Sustainability and Material Flow Analysis of Wind Turbine Blade Recycling in China
Abstract
:1. Introduction
2. Literature Review
2.1. Prediction of the Quantity of Decommissioned WTs
2.2. Material Recycling of Decommissioned WTs
2.3. Benefits Assessment of Recycling Decommissioned WTs
2.4. Gaps in Existing Research
- (1)
- There is a lack of accurate prediction models. Currently, research regarding the projection of wind power’s installed capacity is almost non-existent. Most existing studies rely on simple linear planning or prediction data from authoritative institutions for future wind turbine installed capacity data, which cannot fully represent the uncertainty of the spatial and temporal distribution of newly added WTs.
- (2)
- There is a lack of a comprehensive evaluation system for recycling benefits. Existing research only evaluates the benefits of decommissioned WTs from a single dimension, failing to highlight the sustainable and comprehensive benefits of recycling decommissioned WTs.
- (3)
- There is a lack of research on decommissioned WTs in China. As the world’s leader in wind power installed capacity, China urgently requires assessment research regarding the recycling and utilization of decommissioned WTs. Nevertheless, currently, there is no research clarifying the national- and provincial-level spatial and temporal distribution of decommissioned WTs in China, or research clarifying the number of recyclable resources that can be generated from the recycling and utilization of decommissioned WT blades in the country, and no research that clarifies the sustainable comprehensive benefits of the multi-dimensional coupling of decommissioned WT recycling and utilization in China.
2.5. Contributions
- (1)
- This study pioneers the application of an intelligent optimization algorithm-integrated deep learning framework to wind turbine installed capacity growth prediction, where the novel coupling of the SCA-ITransformer-BiLSTM architecture achieves dual enhancement in predictive performance. (1) It significantly improves accuracy through multi-scale feature extraction. (2) It demonstrates superior robustness against multi-source uncertainties, including policy fluctuations, market dynamics, and technological disruptions, as evidenced by 23.4% lower error variance in cross-validation scenarios compared to conventional approaches. The hybrid model’s bidirectional temporal dependency modeling and adaptive optimization mechanisms effectively address the nonlinear interdependencies between renewable energy deployment and socio-economic drivers.
- (2)
- This study introduces multiple factors to accurately measure the number of decommissioned WTs and recyclable resources and materials. (1) By combining DMFA with the Weibull distribution function, a refined prediction of the decommissioned WT capacity at the national and provincial level in China was conducted, depicting the spatiotemporal dynamic evolution of decommissioned WTs. Meanwhile, variables and factors such as technological progress, policy changes, and development trends were fully considered to adjust the prediction model, ensuring that the forecast outcomes were closer to the actual situation. (2) Based on many references in the literature, this study conducted a quantitative analysis of the quantity and worth of recoverable resources derived from decommissioned WTs, filling the relevant research gap. This will provide a more intuitive and comprehensive perspective for stakeholders such as the government and enterprises in assessing the comprehensive and sustainable advantages of recycling decommissioned WTs.
- (3)
- A sustainable comprehensive benefit evaluation framework for decommissioned WTs, integrating 3E1S, has been constructed. The multi-dimensional assessment avoids the limitations of a single-dimensional assessment of the benefits of recovering decommissioned WTs. This will provide a more comprehensive and objective perspective and judgment criteria for different interest groups, such as governments, enterprises, and the public, to view and assess the recycling of decommissioned WTs.
- (4)
- In light of the current situation of decommissioned WTs, from diverse directions, like time scale, the legal system, and stakeholders, and supported by a wealth of data and literature, multiple targeted and feasible suggestions have been put forward. The aim is to promote the safe and orderly recycling and utilization of decommissioned WTs, thereby realizing the development concept of the circular economy and achieving the SDGs.
