Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (345)

Search Parameters:
Keywords = circular society

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2758 KiB  
Article
A Techno-Economic Analysis of Integrating an Urban Biorefinery Process Within a Wastewater Treatment Plant to Produce Sustainable Wood Adhesives
by Blake Foret, William M. Chirdon, Rafael Hernandez, Dhan Lord B. Fortela, Emmanuel Revellame, Daniel Gang, Jalel Ben Hmida, William E. Holmes and Mark E. Zappi
Sustainability 2025, 17(15), 6679; https://doi.org/10.3390/su17156679 - 22 Jul 2025
Viewed by 399
Abstract
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal [...] Read more.
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal wastewater treatment works. The utilization of biosolids (particularly microbial proteins) from wastewater treatment operations could generate a sustainable bio-adhesive for the wood industry, reduce carbon footprint, mitigate health concerns related to the use of carcinogenic components, and support a more circular economic option for wastewater treatment. A techno-economic analysis for three 10 MGD wastewater treatment operations producing roughly 11,300 dry pounds of biosolids per day, in conjunction with co-feedstock defatted soy flour protein at varying ratios (i.e., 0%, 15%, and 50% wet weight), was conducted. Aspen Capital Cost Estimator V12 was used to design and estimate installed equipment additions for wastewater treatment plant integration into an urban biorefinery process. Due to the mechanical attributes and market competition, the chosen selling prices of each adhesive per pound were set for analysis as USD 0.75 for Plant Option P1, USD 0.85 for Plant Option P2, and USD 1.00 for Plant Option P3. Over a 20-year life, each plant option demonstrated economic viability with high NPVs of USD 107.9M, USD 178.7M, and USD 502.2M and internal rates of return (IRRs) of 24.0%, 29.0%, and 44.2% respectively. The options examined have low production costs of USD 0.14 and USD 0.19 per pound, minimum selling prices of USD 0.42–USD 0.51 per pound, resulting in between 2- and 4-year payback periods. Sensitivity analysis shows the effects biosolid production fluctuations, raw material market price, and adhesive selling price have on economics. The results proved profitable even with large variations in the feedstock and raw material prices, requiring low market selling prices to reach the hurdle rate of examination. This technology is economically enticing, and the positive environmental impact of waste utilization encourages further development and analysis of the bio-adhesive process. Full article
Show Figures

Figure 1

16 pages, 2608 KiB  
Article
Analysis of the Properties of Upcycled Wood Waste for Sustainable Furniture Production
by Małgorzata Grotowska, Sylwia Olenska, Joanna Gruszczynska and Piotr Beer
Sustainability 2025, 17(14), 6368; https://doi.org/10.3390/su17146368 - 11 Jul 2025
Viewed by 264
Abstract
Although linear overproduction and overconsumption have benefited businesses, they have created an unsustainable society. Converting wood waste into construction material can support the transition to a circular economy. The mechanical properties of beams constructed from wood waste were measured. Squares with 50, 60, [...] Read more.
Although linear overproduction and overconsumption have benefited businesses, they have created an unsustainable society. Converting wood waste into construction material can support the transition to a circular economy. The mechanical properties of beams constructed from wood waste were measured. Squares with 50, 60, and 70 mm side lengths were glued to create beams, to which the three-point test method was applied parallel to the fibres. The stiffness and moduli of elasticity and rupture were analysed with standard industrial statistical techniques. Specifically, a two-stage analysis was performed using the normal distribution and Shewhart control charts. Changes of 100 mm in width and height and 200 mm in length caused a change of 200–400 N/mm2 in elasticity and 500–1300 MNmm2 in stiffness. Modulus of rupture values were relatively comparable, as they were determined by the properties of oak wood, from which the beams were made. The observed differences in the tested mechanical parameters will be useful in the optimisation of furniture construction, with our research suggesting that it is possible to predict mechanical properties from the dimensions of the waste-wood pieces. Ultimately, this should help to design sustainable furniture that is aesthetic, functional, and safe. Full article
Show Figures

