. ctDNA is evolving as a promising new biomarker to track tumour evolution and clonality through the treatment of early and advanced ovarian cancer, with potential applicability in prognostic prediction and treatment selection. While its role in HGSOC paves the way to clinical applicability, its potential interest in other histological subtypes of OC remains unknown. Full article
(This article belongs to the Special Issue New Sight in Cancer Genetics)
Show Figures

Figure 1

15 pages, 1793 KiB  
Article
The Prognostic Utility of KRAS Mutations in Tissue and Circulating Tumour DNA in Colorectal Cancer Patients
by Joel Petit, Georgia Carroll, Jie Zhao, Peter Pockney and Rodney J. Scott
Gastroenterol. Insights 2024, 15(1), 107-121; https://doi.org/10.3390/gastroent15010008 - 27 Jan 2024
Viewed by 2071
Abstract
This study aims to investigate the long-term prognostic utility of circulating tumour DNA (ctDNA) KRAS mutations in colorectal cancer (CRC) patients and compare this with KRAS mutations in matched tissue samples. Tumour tissue (n = 107) and ctDNA (n = 80) [...] Read more.
This study aims to investigate the long-term prognostic utility of circulating tumour DNA (ctDNA) KRAS mutations in colorectal cancer (CRC) patients and compare this with KRAS mutations in matched tissue samples. Tumour tissue (n = 107) and ctDNA (n = 80) were obtained from patients undergoing CRC resection and were analysed for KRAS mutations. The associations between KRAS mutation and overall survival (OS), cancer-specific survival (CSS), and recurrence-free survival (RFS) were analysed. All outcomes were measured in years (y). A total of 28.8% of patients had KRAS mutations in ctDNA and 72.9% in tumour tissue DNA. The high frequency of KRAS mutations in tissue samples was due to 51.4% of these being a detectable low mutation allele frequency (<10% MAF). Comparing KRAS mutant (KRASmut) to KRAS wild-type (KRASwt) in ctDNA, there was no association found with OS (mean 4.67 y vs. 4.34 y, p = 0.832), CSS (mean 4.72 y vs. 4.49 y, p = 0.747), or RFS (mean 3.89 y vs. 4.26 y, p = 0.616). Similarly, comparing KRASmut to KRASwt in tissue DNA there was no association found with OS (mean 4.23 y vs. 4.61 y, p = 0.193), CSS (mean 4.41 y vs. 4.71 y, p = 0.312), or RFS (mean 4.16 y vs. 4.41 y, p = 0.443). There was no significant association found between KRAS mutations in either tissue or ctDNA and OS, CSS, or RFS. Full article
(This article belongs to the Section Gastrointestinal Disease)
Show Figures

Figure 1

15 pages, 4846 KiB  
Review
Molecular Profiling of Circulating Tumour Cells and Circulating Tumour DNA: Complementary Insights from a Single Blood Sample Utilising the Parsortix® System
by Gabrielle Wishart, Amy Templeman, Francesca Hendry, Karen Miller and Anne-Sophie Pailhes-Jimenez
Curr. Issues Mol. Biol. 2024, 46(1), 773-787; https://doi.org/10.3390/cimb46010050 - 17 Jan 2024
Cited by 8 | Viewed by 3308
Abstract
The study of molecular drivers of cancer is an area of rapid growth and has led to the development of targeted treatments, significantly improving patient outcomes in many cancer types. The identification of actionable mutations informing targeted treatment strategies are now considered essential [...] Read more.
The study of molecular drivers of cancer is an area of rapid growth and has led to the development of targeted treatments, significantly improving patient outcomes in many cancer types. The identification of actionable mutations informing targeted treatment strategies are now considered essential to the management of cancer. Traditionally, this information has been obtained through biomarker assessment of a tissue biopsy which is costly and can be associated with clinical complications and adverse events. In the last decade, blood-based liquid biopsy has emerged as a minimally invasive, fast, and cost-effective alternative, which is better suited to the requirement for longitudinal monitoring. Liquid biopsies allow for the concurrent study of multiple analytes, such as circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA), from a single blood sample. Although ctDNA assays are commercially more advanced, there is an increasing awareness of the clinical significance of the transcriptome and proteome which can be analysed using CTCs. Herein, we review the literature in which the microfluidic, label-free Parsortix® system is utilised for CTC capture, harvest and analysis, alongside the analysis of ctDNA from a single blood sample. This detailed summary of the literature demonstrates how these two analytes can provide complementary disease information. Full article
(This article belongs to the Special Issue Advanced Molecular Solutions for Cancer Therapy)
Show Figures