3. Theoretical Model and Analytical Framework for Predicting the Capacity of Decommissioned WTs in China and Evaluating Sustainable Comprehensive Benefits
3.1. Installed Capacity Prediction of Wind Power Based on the SCA-ITransformer-BiLSTM Model
3.2. Calculating the Capacity of Decommissioned WTs, as Well as the Quantity and Value of Recycled Resources in China
3.3. Constructing an Evaluation Framework for the 3E1S Benefits of Decommissioned WT Recycling
3.3.1. Energy Dimension
- E11: Primary energy saving
- E12: recovery energy consumption
- E13: recycling energy intensity
- E14: energy recovery period
3.3.2. Economic Dimension
- E21: direct economic benefits
- E22: recovery cost
3.3.3. Environmental Dimension
- E31: carbon dioxide emission reduction
- E32: land area savings
- E33: resource savings
- E34: terrestrial acidification
3.3.4. Social Dimension
- E41: human carcinogenicity toxicity
- E42: industrial water conservation amount
4. Empirical Analysis Results
4.1. Predicted Installed Capacity of Wind Power
4.2. Prediction of Decommissioned WT Capacity
4.3. Quantity and Economic Value of Recycled Resources from Decommissioned WTs
4.4. Multi-Dimensional Comprehensive Benefit Evaluation of Retired Blade Recycling and Utilization
- Energy dimension benefits. Recycling decommissioned WT blades will save approximately 2.70 × 108 to 3.43 × 108 GJ of primary energy, equivalent to saving approximately 9.20 × 108 to 1.17 × 107 tce of standard coal. This not only contributes to energy conservation and emission reduction but also has a positive impact on reducing external energy dependence.
- Economic benefits. Recycling decommissioned WT blades will generate direct economic benefits of approximately CNY 198.5 billion, and at the same time, it will also form a trillion-yuan recycling industry and market, driving the upstream and downstream industrial chains, creating tens of thousands of jobs, and fostering emerging economic forms and new economic growth points.
- Environmental dimension benefits. The environmental dimension should be the most important dimension that requires attention and consideration among all dimensions. To implement the “dual carbon” goals, the Chinese government has made addressing climate change a national development strategy, integrating it within the overall scheme of ecological civilization building and the overall economic and social development framework. This fully demonstrates the Chinese government’s firm determination to follow an ecological priority and green development path. The benefits of various indicators in the environmental dimension show that recycling decommissioned WTs helps promote a reduction in carbon emissions, reduce solid waste pollution, expand green energy, and achieve economic growth. Recycling wind turbine blades will reduce carbon emissions by approximately 4.78 × 109 to 8.14 × 109 tons of CO2 eq, save various resources by 1.74 × 107 to 2.12 × 107 tons, save land area by 6.16 × 107 to 1.05 × 108 square meters, and reduce terrestrial acidification by 1.74 × 107 to 2.12 × 107 kg SO2eq.
- Social dimension benefits. By recycling decommissioned WT blades, the HT will be reduced by approximately 2.69 × 1010 to 4.57 × 1010 kg 1,4-DCB, and the industrial water consumption will be reduced by approximately 5.31 × 109 to 9.04 × 109 m3, which is the same as the overall water usage of Shaanxi Province in 2023.
5. Conclusions and Outlook
- China will face a continuous wave of decommissioned WTs around 2030, with the annual decommissioned capacity exceeding 15 GW post-2030 under the lowest forecast scenario. By approximately 2050, the scale of decommissioned WTs is projected to be roughly equivalent to the installed capacity.
- The spatiotemporal distribution of decommissioned WT capacity shows regional disparities: around 2030, Xinjiang and other northwest regions will have approximately 59 GW of decommissioned capacity, while Inner Mongolia and the northern China regions will account for around 106 GW (27% of the total). By 2050, the proportion in northern China will remain at approximately 27%, while that in the northwest will decrease to approximately 23%, with regions like Xizang and Beijing maintaining below 1% throughout both periods.
- Recycling decommissioned WTs yields significant quantified sustainable benefits: reducing carbon emissions by 4.78 × 109 to 8.14 × 109 tons of CO2 equivalent, saving 6.16 × 107 to 1.05 × 108 m² of land, mitigating terrestrial acidification by 1.74 × 107 to 2.12 × 107 kg SO2 equivalent, reducing human carcinogenic toxicity by 2.69 × 1010 to 4.57 × 1010 kg 1,4-DCB, and saving 5.31 × 109 to 9.04 × 109 cubic meters of industrial water consumption.
- Strengthen top-level design and establish a recycling policy system for decommissioned WTs. The government should clarify the status of decommissioned WTs (what kind of waste they are), responsible parties (which can draw on the “production responsibility system”), recycling standards (specifying the recycling rate), etc., through legislation to promote the efficient recycling of decommissioned WTs. At the same time, in response to the high initial costs and low benefits of decommissioned WT recycling [38], a package of supportive policies should be introduced [12,39], including providing financial subsidies, tax relief, reducing transportation costs, building a unified recycling network, and easing market entry thresholds so as to boost the rapid growth of the recycling industry.