Figure 1

23 pages, 12145 KiB  
Article
Spatial Optimization of Bioenergy Production by Introducing a Cooperative Manure Management System in Bangladesh
by Zinat Mahal and Helmut Yabar
Resources 2025, 14(7), 111; https://doi.org/10.3390/resources14070111 - 10 Jul 2025
Viewed by 472
Abstract
This study anticipates cooperative manure management as a process for generating bioenergy from livestock manure, thereby reducing greenhouse gas (GHG) emissions in Bangladesh. Therefore, this study’s main objective was to identify clusters for cooperative society development and optimize suitable locations for biogas plant [...] Read more.
This study anticipates cooperative manure management as a process for generating bioenergy from livestock manure, thereby reducing greenhouse gas (GHG) emissions in Bangladesh. Therefore, this study’s main objective was to identify clusters for cooperative society development and optimize suitable locations for biogas plant establishment within a cooperative system. Scenarios were explored based on manure types using cluster and network analyses of geographic information systems (GIS). The study observed 13 clusters, which have the potential to produce 6045 million m3 of biogas that can be converted to 9068.64 GWh of electricity yearly. Biogas plants additionally produced 5491.04 kilotons of biofertilizer by reducing GHG emissions estimated to be 10.16 million tons of CO2eq in 2024. This study also optimized 10, 6, and 8 optimum locations for biogas plants according to the scenarios. To implement the findings, this study recommended a coordinated action plan based on the circular economy, which helps to obtain both environmental and economic benefits for a cooperative society. These cooperatives can be implemented for renewable energy production from livestock manure at the community level for sustainable energy generation in Bangladesh. Full article
Show Figures

Figure 1

23 pages, 1777 KiB  
Article
Phosphorus Control and Recovery in Anthropogenic Wetlands Using Their Green Waste—Validation of an Adsorbent Mixture Model
by Juan A. González, Jesús Mengual and Antonio Eduardo Palomares
Sustainability 2025, 17(13), 6153; https://doi.org/10.3390/su17136153 - 4 Jul 2025
Viewed by 264
Abstract
The deterioration of freshwater ecosystems in anthropogenic wetlands is intensified due to phosphorus inputs from fertilizers applied in agricultural areas. In addition, managing the excess green waste generated in these ecosystems increases the complexity of the problem. To move towards a sustainable society [...] Read more.
The deterioration of freshwater ecosystems in anthropogenic wetlands is intensified due to phosphorus inputs from fertilizers applied in agricultural areas. In addition, managing the excess green waste generated in these ecosystems increases the complexity of the problem. To move towards a sustainable society based on the circular economy, the use of controlled combustion of green waste to obtain bioenergy—followed by the application of the resulting ash for phosphorus removal from freshwater bodies via adsorption processes—should be considered. Furthermore, those ashes could be used as natural fertilizers and incorporated into the cultivated fields. This paper presents a deep study of the adsorption of phosphorus ions using ashes from the main green waste produced in wetlands. Various experiments were conducted to determine the effects of different variables in the removal process. A double kinetic model was necessary to explain the presence of two different removal processes. The Langmuir model described the equilibrium isotherm data of both adsorbents through an endothermic process. Acidic pH in the initial solutions was preferred because it promotes phosphorus removal by calcium dissolution. The alkalinity did not have a substantial effect on the adsorbent capacity. Calcium was the element that had a more significant influence on the overall process. Finally, a removal study using blended materials was performed. A combined model was proposed and validated based on the original isotherm models for the pure materials. Full article
Show Figures

