Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (546)

Search Parameters:
Keywords = circular wave

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 8383 KiB  
Article
Quantifying Emissivity Uncertainty in Multi-Angle Long-Wave Infrared Hyperspectral Data
by Nikolay Golosov, Guido Cervone and Mark Salvador
Remote Sens. 2025, 17(16), 2823; https://doi.org/10.3390/rs17162823 - 14 Aug 2025
Abstract
This study quantifies emissivity uncertainty using a new, specifically collected multi-angle thermal hyperspectral dataset, Nittany Radiance. Unlike previous research that primarily relied on model-based simulations, multispectral satellite imagery, or laboratory measurements, we use airborne hyperspectral long-wave infrared (LWIR) data captured from multiple viewing [...] Read more.
This study quantifies emissivity uncertainty using a new, specifically collected multi-angle thermal hyperspectral dataset, Nittany Radiance. Unlike previous research that primarily relied on model-based simulations, multispectral satellite imagery, or laboratory measurements, we use airborne hyperspectral long-wave infrared (LWIR) data captured from multiple viewing angles. The data was collected using the Blue Heron LWIR hyperspectral imaging sensor, flown on a light aircraft in a circular orbit centered on the Penn State University campus. This sensor, with 256 spectral bands (7.56–13.52 μm), captures multiple overlapping images with varying ranges and angles. We analyzed nine different natural and man-made targets across varying viewing geometries. We present a multi-angle atmospheric correction method, similar to FLAASH-IR, modified for multi-angle scenarios. Our results show that emissivity remains relatively stable at viewing zenith angles between 40 and 50° but decreases as angles exceed 50°. We found that emissivity uncertainty varies across the spectral range, with the 10.14–11.05 μm region showing the greatest stability (standard deviations typically below 0.005), while uncertainty increases significantly in regions with strong atmospheric absorption features, particularly around 12.6 μm. These results show how reliable multi-angle hyperspectral measurements are and why angle-specific atmospheric correction matters for non-nadir imaging applications Full article
Show Figures

Figure 1

18 pages, 5244 KiB  
Article
Design and Investigation of Mechanical Properties of Additively Manufactured Novel Coil-Shaped Wave Springs
by Gul Jamil Shah, Muhammad Rizwan ul Haq and Jeng-Ywan Jeng
Appl. Mech. 2025, 6(3), 61; https://doi.org/10.3390/applmech6030061 - 14 Aug 2025
Abstract
Additive Manufacturing (AM) has revolutionized the production of intricate geometries tailored to customized functional mechanical properties, making it widely adopted across various industries, including aerospace, automotive, and biomedical sectors. However, the fabrication of mechanical springs has remained largely constrained by conventional manufacturing techniques, [...] Read more.
Additive Manufacturing (AM) has revolutionized the production of intricate geometries tailored to customized functional mechanical properties, making it widely adopted across various industries, including aerospace, automotive, and biomedical sectors. However, the fabrication of mechanical springs has remained largely constrained by conventional manufacturing techniques, which limit their cross-sectional geometries to regular shapes, thereby restricting their mechanical performance and energy absorption capabilities. This limitation poses a significant challenge in applications where enhanced load-bearing capacity, energy absorption, and tailored stiffness characteristics are required. To address this issue, this study investigates the influence of coil shape on the mechanical properties of wave springs, specifically focusing on load-bearing capacity, energy absorption, stiffness, and compression behavior during cyclic loading and unloading. Nine contact-type wave springs with distinct coil shapes—square, rectangular, pentagonal, hexagonal, heptagonal, octagonal, quadro, circular (4 waves per coil), and circular (6 waves per coil)—were designed and fabricated using MultiJet Fusion (MJF) technology. Uni-axial compression testing was conducted over ten loading–unloading cycles to evaluate their mechanical performance and deformation characteristics. The results indicate that wave springs with square and rectangular coil shapes exhibit the highest energy absorption while maintaining the lowest stiffness and minimal energy loss during the first ten loading–unloading cycles. Furthermore, experimental findings were validated using finite element analysis (FEA) under identical boundary conditions, demonstrating close agreement with a deviation of only 2.3% compared with the experimental results. These results highlight AM’s potential for customizing wave springs with optimized mechanical performance. Full article
Show Figures