Figure 1

16 pages, 2199 KiB  
Article
A Phase II Study of Osimertinib in Patients with Advanced-Stage Non-Small Cell Lung Cancer following Prior Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR TKI) Therapy with EGFR and T790M Mutations Detected in Plasma Circulating Tumour DNA (PLASMA Study)
by Yvonne L. E. Ang, Xiaotian Zhao, Thanyanan Reungwetwattana, Byoung-Chul Cho, Bin-Chi Liao, Rebecca Yeung, Herbert H. Loong, Dong-Wan Kim, James Chih-Hsin Yang, Sun Min Lim, Myung-Ju Ahn, Se-Hoon Lee, Thitiporn Suwatanapongched, Kanchaporn Kongchauy, Qiuxiang Ou, Ruoying Yu, Bee Choo Tai, Boon Cher Goh, Tony S. K. Mok and Ross A. Soo
Cancers 2023, 15(20), 4999; https://doi.org/10.3390/cancers15204999 - 16 Oct 2023
Cited by 8 | Viewed by 4459
Abstract
Epidermal growth factor receptor (EGFR) T790M mutations drive resistance in 50% of patients with advanced non-small cell lung cancer (NSCLC) who progress on first/second generation (1G/2G) EGFR tyrosine kinase inhibitors (TKIs) and are sensitive to Osimertinib. Tissue sampling is the gold-standard [...] Read more.
Epidermal growth factor receptor (EGFR) T790M mutations drive resistance in 50% of patients with advanced non-small cell lung cancer (NSCLC) who progress on first/second generation (1G/2G) EGFR tyrosine kinase inhibitors (TKIs) and are sensitive to Osimertinib. Tissue sampling is the gold-standard modality of T790M testing, but it is invasive. We evaluated the efficacy of Osimertinib in patients with EGFR mutant NSCLC and T790M in circulating tumour DNA (ctDNA). PLASMA is a prospective, open-label, multicentre single-arm Phase II study. Patients with advanced NSCLC harbouring sensitizing EGFR and T790M mutations in plasma at progression from ≥one 1G/2G TKI were treated with 80 mg of Osimertinib daily until progression. The primary endpoint was the objective response rate (ORR); the secondary endpoints included progression-free survival (PFS), overall survival (OS), disease control rate (DCR) and toxicities. Plasma next-generation sequencing was performed to determine Osimertinib resistance mechanisms and assess serial ctDNA. A total of 110 patients from eight centres in five countries were enrolled from 2017 to 2019. The median follow-up duration was 2.64 (IQR 2.44–3.12) years. The ORR was 50.9% (95% CI 41.2–60.6) and the DCR was 84.5% (95% CI 76.4–90.7). Median PFS was 7.4 (95% CI 6.0–9.3) months; median OS was 1.63 (95% CI 1.35–2.16) years. Of all of the patients, 76% had treatment-related adverse events (TRAEs), most commonly paronychia (22.7%); 11% experienced ≥ Grade 3 TRAEs. The ctDNA baseline load and dynamics were prognostic. Osimertinib is active in NSCLC harbouring sensitizing EGFR and T790M mutations in ctDNA testing post 1G/2G TKIs. Full article
(This article belongs to the Special Issue Liquid Biopsy for Lung Cancer Treatment)
Show Figures