Figure 1

24 pages, 310 KiB  
Article
Technological Adoption Sequences and Sustainable Innovation Performance: A Longitudinal Analysis of Optimal Pathways
by Francisco Gustavo Bautista Carrillo and Daniel Arias-Aranda
Sustainability 2025, 17(13), 5719; https://doi.org/10.3390/su17135719 - 21 Jun 2025
Viewed by 665
Abstract
This study explores how the sequence and timing of Industry 4.0 technology adoption affect sustainable innovation in manufacturing firms. Using longitudinal data from the State Society of Industrial Participations, we track the adoption patterns of eight technologies, including industrial IoT, cloud computing, RFID, [...] Read more.
This study explores how the sequence and timing of Industry 4.0 technology adoption affect sustainable innovation in manufacturing firms. Using longitudinal data from the State Society of Industrial Participations, we track the adoption patterns of eight technologies, including industrial IoT, cloud computing, RFID, machine learning, robotics, additive manufacturing, autonomous robots, and generative AI. Sequence analysis reveals five distinct adoption profiles: data-centric foundations, automation pioneers, holistic integrators, cautious adopters, and product-centric innovators. Our results show that these adoption pathways differentially impact sustainability outcomes such as circular material innovation, energy transition, operational eco-efficiency, and emissions reduction. Mediation analysis indicates that data orchestration capabilities significantly enhance resource productivity in holistic integrators, generative design competencies accelerate biomaterial innovation in product-centric innovators, and cyber-physical integration reduces lifecycle emissions in automation pioneers. By highlighting how temporal complementarities among technologies shape sustainability performance, this research advances dynamic capabilities theory and emphasizes the path-dependent nature of sustainable innovation. The findings provide practical guidance for firms to align digital transformation with sustainability objectives and offer policymakers insights into designing timely support mechanisms for industrial transitions. This work bridges innovation timing with ecological modernization, contributing a new understanding of capability development for sustainable value creation. Full article
36 pages, 1130 KiB  
Review
The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry
by Klaus Günter Steinhäuser and Markus Große Ophoff
Sustain. Chem. 2025, 6(2), 16; https://doi.org/10.3390/suschem6020016 - 10 Jun 2025
Viewed by 1456
Abstract
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite [...] Read more.
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite resources. This development exceeds planetary boundaries and calls for a sustainable transformation of the industry. The key transformation areas are as follows: (1) Non-Fossil Energy Supply: The industry must transition away from fossil fuels. Renewable electricity can replace natural gas, while green hydrogen can be used for high-temperature processes. (2) Circularity: Chemical production remains largely linear, with most products ending up as waste. Sustainable product design and improved recycling processes are crucial. (3) Non-Fossil Feedstock: To achieve greenhouse gas neutrality, oil, gas, and coal must be replaced by recycling plastics, renewable biomaterials, or CO2-based processes. (4) Sustainable Chemical Production: Energy and resource savings can be achieved through advancements like catalysis, biotechnology, microreactors, and new separation techniques. (5) Sustainable Chemical Products: Chemicals should be designed to be “Safe and Sustainable by Design” (SSbD), meaning they should not have hazardous properties unless essential to their function. (6) Sufficiency: Beyond efficiency and circularity, reducing overall material flows is essential to stay within planetary boundaries. This shift requires political, economic, and societal efforts. Achieving greenhouse gas neutrality in Europe by 2050 demands swift and decisive action from industry, governments, and society. The speed of transformation is currently too slow to reach this goal. Science can drive innovation, but international agreements are necessary to establish a binding framework for action. Full article
Show Figures

Figure 1

30 pages, 25292 KiB  
Article
Sustainability and Material Flow Analysis of Wind Turbine Blade Recycling in China
by Jianling Li, Juan He and Zihan Xu
Sustainability 2025, 17(10), 4307; https://doi.org/10.3390/su17104307 - 9 May 2025
Viewed by 739
Abstract
Many decommissioned wind turbines (WTs) present significant recycling management challenges. Improper disposal wastes resources and generates additional carbon emissions, which contradicts the Sustainable Development Goals (SDGs). This study constructs a sine cosine algorithm (SCA)–ITransformer–BiLSTM deep learning prediction model, integrated with dynamic material flow [...] Read more.
Many decommissioned wind turbines (WTs) present significant recycling management challenges. Improper disposal wastes resources and generates additional carbon emissions, which contradicts the Sustainable Development Goals (SDGs). This study constructs a sine cosine algorithm (SCA)–ITransformer–BiLSTM deep learning prediction model, integrated with dynamic material flow analysis (DMFA) and a multi-dimensional Energy–Economy–Environment–Society (3E1S) sustainability assessment framework. This hybrid approach systematically reveals the spatiotemporal evolution patterns and circular economy value of WTs in China by synthesizing multi-source heterogeneous data encompassing policy dynamics, technological advancements, and regional resource endowments. Results demonstrate that China will enter a sustained wave of WT retirements post-2030, with an annual decommissioned capacity exceeding 15 GW. By 2050, new installations and retirements will reach a dynamic equilibrium. North and Northwest China are emerging as core retirement zones, accounting for approximately 50% of the national total. Inner Mongolia and Xinjiang face maximum recycling pressures. The recycling of decommissioned WTs could yield approximately CNY 198.5 billion in direct economic benefits and reduce CO2 equivalent emissions by 4.78 to 8.14 billion tons. The 3E1S framework fills critical gaps in quantifying the comprehensive benefits of equipment retirement, offering a theoretically grounded and practically actionable paradigm for the global wind industry’s circular transition. Full article
Show Figures