Figure 1

25 pages, 5880 KiB  
Article
Simulating the Coastal Protection Performance of Breakwaters in the Mekong Delta: Insights from the Western Coast of Ca Mau Province, Vietnam
by Dinh Van Duy, Tran Van Ty, Lam Tan Phat, Huynh Vuong Thu Minh, Nguyen Dinh Giang Nam, Nigel K. Downes, Ram Avtar and Hitoshi Tanaka
J. Mar. Sci. Eng. 2025, 13(8), 1559; https://doi.org/10.3390/jmse13081559 - 14 Aug 2025
Viewed by 32
Abstract
The Vietnamese Mekong Delta (VMD) is experiencing accelerated coastal erosion, driven by upstream sediment trapping, sea-level rise, and local anthropogenic pressures. This study evaluates the effectiveness of pilot breakwater structures in mitigating erosion and supporting mangrove regeneration along the western coast of Ca [...] Read more.
The Vietnamese Mekong Delta (VMD) is experiencing accelerated coastal erosion, driven by upstream sediment trapping, sea-level rise, and local anthropogenic pressures. This study evaluates the effectiveness of pilot breakwater structures in mitigating erosion and supporting mangrove regeneration along the western coast of Ca Mau Province—one of the delta’s most vulnerable shorelines. An integrated methodology combining field-based wave monitoring, remote sensing analysis of shoreline and mangrove changes (2000–2024), and high-resolution Flow-3D hydrodynamic modeling was employed to assess the performance of four breakwater typologies: semi-circular, pile-rock, Busadco, and floating structures. The results show that semi-circular breakwaters achieved the highest wave attenuation, reducing maximum wave height (Hmax) by up to 76%, followed by pile-rock (69%), Busadco (66%), and floating structures (50%). Sediment accretion and mangrove stabilization were most consistent around the semi-circular and pile-rock types. Notably, mangrove loss slowed significantly after breakwater installation, with the annual deforestation rate dropping from 7.67 ha/year (2000–2021) to 1.1 ha/year (2021–2024). Simulations further revealed that mangrove width strongly influences wave dissipation, with belts under 5 m offering minimal protection. The findings highlight the potential of hybrid coastal protection strategies that combine engineered structures with ecological buffers. Modular solutions such as floating breakwaters offer flexibility to adapt with evolving shoreline dynamics. These findings inform scalable coastal protection strategies under sediment-deficit conditions. This study contributes to Vietnam’s Coastal Development Master Plan and broader resilience efforts under Sustainable Development Goals (SDGs) 13 and 14, providing evidence to inform the design and scaling of adaptive, nature-based infrastructure in sediment-challenged deltaic environments. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 6065 KiB  
Article
Numerical Study on Hydrodynamic Performances of Novel Dual-Layer Flower-Shaped Heave Plates of a Floating Offshore Wind Turbine
by Ruosi Zha, Junwen Liang, Jiahao Chen, Xiaodi Wu, Xiaotian Li and Zebin Liang
Energies 2025, 18(16), 4304; https://doi.org/10.3390/en18164304 - 13 Aug 2025
Viewed by 214
Abstract
This paper proposes novel designs of dual-layer flower-shaped heave plates, featuring both aligned and staggered configurations with three, six, and nine petals. Numerical simulations were conducted to study the hydrodynamic effects of these various heave plate designs integrated with the OC4 DeepCwind semisubmersible [...] Read more.
This paper proposes novel designs of dual-layer flower-shaped heave plates, featuring both aligned and staggered configurations with three, six, and nine petals. Numerical simulations were conducted to study the hydrodynamic effects of these various heave plate designs integrated with the OC4 DeepCwind semisubmersible floating offshore wind turbine platform under prescribed heave oscillations. The overset mesh technique was employed to treat the floating platform’s motions. Comprehensive assessments of vertical force, radiated wave patterns, vorticity fields, added mass, and damping coefficients were conducted. The results revealed that the novel flower-shaped staggered heave plates significantly outperformed conventional circular plates in terms of damping coefficients. Specifically, the damping coefficient of flower-shaped staggered heave plates was greater than that of circular heave plates, while the aligned configuration exhibited a lower damping coefficient. The damping coefficient increased with a reduction in the number of petals for the staggered heave plates. Among the evaluated designs, the dual-layer flower-shaped staggered heave plates with three petals demonstrated the highest effectiveness in attenuating heave motion of the floating platform. The utilization of novel dual-layer flower-shaped staggered heave plates is therefore a promising practice aimed at damping the heave motion of platforms in rough seas. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