- Establish a long-term mechanism and develop a timeline and roadmap for decommissioning WTs. North China and Northwest China should prepare for the recycling peak by 2030 and also be ready to cope with the continuous wave of decommissioning WTs. Other regions should also prepare for the wave of decommissioning WTs around 2035. All regions should formulate a decommissioning “roadmap” in a prudent and orderly manner based on the condition of the WTs, adapting measures to local conditions and timeframes, avoiding “herding” decommissioning, and ensuring consistency with national energy transformation policies.
- Marry all forces and strive to erect a green, low-carbon circular economic framework. Enterprises should collaborate with universities and research institutions, adhere to technological innovation as the driving force, continuously strengthen R&D investment, and strive to increase the service life of WTs [40], achieving the goal of “flattening the curve and postponing the peak”. Meanwhile, during the research and development process of the new generation of WTs, try to use low-carbon and easily recyclable materials [41], reduce carbon emissions throughout the life cycle of the WTs, and strive to achieve a green, low-carbon circular economy system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WTs | Wind turbines |
SCA | Sine cosine algorithm |
DMFA | Dynamic Material Flow Analysis |
LCA | Life-cycle assessment |
ARIMA | A time series analysis |
NDRC | National Development and Reform Commission |
REI | Intensity of energy recovery |
EPBT | Energy recovery period |
HT | Human carcinogenic toxicity |
Appendix A
Province | Primary Energy Savings (GJ) | Recovery Energy (GJ) | Recovery Energy Intensity (GJ/USD) | Energy Payback Period (Years) | Direct Economic Gain (USD) | Terrestrial Acidification (kg SO2 eq) | Recovery Costs (USD) | Carbon Dioxide Emission Reduction (t CO2 eq) | Land Area Savings (m2) | Industrial Water Savings (m3) | Human Toxicity Potential (kg 1,4-DB eq) | Resource Savings (t) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shandong | 1.70 × 107 | 2.19 × 107 | 4.65 × 101 | 1.44 × 10−2 | 1.02 × 1010 | 1.09 × 106 | 9.78 × 108 | 4.17 × 108 | 5.37 × 106 | 4.63 × 108 | 2.34 × 109 | 1.09 × 106 |
Jiangsu | 1.68 × 107 | 2.19 × 107 | 4.65 × 101 | 1.65 × 10−2 | 1.02 × 1010 | 1.09 × 106 | 9.81 × 108 | 4.18 × 108 | 5.38 × 106 | 4.64 × 108 | 2.35 × 109 | 1.09 × 106 |
Hebei | 1.77 × 107 | 2.30 × 107 | 4.65 × 101 | 3.17 × 10−2 | 1.07 × 1010 | 1.14 × 106 | 1.03 × 109 | 4.39 × 108 | 5.65 × 106 | 4.87 × 108 | 2.47 × 109 | 1.14 × 106 |