Figure 1

21 pages, 3763 KiB  
Article
Enhancing Asset Reliability and Sustainability: A Comparative Study of Neural Networks and ARIMAX in Predictive Maintenance
by Salvador Perez-Garcia, Cristina Gonzalez-Gaya and Miguel A. Sebastian
Appl. Sci. 2025, 15(10), 5266; https://doi.org/10.3390/app15105266 - 8 May 2025
Cited by 1 | Viewed by 619
Abstract
Organizations strive to maximize efficiency in their manufacturing processes, yet they must also consider broader repercussions, as industrial activity directly impacts the environment and society. The adoption of innovative technologies and initiatives to mitigate this impact is therefore essential. Traditional asset maintenance plays [...] Read more.
Organizations strive to maximize efficiency in their manufacturing processes, yet they must also consider broader repercussions, as industrial activity directly impacts the environment and society. The adoption of innovative technologies and initiatives to mitigate this impact is therefore essential. Traditional asset maintenance plays a critical role in ensuring high equipment availability, but there is a clear need to evolve toward predictive and sustainable maintenance strategies to enhance reliability, safety, and equipment lifespan. This shift redefines maintenance itself, aligning it with circular economy principles and Industry 4.0 solutions to prevent unplanned downtime, reduce failures, and improve personnel and facility safety. This research examines the transition from traditional preventive maintenance to predictive and sustainable maintenance in a real-world industrial context, comparing the design of a neural network with the ARIMAX technique to develop reliable predictive models. The study aims to facilitate a paradigm shift by proposing a predictive model that reduces unplanned shutdowns and optimizes spare parts and labor utilization. The practical application focuses on a hydrogen compressor in the petrochemical industry, demonstrating the model’s potential for operational and sustainability improvements. Full article
Show Figures

Figure 1

22 pages, 3636 KiB  
Review
E-Waste Challenges in India: Environmental and Human Health Impacts
by Sarita Kumari Sandwal, Rakshit Jakhar and Katarzyna Styszko
Appl. Sci. 2025, 15(8), 4350; https://doi.org/10.3390/app15084350 - 15 Apr 2025
Cited by 1 | Viewed by 2638
Abstract
E-waste, or electronic waste, refers to discarded electronic devices and components, and the management of e-waste has become a newly arising and challenging issue both in India and globally. Due to the increase in population, urbanization, global demand, and expansion of the digital [...] Read more.
E-waste, or electronic waste, refers to discarded electronic devices and components, and the management of e-waste has become a newly arising and challenging issue both in India and globally. Due to the increase in population, urbanization, global demand, and expansion of the digital infrastructure, generation of electronic waste is increasing annually. This study provides a comprehensive and thoroughly reviewed qualitative study on electronic waste management practice. This study highlights an outline of the amount of electronic waste generation in India and the world and examines prevailing approaches in the treatment and management of electronic waste, including unsafe informal recycling and inadequate inventory control. This article focuses on major problems such as child labor, illegal dumping, poor infrastructure, limited knowledge and awareness among the public inadequate legal regulation, and spillage of various toxic heavy metals such as arsenic (As), mercury (Hg), and barium (Ba) via electronic waste. This study analyzes the harmful effects of toxic heavy metals, such as arsenic and mercury, on environmental quality and human well-being. To address these issues, this study outlines various sustainable recommendations, such as technology improvement proper collection; handling, management, and eradication of waste generated by electrical equipment in formal recycling practices; the 3Rs (reduce, reuse, and recycle) following circular economy practice, including collaboration between governmental, non-governmental, business, industries, and civil society; better legislative measures such as extended producer responsibility (EPR) and a single approach method, where collecting, sorting, and dismantling electronic waste is handled by the informal sector, while the formal sector manages extraction of metal, disposal, and recycling. Full article
Show Figures