28 pages, 3834 KiB  
Article
An Exact 3D Shell Model for Free Vibration Analysis of Magneto-Electro-Elastic Composite Structures
by Salvatore Brischetto, Domenico Cesare and Tommaso Mondino
J. Compos. Sci. 2025, 9(8), 399; https://doi.org/10.3390/jcs9080399 - 1 Aug 2025
Viewed by 218
Abstract
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and [...] Read more.
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and spherical shells. The closed-form solution of the problem is performed considering Navier harmonic forms in the in-plane directions and the exponential matrix method in the thickness direction. A layerwise approach is possible, considering the interlaminar continuity conditions for displacements, electric and magnetic potentials, transverse shear/normal stresses, transverse normal magnetic induction and transverse normal electric displacement. Some preliminary cases are proposed to validate the present 3D MEE free vibration model for several curvatures, materials, thickness values and vibration modes. Then, new benchmarks are proposed in order to discuss possible effects in multilayered MEE curved smart structures. In the new benchmarks, first, three circular frequencies for several half-wave number couples and for different thickness ratios are proposed. Thickness vibration modes are shown in terms of displacements, stresses, electric displacement and magnetic induction along the thickness direction. These new benchmarks are useful to understand the free vibration behavior of MEE curved smart structures, and they can be used as reference for researchers interested in the development of of 2D/3D MEE models. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

16 pages, 3616 KiB  
Article
A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications
by Xinju Wang, Lihan Tong, Peng Chen, Lu Liu, Yutong Yin and Haowei Zhang
Appl. Sci. 2025, 15(15), 8499; https://doi.org/10.3390/app15158499 - 31 Jul 2025
Viewed by 189
Abstract
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current [...] Read more.
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current (DC) bias circuit is designed to minimize the interaction between the radio frequency (RF) signal and the DC source, allowing control of the LC dielectric constant via bias voltage. This enables multi-band operation to improve communication capacity and quality for x-band devices. The polarization conversion (PC) structure employs an orthogonal anisotropic design, utilizing logarithmic functions to create two pairs of bowtie microstrip patches for linear-to-circular polarization conversion (LCPC). Simulation results show that for x-polarized incident waves, with an LC dielectric constant of εr = 2.8, left- and right-handed circularly polarized (LHCP and RHCP) waves are achieved in the frequency ranges of 8.15–8.46 GHz and 9.84–12.52 GHz, respectively. For εr = 3.9, LHCP and RHCP are achieved in 9–9.11 GHz and 9.86–11.81 GHz, respectively, and for εr = 4.6, they are in 8.96–9.11 GHz and 9.95–11.51 GHz. In the case of y-polarized incident waves, the MS reflects the reverse CP waves within the same frequency ranges. Measured results show that at εr = 2.8, the axial ratio (AR) is below 3 dB in the frequency ranges 8.16–8.46 GHz and 9.86–12.48 GHz, with 3 dB AR relative bandwidth (ARBW) of 3.61% and 23.46%, respectively. For εr = 4.6, the AR < 3 dB in the frequency range of 9.78–11.34 GHz, with a 3 dB ARBW of 14.77%. Finally, the measured and simulated results are compared to validate the proposed design, which can be applied to various applications within the corresponding operating frequency band. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

16 pages, 3042 KiB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 441
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

26 pages, 8897 KiB  
Article
Numerical Study of Wave-Induced Longshore Current Generation Zones on a Circular Sandy Sloping Topography
by Mohammad Shaiful Islam, Tomoaki Nakamura, Yong-Hwan Cho and Norimi Mizutani
Water 2025, 17(15), 2263; https://doi.org/10.3390/w17152263 - 29 Jul 2025
Viewed by 326
Abstract
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes [...] Read more.
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes of coastal beaches. In this study, a two-phase incompressible flow model along with a sandy sloping topography was employed to investigate the wave deformation and longshore current generation areas in a circular wave basin model. The finite volume method (FVM) was implemented to discretize the governing equations in cylindrical coordinates, the volume-of-fluid method (VOF) was adopted to differentiate the air–water interfaces in the control cells, and the zonal embedded grid technique was employed for grid generation in the cylindrical computational domain. The water surface elevations and velocity profiles were measured in different wave conditions, and the measurements showed that the maximum water levels per wave were high and varied between cases, as well as between cross-sections in a single case. Additionally, the mean water levels were lower in the adjacent positions of the approximated wave-breaking zones. The wave-breaking positions varied between cross-sections in a single case, with the incident-wave height, mean water level, and wave-breaking position measurements indicating the influence of downstream flow variation in each cross-section on the sloping topography. The cross-shore velocity profiles became relatively stable over time, while the longshore velocity profiles predominantly moved in the alongshore direction, with smaller fluctuations, particularly during the same time period and in measurement positions near the wave-breaking zone. The computed velocity profiles also varied between cross-sections, and for the velocity profiles along the cross-shore and longshore directions nearest the wave-breaking areas where the downstream flow had minimal influence, it was presumed that there was longshore-current generation in the sloping topography nearest the shoreside. The computed results were compared with the experimental results and we observed similar characteristics for wave profiles in the same wave period case in both models. In the future, further investigations can be conducted using the presented circular wave basin model to investigate the oblique wave deformation and longshore current generation in different sloping and wave conditions. Full article
(This article belongs to the Special Issue Numerical Modeling of Hydrodynamics and Sediment Transport)
Show Figures