Figure 1

14 pages, 1873 KiB  
Article
Evaluating the Utility of ctDNA in Detecting Residual Cancer and Predicting Recurrence in Patients with Serous Ovarian Cancer
by Jie Wei Zhu, Fabian Wong, Agata Szymiczek, Gabrielle E. V. Ene, Shiyu Zhang, Taymaa May, Steven A. Narod, Joanne Kotsopoulos and Mohammad R. Akbari
Int. J. Mol. Sci. 2023, 24(18), 14388; https://doi.org/10.3390/ijms241814388 - 21 Sep 2023
Cited by 16 | Viewed by 2570
Abstract
Ovarian cancer has a high case fatality rate, but patients who have no visible residual disease after surgery have a relatively good prognosis. The presence of any cancer cells left in the peritoneal cavity after treatment may precipitate a cancer recurrence. In many [...] Read more.
Ovarian cancer has a high case fatality rate, but patients who have no visible residual disease after surgery have a relatively good prognosis. The presence of any cancer cells left in the peritoneal cavity after treatment may precipitate a cancer recurrence. In many cases, these cells are occult and are not visible to the surgeon. Analysis of circulating tumour DNA in the blood (ctDNA) may offer a sensitive method to predict the presence of occult (non-visible) residual disease after surgery and may help predict disease recurrence. We assessed 48 women diagnosed with serous ovarian cancer (47 high-grade and 1 low-grade) for visible residual disease and for ctDNA. Plasma, formalin-fixed paraffin-embedded (FFPE) tumour tissue and white blood cells were used to extract circulating free DNA (cfDNA), tumour DNA and germline DNA, respectively. We sequenced DNA samples for 59 breast and ovarian cancer driver genes. The plasma sample was collected after surgery and before initiating chemotherapy. We compared survival in women with no residual disease, with and without a positive plasma ctDNA test. We found tumour-specific variants (TSVs) in cancer cells from 47 patients, and these variants were sought in ctDNA in their post-surgery plasma. Fifteen (31.9%) of the 47 patients had visible residual disease; of these, all 15 had detectable ctDNA. Thirty-one patients (65.9%) had no visible residual disease; of these, 24 (77.4%) patients had detectable ctDNA. Of the patients with no visible residual disease, those patients with detectable ctDNA had higher mortality (20 of 27 died) than those without detectable ctDNA (3 of 7 died) (HR 2.32; 95% CI: 0.67–8.05), although this difference was not statistically significant (p = 0.18). ctDNA in post-surgical serum samples may predict the presence of microscopic residual disease and may be a predictor of recurrence among women with ovarian cancer. Larger studies are necessary to validate these findings. Full article
(This article belongs to the Special Issue Ovarian Cancer: Advances on Pathophysiology and Therapies)
Show Figures

Figure 1

16 pages, 960 KiB  
Review
Liquid Biopsy in Neurological Diseases
by Sunny Malhotra, Mari Carmen Martín Miras, Agustín Pappolla, Xavier Montalban and Manuel Comabella
Cells 2023, 12(14), 1911; https://doi.org/10.3390/cells12141911 - 22 Jul 2023
Cited by 27 | Viewed by 7016
Abstract
The most recent and non-invasive approach for studying early-stage biomarkers is liquid biopsy. This implies the extraction and analysis of non-solid biological tissues (serum, plasma, saliva, urine, and cerebrospinal fluid) without undergoing invasive procedures to determine disease prognosis. Liquid biopsy can be used [...] Read more.
The most recent and non-invasive approach for studying early-stage biomarkers is liquid biopsy. This implies the extraction and analysis of non-solid biological tissues (serum, plasma, saliva, urine, and cerebrospinal fluid) without undergoing invasive procedures to determine disease prognosis. Liquid biopsy can be used for the screening of several components, such as extracellular vesicles, microRNAs, cell-free DNA, cell-free mitochondrial and nuclear DNA, circulating tumour cells, circulating tumour DNA, transfer RNA, and circular DNA or RNA derived from body fluids. Its application includes early disease diagnosis, the surveillance of disease activity, and treatment response monitoring, with growing evidence for validating this methodology in cancer, liver disease, and central nervous system (CNS) disorders. This review will provide an overview of mentioned liquid biopsy components, which could serve as valuable biomarkers for the evaluation of complex neurological conditions, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, stroke, traumatic brain injury, CNS tumours, and neuroinfectious diseases. Furthermore, this review highlights the future directions and potential limitations associated with liquid biopsy. Full article
(This article belongs to the Special Issue Liquid Biopsy Components in Neurological Diseases)
Show Figures