Figure 1

20 pages, 4184 KiB  
Article
R3sNet: Optimized Residual Neural Network Architecture for the Classification of Urban Solid Waste via Images
by Mirna Castro-Bello, V. M. Romero-Juárez, J. Fuentes-Pacheco, Cornelio Morales-Morales, Carlos V. Marmolejo-Vega, Sergio R. Zagal-Barrera, D. E. Gutiérrez-Valencia and Carlos Marmolejo-Duarte
Sustainability 2025, 17(8), 3502; https://doi.org/10.3390/su17083502 - 14 Apr 2025
Viewed by 652
Abstract
Municipal solid waste (MSW) accumulation is a critical global challenge for society and governments, impacting environmental and social sustainability. Efficient separation of MSW is essential for resource recovery and advancing sustainable urban management practices. However, manual classification remains a slow and inefficient practice. [...] Read more.
Municipal solid waste (MSW) accumulation is a critical global challenge for society and governments, impacting environmental and social sustainability. Efficient separation of MSW is essential for resource recovery and advancing sustainable urban management practices. However, manual classification remains a slow and inefficient practice. In response, advances in artificial intelligence, particularly in machine learning, offer more precise and efficient alternative solutions to optimize this process. This research presents the development of a light deep neural network called R3sNet (three “Rs” for Reduce, Reuse, and Recycle) with residual modules trained end-to-end for the binary classification of MSW, with the capability for faster inference. The results indicate that the combination of processing techniques, optimized architecture, and training strategies contributes to an accuracy of 87% for organic waste and 94% for inorganic waste. R3sNet outperforms the pre-trained ResNet50 model by up to 6% in the classification of both organic and inorganic MSW, while also reducing the number of hyperparameters by 98.60% and GFLOPS by 65.17% compared to ResNet50. R3sNet contributes to sustainability by improving the waste separation processes, facilitating higher recycling rates, reducing landfill dependency, and promoting a circular economy. The model’s optimized computational requirements also translate into lower energy consumption during inference, making it well-suited for deployment in resource-constrained devices in smart urban environments. These advancements support the following Sustainable Development Goals (SDGs): SDG 11: Sustainable Cities and Communities, SDG 12: Responsible Consumption and Production, and SDG 13: Climate Action. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

39 pages, 1092 KiB  
Review
On the Interplay Between Behavior Dynamics, Environmental Impacts, and Fairness in the Digitalized Circular Economy with Associated Business Models and Supply Chain Management
by Shai Fernández, Ulf Bodin and Kåre Synnes
Sustainability 2025, 17(8), 3437; https://doi.org/10.3390/su17083437 - 12 Apr 2025
Viewed by 827
Abstract
In contemporary research, the digital transformation of industries and societies has increased the importance of interdisciplinary exploration, particularly when addressing the complex challenges faced by modern organizations and social systems. From the perspective of digitalization, this literature review examines the intricate interactions between [...] Read more.
In contemporary research, the digital transformation of industries and societies has increased the importance of interdisciplinary exploration, particularly when addressing the complex challenges faced by modern organizations and social systems. From the perspective of digitalization, this literature review examines the intricate interactions between three key research domains: behavior dynamics, environmental impact, and fairness. By reviewing a wide range of studies and methodologies, it reveals new insights, challenges, and opportunities that arise at the intersection and through the interdependencies of these areas within digital ecosystems. Through a structured approach covering preliminary background, state-of-the-art methods, and comprehensive analysis, this document seeks to reveal the synergies and divergences among these domains. Special emphasis is placed on their implications in the digitalization of modern circular economy, business models, and supply chain management contexts where these domains converge in meaningful ways. Additionally, through an extensive review of the existing literature, this document highlights the current state of research and identifies notable gaps. These include issues such as ensuring fairness in digitalized sustainable strategies, understanding the role of digital behavior dynamics in promoting environmental management, and managing environmental impacts in new digitally driven business models. By weaving together these diverse elements, this work offers a novel perspective, emphasizing the importance of collaborative and integrative research in shaping a sustainable and equitable digital future. Full article
Show Figures