Figure 1

17 pages, 6326 KiB  
Article
Dynamic Stress Wave Response of Thin-Walled Circular Cylindrical Shell Under Thermal Effects and Axial Harmonic Compression Boundary Condition
by Desejo Filipeson Sozinando, Patrick Nziu, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Appl. Mech. 2025, 6(3), 55; https://doi.org/10.3390/applmech6030055 - 28 Jul 2025
Viewed by 483
Abstract
The interaction between thermal fields and mechanical loads in thin-walled cylindrical shells introduces complex dynamic behaviors relevant to aerospace and mechanical engineering applications. This study investigates the axial stress wave propagation in a circular cylindrical shell subjected to combined thermal gradients and time-dependent [...] Read more.
The interaction between thermal fields and mechanical loads in thin-walled cylindrical shells introduces complex dynamic behaviors relevant to aerospace and mechanical engineering applications. This study investigates the axial stress wave propagation in a circular cylindrical shell subjected to combined thermal gradients and time-dependent harmonic compression. A semi-analytical model based on Donnell–Mushtari–Vlasov (DMV) shells theory is developed to derive the governing equations, incorporating elastic, inertial, and thermal expansion effects. Modal solutions are obtained to evaluate displacement and stress distributions across varying thermal and mechanical excitation conditions. Empirical Mode Decomposition (EMD) and Instantaneous Frequency (IF) analysis are employed to extract time–frequency characteristics of the dynamic response. Complementary Finite Element Analysis (FEA) is conducted to assess modal deformations, stress wave amplification, and the influence of thermal softening on resonance frequencies. Results reveal that increasing thermal gradients leads to significant reductions in natural frequencies and amplifies stress responses at critical excitation frequencies. The combination of analytical and numerical approaches captures the coupled thermomechanical effects on shell dynamics, providing an understanding of resonance amplification, modal energy distribution, and thermal-induced stiffness variation under axial harmonic excitation across thin-walled cylindrical structures. Full article
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
A Single-Phase Aluminum-Based Chiral Metamaterial with Simultaneous Negative Mass Density and Bulk Modulus
by Fanglei Zhao, Zhenxing Shen, Yong Cheng and Huichuan Zhao
Crystals 2025, 15(8), 679; https://doi.org/10.3390/cryst15080679 - 25 Jul 2025
Viewed by 273
Abstract
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, [...] Read more.
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, slender aluminum beams. The design avoids the manufacturing complexity of multi-phase systems by relying solely on geometric topology and chirality to induce dipolar and rotational resonances. Dispersion analysis and effective parameter retrieval confirm a double-negative frequency region from 30.9 kHz to 34 kHz. Finite element simulations further demonstrate negative refraction behavior when the metamaterial is immersed in water and subjected to 32 kHz and 32.7 kHz incident plane wave. Equifrequency curves (EFCs) analysis shows excellent agreement with simulated refraction angles, validating the material’s double-negative performance. This study provides a robust, manufacturable platform for elastic wave manipulation using a single-phase metallic metamaterial design. Full article
(This article belongs to the Special Issue Research Progress of Crystalline Metamaterials)
Show Figures