Zhejiang | 4.83 × 106 | 6.30 × 106 | 4.65 × 101 | 2.62 × 10−2 | 2.93 × 109 | 3.12 × 105 | 2.82 × 108 | 1.20 × 108 | 1.54 × 106 | 1.33 × 108 | 6.74 × 108 | 3.12 × 105 |
Anhui | 5.98 × 106 | 7.79 × 106 | 4.65 × 101 | 1.65 × 10−2 | 3.62 × 109 | 3.87 × 105 | 3.48 × 108 | 1.49 × 108 | 1.91 × 106 | 1.65 × 108 | 8.35 × 108 | 3.87 × 105 |
Qinghai | 1.61 × 107 | 2.09 × 107 | 5.02 × 101 | 1.23 × 10−1 | 9.73 × 109 | 1.04 × 106 | 9.36 × 108 | 3.99 × 108 | 5.14 × 106 | 4.43 × 108 | 2.24 × 109 | 1.04 × 106 |
Shanxi | 2.03 × 107 | 2.03 × 107 | 4.65 × 101 | 5.39 × 10−2 | 9.43 × 109 | 1.01 × 106 | 9.07 × 108 | 3.87 × 108 | 4.97 × 106 | 4.29 × 108 | 2.17 × 109 | 1.01 × 106 |
Inner Mongolia | 5.12 × 107 | 6.87 × 107 | 5.02 × 101 | 1.85 × 10−2 | 3.19 × 1010 | 3.41 × 106 | 3.07 × 109 | 1.31 × 109 | 1.68 × 107 | 1.45 × 109 | 7.36 × 109 | 3.41 × 106 |
Xinjiang | 2.82 × 107 | 3.34 × 107 | 5.02 × 101 | 7.22 × 10−2 | 1.55 × 1010 | 1.66 × 106 | 1.49 × 109 | 6.37 × 108 | 8.21 × 106 | 7.07 × 108 | 3.58 × 109 | 1.66 × 106 |
Henan | 1.50 × 107 | 2.44 × 107 | 4.65 × 101 | 1.31 × 10−2 | 1.14 × 1010 | 1.21 × 106 | 1.09 × 109 | 4.65 × 108 | 5.97 × 106 | 5.17 × 108 | 2.61 × 109 | 1.21 × 106 |
Shaanxi | 9.05 × 106 | 1.24 × 107 | 4.84 × 101 | 1.21 × 10−1 | 5.77 × 109 | 6.16 × 105 | 5.55 × 108 | 2.37 × 108 | 3.04 × 106 | 2.63 × 108 | 1.33 × 109 | 6.16 × 105 |
Ningxia | 1.33 × 107 | 7.31 × 106 | 5.02 × 101 | 4.97 × 10−2 | 3.40 × 109 | 3.66 × 105 | 3.27 × 108 | 1.39 × 108 | 1.81 × 106 | 1.55 × 108 | 7.83 × 108 | 3.66 × 105 |
Gansu | 2.09 × 107 | 2.45 × 107 | 5.02 × 101 | 3.28 × 10−2 | 1.14 × 1010 | 1.22 × 106 | 1.09 × 109 | 4.66 × 108 | 6.01 × 106 | 5.18 × 108 | 2.62 × 109 | 1.22 × 106 |
Jiangxi | 4.66 × 106 | 4.60 × 106 | 4.84 × 101 | 2.33 × 10−2 | 2.14 × 109 | 2.28 × 105 | 2.06 × 108 | 8.76 × 107 | 1.13 × 106 | 9.73 × 107 | 4.92 × 108 | 2.28 × 105 |
Hubei | 6.88 × 106 | 8.08 × 106 | 4.84 × 101 | 1.59 × 10−2 | 3.76 × 109 | 4.01 × 105 | 3.61 × 108 | 1.54 × 108 | 1.98 × 106 | 1.71 × 108 | 8.65 × 108 | 4.01 × 105 |
Guangdong | 1.13 × 107 | 2.01 × 107 | 4.84 × 101 | 2.02 × 10−2 | 9.34 × 109 | 9.96 × 105 | 8.98 × 108 | 3.83 × 108 | 4.92 × 106 | 4.25 × 108 | 2.15 × 109 | 9.96 × 105 |
Guizhou | 6.21 × 106 | 4.38 × 106 | 4.84 × 101 | 1.43 × 10−2 | 2.04 × 109 | 2.19 × 105 | 1.96 × 108 | 8.36 × 107 | 1.08 × 106 | 9.28 × 107 | 4.70 × 108 | 2.19 × 105 |
Yunnan | 1.25 × 107 | 1.26 × 107 | 4.84 × 101 | 1.90 × 10−2 | 5.87 × 109 | 6.29 × 105 | 5.64 × 108 | 2.40 × 108 | 3.11 × 106 | 2.67 × 108 | 1.35 × 109 | 6.29 × 105 |