Figure 1

12 pages, 6026 KiB  
Article
Identifying the Common Cell-Free DNA Biomarkers across Seven Major Cancer Types
by Mingyu Luo, Yining Liu and Min Zhao
Biology 2023, 12(7), 934; https://doi.org/10.3390/biology12070934 - 29 Jun 2023
Viewed by 2220
Abstract
Blood-based detection of circulating cell-free DNA (cfDNA) is a non-invasive and easily accessible method for early cancer detection. Despite the extensive utility of cfDNA, there are still many challenges to developing clinical biomarkers. For example, cfDNA with genetic alterations often composes a small [...] Read more.
Blood-based detection of circulating cell-free DNA (cfDNA) is a non-invasive and easily accessible method for early cancer detection. Despite the extensive utility of cfDNA, there are still many challenges to developing clinical biomarkers. For example, cfDNA with genetic alterations often composes a small portion of the DNA circulating in plasma, which can be confounded by cfDNA contributed by normal cells. Therefore, filtering out the potential false-positive cfDNA mutations from healthy populations will be important for cancer-based biomarkers. Additionally, many low-frequency genetic alterations are easily overlooked in a small number of cfDNA-based cancer tests. We hypothesize that the combination of diverse types of cancer studies on cfDNA will provide us with a new perspective on the identification of low-frequency genetic variants across cancer types for promoting early diagnosis. By building a standardized computational pipeline for 1358 cfDNA samples across seven cancer types, we prioritized 129 shard genetic variants in the major cancer types. Further functional analysis of the 129 variants found that they are mainly enriched in ribosome pathways such as cotranslational protein targeting the membrane, some of which are tumour suppressors, oncogenes, and genes related to cancer initiation. In summary, our integrative analysis revealed the important roles of ribosome proteins as common biomarkers in early cancer diagnosis. Full article
(This article belongs to the Special Issue Multi-omics Data Integration in Complex Diseases)
Show Figures

Figure 1

18 pages, 1538 KiB  
Systematic Review
Circulating Tumour DNA (ctDNA) as a Predictor of Clinical Outcome in Non-Small Cell Lung Cancer Undergoing Targeted Therapies: A Systematic Review and Meta-Analysis
by Farzana Y. Zaman, Ashwin Subramaniam, Afsana Afroz, Zarka Samoon, Daniel Gough, Surein Arulananda and Muhammad Alamgeer
Cancers 2023, 15(9), 2425; https://doi.org/10.3390/cancers15092425 - 23 Apr 2023
Cited by 13 | Viewed by 3257
Abstract
Background: Liquid biopsy (LB) analysis using (ctDNA)/cell-free DNA (cfDNA) is an emerging alternative to tissue profiling in (NSCLC). LB is used to guide treatment decisions, detect resistance mechanisms, and predicts responses, and, therefore, outcomes. This systematic review and meta-analysis evaluated the impact of [...] Read more.
Background: Liquid biopsy (LB) analysis using (ctDNA)/cell-free DNA (cfDNA) is an emerging alternative to tissue profiling in (NSCLC). LB is used to guide treatment decisions, detect resistance mechanisms, and predicts responses, and, therefore, outcomes. This systematic review and meta-analysis evaluated the impact of LB quantification on clinical outcomes in molecularly altered advanced NSCLC undergoing targeted therapies. Methods: We searched Embase, MEDLINE, PubMed, and Cochrane Database, between 1 January 2020 and 31 August 2022. The primary outcome was progression-free survival (PFS). Secondary outcomes included overall survival (OS), objective response rate (ORR), sensitivity, and specificity. Age stratification was performed based on the mean age of the individual study population. The quality of studies was assessed using the Newcastle–Ottawa Scale (NOS). Results: A total of 27 studies (3419 patients) were included in the analysis. Association of baseline ctDNA with PFS was reported in 11 studies (1359 patients), while that of dynamic changes with PFS was reported in 16 studies (1659 patients). Baseline ctDNA-negative patients had a trend towards improved PFS (pooled hazard ratio [pHR] = 1.35; 95%CI: 0.83–1.87; p < 0.001; I2 = 96%) than ctDNA-positive patients. Early reduction/clearance of ctDNA levels after treatment was related to improved PFS (pHR = 2.71; 95%CI: 1.85–3.65; I2 = 89.4%) compared to those with no reduction/persistence in ctDNA levels. The sensitivity analysis based on study quality (NOS) demonstrated improved PFS only for good [pHR = 1.95; 95%CI: 1.52–2.38] and fair [pHR = 1.99; 95%CI: 1.09–2.89] quality studies, but not for poor quality studies. There was, however, a high level of heterogeneity (I2 = 89.4%) along with significant publication bias in our analysis. Conclusions: This large systematic review, despite heterogeneity, found that baseline negative ctDNA levels and early reduction in ctDNA following treatment could be strong prognostic markers for PFS and OS in patients undergoing targeted therapies for advanced NSCLC. Future randomised clinical trials should incorporate serial ctDNA monitoring to further establish the clinical utility in advanced NSCLC management. Full article
(This article belongs to the Special Issue Liquid Biopsy for Lung Cancer Treatment)
Show Figures