Figure 1

22 pages, 9592 KiB  
Article
A Rotational Order Vibration Reduction Method Using a Regular Non-Circular Pulley
by Shangbin Long, Yu Zhu, Zhihong Zhou, Fangrui Chen and Zisheng Li
Actuators 2025, 14(8), 371; https://doi.org/10.3390/act14080371 - 25 Jul 2025
Viewed by 237
Abstract
For transmission systems with regular order excitation, the order vibration will be conducted to each component of the system and affect the stability and service life of the system. A method with a regular non-circular active pulley is proposed in this paper, which [...] Read more.
For transmission systems with regular order excitation, the order vibration will be conducted to each component of the system and affect the stability and service life of the system. A method with a regular non-circular active pulley is proposed in this paper, which is used to counteract the regular order excitation and the regular load excitation. A toothed belt drive system with second-order excitation is taken as an example. According to the existing analytical model of the tooth belt drive system, the modeling process and analytical solution algorithm of the system are derived. Based on the coordinate transformation, the algorithms for any position of an elliptical pulley and the common tangent of the circular pulley are given. And the algorithm for the arc length of the elliptical pulley at any arc degree is proposed. The influence of the phase and eccentricity in the elliptical pulley on the dynamic performance of the system is analyzed. Then the experimental verification is carried out. This shows that this system can generate excitation opposite to the main order rotational vibration of the driving pulley and opposite to the load of the driven pulley. Under the combined effect of other load pulleys in the system, there will be an amplification phenomenon in its vibration response. Considering the decrease in the belt span tension and the decline in the performance of energy-absorbing components after long operation, the presented method can better maintain the stability of system performance. This method can provide new ideas for the vibration reduction optimization process of systems with first-order wave excitation. Full article
Show Figures

Figure 1

15 pages, 4471 KiB  
Article
Reconfigurable Intelligent Surfaces with Dual-Band Dual-Polarization Capabilities for Arbitrary Beam Synthesis Beyond Beam Steering
by Moosung Kim, Geun-Yeong Jun and Minseok Kim
Electronics 2025, 14(14), 2812; https://doi.org/10.3390/electronics14142812 - 12 Jul 2025
Viewed by 462
Abstract
A surface-wave-assisted, dual-band, circularly polarized reconfigurable intelligent surface is proposed that allows arbitrary beam-shaping capability within the [4.35 GHz–4.5 GHz] and [11.8 GHz–12.3 GHz] frequency bands. In particular, alongside the proposed physical design of the surface, a genetic algorithm-based design framework is introduced [...] Read more.
A surface-wave-assisted, dual-band, circularly polarized reconfigurable intelligent surface is proposed that allows arbitrary beam-shaping capability within the [4.35 GHz–4.5 GHz] and [11.8 GHz–12.3 GHz] frequency bands. In particular, alongside the proposed physical design of the surface, a genetic algorithm-based design framework is introduced to enable the synthesis of complex radiation patterns beyond simple beam steering. It is shown that the phase profiles obtained from the proposed optimization scheme naturally lead to the excitation of surface waves, which facilitate arbitrary beam shaping by satisfying the local power conservation condition between the normally impinging and arbitrarily reflected waves. To physically construct the proposed surface, cascaded symmetric unit cells are employed to facilitate circular polarization operation and realize dual-band operation. Furthermore, varactor diodes are incorporated into the design of unit cells so that the reflection phase can be independently and continuously tuned across the two frequency bands, with a tuning range of 300 degrees. The versatility of the proposed surface is demonstrated through design examples that achieve (i) unidirectional beam steering, (ii) multi-directional beam steering, and (iii) sector-beam formation within each frequency band. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 3696 KiB  
Article
Reproducibility Limits of the Frequency Equation for Estimating Long-Linear Internal Wave Periods in Lake Biwa
by Hibiki Yoneda, Chunmeng Jiao, Keisuke Nakayama, Hiroki Matsumoto and Kazuhide Hayakawa
Hydrology 2025, 12(7), 190; https://doi.org/10.3390/hydrology12070190 - 11 Jul 2025
Viewed by 449
Abstract
In a large deep lake, the generation of internal Kelvin waves and internal Poincaré waves due to wind stress on the lake surface is a significant phenomenon. These internal waves play a crucial role in material transport within the lake and have profound [...] Read more.
In a large deep lake, the generation of internal Kelvin waves and internal Poincaré waves due to wind stress on the lake surface is a significant phenomenon. These internal waves play a crucial role in material transport within the lake and have profound effects on its ecosystem and environment. Our study, which investigated the modes of internal waves in Lake Biwa using the vertical temperature distribution from field observations, has yielded important findings. We have demonstrated the applicability of the frequency equation solutions, considering the Coriolis force. The period of the internal Poincaré waves, as observed in the field, was found to match the solutions of the frequency equation. For example, observational data collected in late October revealed excellent agreement with the theoretical solutions derived from the frequency equation, showing periods of 14.7 h, 11.8 h, 8.2 h, and 6.3 h compared to the theoretical values of 14.4 h, 11.7 h, 8.5 h, and 6.1 h, respectively. However, the periods of the internal Kelvin waves in the field observation results were longer than those of the theoretical solutions. The Modified Mathew function uses a series expansion around qi=0, making it difficult to estimate the periods of internal Kelvin waves under conditions where qi>1.0. Furthermore, in lakes with an elliptical shape, such as Lake Biwa, the elliptical cylinder showed better reproducibility than the circular cylinder. These findings have significant implications for the rapid estimation of internal wave periods using the frequency equation. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