Hunan | 8.14 × 106 | 9.44 × 106 | 4.84 × 101 | 1.55 × 10−2 | 4.39 × 109 | 4.68 × 105 | 4.22 × 108 | 1.80 × 108 | 2.31 × 106 | 2.00 × 108 | 1.01 × 109 | 4.68 × 105 |
Liaoning | 1.26 × 107 | 1.22 × 107 | 4.84 × 101 | 6.62 × 10−3 | 5.66 × 109 | 6.05 × 105 | 5.44 × 108 | 2.32 × 108 | 2.99 × 106 | 2.58 × 108 | 1.30 × 109 | 6.05 × 105 |
Jilin | 9.46 × 106 | 1.43 × 107 | 4.84 × 101 | 5.96 × 10−3 | 6.66 × 109 | 7.10 × 105 | 6.40 × 108 | 2.73 × 108 | 3.51 × 106 | 3.03 × 108 | 1.53 × 109 | 7.10 × 105 |
Heilongjiang | 1.01 × 107 | 1.10 × 107 | 5.02 × 101 | 6.75 × 10−3 | 5.11 × 109 | 5.47 × 105 | 4.92 × 108 | 2.10 × 108 | 2.70 × 106 | 2.33 × 108 | 1.18 × 109 | 5.47 × 105 |
Sichuan | 5.68 × 106 | 8.34 × 106 | 4.84 × 101 | 6.31 × 10−2 | 3.88 × 109 | 4.13 × 105 | 3.73 × 108 | 1.59 × 108 | 2.04 × 106 | 1.76 × 108 | 8.93 × 108 | 4.13 × 105 |
Fujian | 5.86 × 106 | 6.71 × 106 | 4.84 × 101 | 1.29 × 10−2 | 3.12 × 109 | 3.33 × 105 | 3.00 × 108 | 1.28 × 108 | 1.65 × 106 | 1.42 × 108 | 7.19 × 108 | 3.33 × 105 |
Tianjin | 1.27 × 106 | 1.97 × 106 | 4.84 × 101 | 1.01 × 10−2 | 9.14 × 108 | 9.74 × 104 | 8.79 × 107 | 3.75 × 107 | 4.81 × 105 | 4.16 × 107 | 2.10 × 108 | 9.74 × 104 |
Hainan | 3.64 × 105 | 4.33 × 104 | 4.84 × 101 | 7.50 × 10−3 | 2.01 × 107 | 2.26 × 103 | 1.94 × 106 | 8.25 × 105 | 1.12 × 104 | 9.16 × 105 | 4.63 × 106 | 2.26 × 103 |
Guangxi | 9.13 × 106 | 1.65 × 107 | 4.84 × 101 | 1.84 × 10−2 | 7.67 × 109 | 8.17 × 105 | 7.37 × 108 | 3.14 × 108 | 4.04 × 106 | 3.49 × 108 | 1.77 × 109 | 8.17 × 105 |
Xizang | 6.20 × 104 | 1.50 × 105 | 5.02 × 101 | 3.93 × 10−1 | 6.99 × 107 | 7.44 × 103 | 6.73 × 106 | 2.87 × 106 | 3.68 × 104 | 3.18 × 106 | 1.61 × 107 | 7.44 × 103 |
Shanghai | 1.10 × 106 | 1.15 × 106 | 5.02 × 101 | 8.90 × 10−3 | 5.33 × 108 | 5.69 × 104 | 5.12 × 107 | 2.18 × 107 | 2.81 × 105 | 2.42 × 107 | 1.23 × 108 | 5.69 × 104 |
Chongqing | 1.40 × 106 | 2.64 × 106 | 5.02 × 101 | 1.20 × 10−1 | 1.23 × 109 | 1.31 × 105 | 1.18 × 108 | 5.04 × 107 | 6.47 × 105 | 5.59 × 107 | 2.83 × 108 | 1.31 × 105 |
Beijing | 1.82 × 105 | 9.94 × 104 | 5.02 × 101 | 2.70 × 10−2 | 4.62 × 107 | 4.94 × 103 | 4.44 × 106 | 1.89 × 106 | 2.44 × 104 | 2.10 × 106 | 1.06 × 107 | 4.94 × 103 |
Province | Primary Energy Savings (GJ) | Recovery Energy (GJ) | Recovery Energy Intensity (GJ/USD) | Energy Payback Period (Years) | Direct Economic Gain (USD) | Terrestrial Acidification (kg SO2 eq) | Recovery Costs (USD) | Carbon Dioxide Emission Reduction (t CO2 eq) | Land Area Savings (m2) | Industrial Water Savings (m3) | Human Toxicity Potential (kg 1,4-DB eq) | Resource Savings (t) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shandong | 1.37 × 107 | 1.70 × 107 | 4.65 × 101 | 1.44 × 10−2 | 7.90 × 109 | 1.01 × 106 | 7.60 × 108 | 3.24 × 108 | 4.17 × 106 | 3.59 × 108 | 1.82 × 109 | 1.01 × 106 |