Figure 1

36 pages, 2147 KiB  
Article
Recyclable Consumption and Its Implications for Sustainable Development in the EU
by Dumitru Alexandru Bodislav, Liviu Cătălin Moraru, Raluca Iuliana Georgescu, George Eduard Grigore, Oana Vlăduț, Gabriel Ilie Staicu and Alina Ștefania Chenic
Sustainability 2025, 17(7), 3110; https://doi.org/10.3390/su17073110 - 1 Apr 2025
Viewed by 997
Abstract
The transition to a circular economy is imperative in order to confer considerable benefits upon the environment, the economy, and society. The present study aimed to analyse the interdependence and causal relationships between recyclable material consumption as the dependent variable and other independent [...] Read more.
The transition to a circular economy is imperative in order to confer considerable benefits upon the environment, the economy, and society. The present study aimed to analyse the interdependence and causal relationships between recyclable material consumption as the dependent variable and other independent variables, including the raw material footprint, the trade in recyclable materials, greenhouse gas emissions, investments in the circular economy sectors, the real GDP per capita, renewable energy sources, the circular material use rate, and the population within the 27 EU Member States from 2013 to 2021. In order to achieve the objective, a two-stage economic model was constructed using a panel approach. The research findings indicate a direct and positive correlation between the consumption of recyclable materials and all the aforementioned independent variables, with the exception of greenhouse gas emissions. This study confirms that innovation and investment significantly reduce environmental degradation, and, moreover, the efficiency of investment remains unaffected. A further relationship that emerged from this study is that developed countries have higher resource consumption, which is consistent with the cause of increased consumption being the rapid growth of the middle class around the world. The main conclusion is that Europe cannot achieve sustainable development without a circular economy. Full article
Show Figures

Figure 1

20 pages, 5403 KiB  
Article
Research on the Anisotropic Fracture Mechanical Properties of Shale Based on Three-Point Bending Experiments of Semi-Circular Disks
by Xinyue Wang, Lianke Cui, Lianzhi Yang and Fanmin He
Materials 2025, 18(7), 1570; https://doi.org/10.3390/ma18071570 - 30 Mar 2025
Viewed by 486
Abstract
The three-point bending test is a key method for determining parameters related to the mechanical fracture properties of rocks. In this study, shale outcrops from Changning County, Sichuan Province, China, were selected. Three-point bending experiments were performed on shale semi-circular disks with a [...] Read more.
The three-point bending test is a key method for determining parameters related to the mechanical fracture properties of rocks. In this study, shale outcrops from Changning County, Sichuan Province, China, were selected. Three-point bending experiments were performed on shale semi-circular disks with a central straight crack, tested both perpendicular and parallel to the bedding direction. The corresponding load–displacement curves and crack opening displacements were obtained. The opening displacements of the specimens were measured through digital image technology, and the tensile strength and stiffness of the specimens were further calculated. A finite element model of the three-point bending test was developed. By integrating the finite element model with the experimentally obtained load–displacement curves, the anisotropic elastic moduli of the shale were inversely determined. Fracture toughness was calculated using two approaches: a formula from the International Society for Rock Mechanics and numerical methods using the finite element model, which was appropriately configured with the previously obtained elastic modulus values. The stress intensity factors for each specimen were calculated and compared. The energy release rate of shale was computed based on the fracture toughness. Results showed that both the fracture toughness and energy release rate of shale were greater in the perpendicular bedding direction than in the parallel direction. As an example, one specimen’s elastic modulus, opening displacement, and energy release rate obtained from experiments were input into the numerical simulation of the three-point bending test. The simulated load–displacement curve matched the experimental results well. This study provides a comprehensive approach to evaluating the anisotropic mechanical fracture properties of shale formations, which is essential for improving the accuracy of hydraulic fracture prediction models and enhancing the efficiency of shale gas extraction. Full article
Show Figures