32 pages, 10923 KiB  
Article
Numerical Simulation of Hydrodynamic Characteristics for Monopile Foundations of Wind Turbines Under Wave Action
by Bin Wang, Mingfu Tang, Zhenqiang Jiang and Guohai Dong
Water 2025, 17(14), 2068; https://doi.org/10.3390/w17142068 - 10 Jul 2025
Viewed by 284
Abstract
The calculation and evaluation of wave loads represent a critical component in the design process of offshore wind turbines, which is of significant value for ensuring the safety and stability of offshore wind turbines during operation. In recent years, as the offshore wind [...] Read more.
The calculation and evaluation of wave loads represent a critical component in the design process of offshore wind turbines, which is of significant value for ensuring the safety and stability of offshore wind turbines during operation. In recent years, as the offshore wind power industry has extended into deep-sea areas, wind turbines and their foundation structures have gradually increased in scale. Due to the continuously growing diameter of fixed foundation structures, the wave loads they endure can no longer be evaluated solely by traditional methods. This study simplifies the monopile foundation structure of wind turbines into an upright circular cylinder. The open-source CFD platform OpenFOAM is employed to establish a numerical wave tank, and large eddy simulation (LES) models are used to conduct numerical simulations of its force-bearing process in wave fields. Through this approach, the hydrodynamic loads experienced by the single-cylinder structure in wave fields and the surrounding wave field data are obtained, with further investigation into its hydrodynamic characteristics under different wave environments. By analyzing the wave run-up distribution around cylinders of varying diameters and their effects on incident waves, a more suitable value range for traditional theories in engineering design applications is determined. Additionally, the variation laws of horizontal wave loads on single-cylinder structures under different parameter conditions (such as cylinder diameter, wave steepness, water depth, etc.) are thoroughly studied. Corresponding hydrodynamic load coefficients are derived, and appropriate wave force calculation methods are established to address the impact of value errors in hydrodynamic load coefficients within the transition range from large-diameter to small-diameter cylinders in traditional theories on wave force evaluation. This contributes to enhancing the accuracy and practicality of engineering designs. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

23 pages, 5970 KiB  
Article
Miniaturized and Circularly Polarized Dual-Port Metasurface-Based Leaky-Wave MIMO Antenna for CubeSat Communications
by Tale Saeidi, Sahar Saleh and Saeid Karamzadeh
Electronics 2025, 14(14), 2764; https://doi.org/10.3390/electronics14142764 - 9 Jul 2025
Viewed by 463
Abstract
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface [...] Read more.
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface (MTS) with coffee bean-shaped arrays on substrates of varying permittivity, separated by a cavity layer to enhance coupling. Its dual-port MIMO design boosts data throughput operating in three bands (3.75–5.25 GHz, 6.4–15.4 GHz, and 22.5–30 GHz), while the leaky-wave mechanism supports frequency- or phase-dependent beamsteering without mechanical parts. Ideal for CubeSat communications, its compact size meets CubeSat constraints, and its high gain and efficiency ensure reliable long-distance communication with low power consumption, which is crucial for low Earth orbit operations. Circular polarization (CP) maintains signal integrity despite orientation changes, and MIMO capability supports high data rates for applications such as Earth observations or inter-satellite links. The beamsteering feature allows for dynamic tracking of ground stations or satellites, enhancing mission flexibility and reducing interference. This lightweight, efficient antenna addresses modern CubeSat challenges, providing a robust solution for advanced space communication systems with significant potential to enhance satellite connectivity and data transmission in complex space environments. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

Back to TopTop