Figure 1

11 pages, 1247 KiB  
Review
Liquid Biopsy for Oral Cancer Diagnosis: Recent Advances and Challenges
by Yutaka Naito and Kazufumi Honda
J. Pers. Med. 2023, 13(2), 303; https://doi.org/10.3390/jpm13020303 - 8 Feb 2023
Cited by 14 | Viewed by 5787
Abstract
“Liquid biopsy” is an efficient diagnostic tool used to analyse biomaterials in human body fluids, such as blood, saliva, breast milk, and urine. Various biomaterials derived from a tumour and its microenvironment are released into such body fluids and contain important information for [...] Read more.
“Liquid biopsy” is an efficient diagnostic tool used to analyse biomaterials in human body fluids, such as blood, saliva, breast milk, and urine. Various biomaterials derived from a tumour and its microenvironment are released into such body fluids and contain important information for cancer diagnosis. Biomaterial detection can provide “real-time” information about individual tumours, is non-invasive, and is more repeatable than conventional histological analysis. Therefore, over the past two decades, liquid biopsy has been considered an attractive diagnostic tool for malignant tumours. Although biomarkers for oral cancer have not yet been adopted in clinical practice, many molecular candidates have been investigated for liquid biopsies in oral cancer diagnosis, such as the proteome, metabolome, microRNAome, extracellular vesicles, cell-free DNAs, and circulating tumour cells. This review will present recent advances and challenges in liquid biopsy for oral cancer diagnosis. Full article
(This article belongs to the Special Issue Precision Medicine in Oral Science and Dentistry)
Show Figures

Figure 1

19 pages, 1220 KiB  
Review
Circulating Tumour Cells, Cell Free DNA and Tumour-Educated Platelets as Reliable Prognostic and Management Biomarkers for the Liquid Biopsy in Multiple Myeloma
by Alessandro Allegra, Gabriella Cancemi, Giuseppe Mirabile, Alessandro Tonacci, Caterina Musolino and Sebastiano Gangemi
Cancers 2022, 14(17), 4136; https://doi.org/10.3390/cancers14174136 - 26 Aug 2022
Cited by 14 | Viewed by 3776
Abstract
Liquid biopsy is one of the fastest emerging fields in cancer evaluation. Circulating tumour cells and tumour-originated DNA in plasma have become the new targets for their possible employ in tumour diagnosis, and liquid biopsy can define tumour burden without invasive procedures. Multiple [...] Read more.
Liquid biopsy is one of the fastest emerging fields in cancer evaluation. Circulating tumour cells and tumour-originated DNA in plasma have become the new targets for their possible employ in tumour diagnosis, and liquid biopsy can define tumour burden without invasive procedures. Multiple Myeloma, one of the most frequent hematologic tumors, has been the target of therapeutic progresses in the last few years. Bone marrow aspirate is the traditional tool for diagnosis, prognosis, and genetic evaluation in multiple myeloma patients. However, this painful procedure presents a relevant drawback for regular disease examination as it requires an invasive practice. Moreover, new data demonstrated that a sole bone marrow aspirate is incapable of expressing the multifaceted multiple myeloma genetic heterogeneity. In this review, we report the emerging usefulness of the assessment of circulating tumour cells, cell-free DNA, extracellular RNA, cell-free proteins, extracellular vesicles, and tumour-educated platelets to evaluate the changing mutational profile of multiple myeloma, as early markers of disease, reliable predictors of prognosis, and as useful tools to perform less invasive monitoring in multiple myeloma. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

Back to TopTop