Figure 1

13 pages, 207 KiB  
Review
Progress in Solid Recovered Fuel with an Emphasis on Lignocellulose-Based Biomass—A Mini Review Focused on Japan, South Korea, and Taiwan
by Yu-Quan Lin, Chi-Hung Tsai and Wen-Tien Tsai
Energies 2025, 18(7), 1671; https://doi.org/10.3390/en18071671 - 27 Mar 2025
Viewed by 578
Abstract
To reduce greenhouse gas (GHG) emissions, decarbonize coal, and also create a circular economy model, solid recovered fuel (SRF) has been developed as an alternative fuel/energy source in the international community, especially in developed countries with a high dependence on imported energy. This [...] Read more.
To reduce greenhouse gas (GHG) emissions, decarbonize coal, and also create a circular economy model, solid recovered fuel (SRF) has been developed as an alternative fuel/energy source in the international community, especially in developed countries with a high dependence on imported energy. This mini review offers updates on the regulatory promotion of the production of SRF, focusing on the reuse of biomass or lignocellulosic waste as a starting material in Japan, South Korea, and Taiwan. In this regard, the status of renewable energy and the policies for bioenergy in Japan, South, and Taiwan are first addressed in this work. It is found that the terms for defining refuse/waste/biomass-derived fuel are different across East Asia. However, SRF is increasingly used for the substitution of fossil fuels in industrial utilities (including boilers, incinerators, and kilns), as well as for steam (heat) utilization and/or power generation. With the international policies of pursuing staged carbon reduction by 2030 and carbon neutrality by 2050, the regulatory promotion of the use of bio-SRF has been actively adopted by these countries or regions. Regarding the quality requirements of SRF and concerns about air pollutant emissions, this work also offers updates on regulatory standards, especially in Taiwan. Finally, prospects for the production of bio-SRF and concerns regarding its use are addressed to support the development of a sustainable and circular society. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
21 pages, 11490 KiB  
Article
Life Cycle Homes for Adaptability, Circularity, and Sustainability
by Avi Friedman
Architecture 2025, 5(2), 22; https://doi.org/10.3390/architecture5020022 - 25 Mar 2025
Viewed by 835
Abstract
In the realm of housing, the concept of adaptability has emerged as a pivotal solution to address the evolving space needs of households. The hypothesis and contribution that this paper puts forward is that dwellings can be designed to accommodate society’s demographic transformation [...] Read more.
In the realm of housing, the concept of adaptability has emerged as a pivotal solution to address the evolving space needs of households. The hypothesis and contribution that this paper puts forward is that dwellings can be designed to accommodate society’s demographic transformation and facilitate the evolving interior space needs of their occupants. It investigates the concept of Life Cycle Homes manifested through designs of flexible living spaces that can be easily modified to align with the changing dynamics of family structures over time to achieve user satisfaction, circularity, and sustainability. The investigation begins with an exploration of contemporary demographic shifts and variations in family sizes. The discussion underscores how different types of families interact with their homes, highlighting the necessity for adaptable housing solutions. The paper then continues with the study of past theories and application in adaptable housing, most notably through the work of Habraken and Japanese housing innovation. A detailed examination of various flexible housing strategies is presented, focusing on innovative approaches like demountable partitions. These strategies are instrumental in creating versatile living spaces that can seamlessly adapt to households’ diverse and dynamic requirements. Following a research and development process, and as part of the methodology, the paper introduces the Life Cycle Home project that was conceived by the author to illustrate a practical implementation of adaptable housing strategies. The three-floors home exemplifies how flexibility and versatility can meet the changing needs of homeowners, offering a blueprint for future residential design. Full article
Show Figures

Figure 1

Back to TopTop