Jiangsu | 1.36 × 107 | 1.69 × 107 | 4.65 × 101 | 1.65 × 10−2 | 7.85 × 109 | 1.00 × 106 | 7.55 × 108 | 3.22 × 108 | 4.14 × 106 | 3.57 × 108 | 1.81 × 109 | 1.00 × 106 |
Hebei | 1.44 × 107 | 1.79 × 107 | 4.65 × 101 | 3.17 × 10−2 | 8.32 × 109 | 1.06 × 106 | 8.00 × 108 | 3.41 × 108 | 4.39 × 106 | 3.78 × 108 | 1.92 × 109 | 1.06 × 106 |
Zhejiang | 3.86 × 106 | 4.78 × 106 | 4.65 × 101 | 2.62 × 10−2 | 2.22 × 109 | 2.84 × 105 | 2.14 × 108 | 9.12 × 107 | 1.17 × 106 | 1.01 × 108 | 5.12 × 108 | 2.84 × 105 |
Anhui | 4.82 × 106 | 5.97 × 106 | 4.65 × 101 | 1.65 × 10−2 | 2.77 × 109 | 3.54 × 105 | 2.67 × 108 | 1.14 × 108 | 1.46 × 106 | 1.26 × 108 | 6.39 × 108 | 3.54 × 105 |
Qinghai | 1.32 × 107 | 1.64 × 107 | 5.02 × 101 | 1.23 × 10−1 | 7.61 × 109 | 9.71 × 105 | 7.31 × 108 | 3.12 × 108 | 4.02 × 106 | 3.46 × 108 | 1.75 × 109 | 9.71 × 105 |
Shanxi | 2.00 × 107 | 1.57 × 107 | 4.65 × 101 | 5.39 × 10−2 | 7.30 × 109 | 9.31 × 105 | 7.02 × 108 | 2.99 × 108 | 3.85 × 106 | 3.32 × 108 | 1.68 × 109 | 9.31 × 105 |
Inner Mongolia | 5.02 × 107 | 5.20 × 107 | 5.02 × 101 | 1.85 × 10−2 | 2.42 × 1010 | 3.09 × 106 | 2.33 × 109 | 9.92 × 108 | 1.28 × 107 | 1.10 × 109 | 5.57 × 109 | 3.09 × 106 |
Xinjiang | 2.78 × 107 | 2.59 × 107 | 5.02 × 101 | 7.22 × 10−2 | 1.21 × 1010 | 1.54 × 106 | 1.16 × 109 | 4.95 × 108 | 6.38 × 106 | 5.49 × 108 | 2.78 × 109 | 1.54 × 106 |
Henan | 1.48 × 107 | 1.86 × 107 | 4.65 × 101 | 1.31 × 10−2 | 8.66 × 109 | 1.10 × 106 | 8.33 × 108 | 3.55 × 108 | 4.56 × 106 | 3.94 × 108 | 1.99 × 109 | 1.10 × 106 |
Shaanxi | 8.91 × 106 | 9.54 × 106 | 4.84 × 101 | 1.21 × 10−1 | 4.44 × 109 | 5.66 × 105 | 4.27 × 108 | 1.82 × 108 | 2.34 × 106 | 2.02 × 108 | 1.02 × 109 | 5.66 × 105 |
Ningxia | 1.31 × 107 | 6.02 × 106 | 5.02 × 101 | 4.97 × 10−2 | 2.80 × 109 | 3.58 × 105 | 2.69 × 108 | 1.15 × 108 | 1.48 × 106 | 1.27 × 108 | 6.45 × 108 | 3.58 × 105 |
Gansu | 2.05 × 107 | 1.88 × 107 | 5.02 × 101 | 3.28 × 10−2 | 8.76 × 109 | 1.12 × 106 | 8.43 × 108 | 3.59 × 108 | 4.63 × 106 | 3.99 × 108 | 2.02 × 109 | 1.12 × 106 |
Jiangxi | 4.58 × 106 | 3.62 × 106 | 4.84 × 101 | 2.33 × 10−2 | 1.69 × 109 | 2.15 × 105 | 1.62 × 108 | 6.91 × 107 | 8.89 × 105 | 7.67 × 107 | 3.88 × 108 | 2.15 × 105 |
Hubei | 6.77 × 106 | 6.28 × 106 | 4.84 × 101 | 1.59 × 10−2 | 2.92 × 109 | 3.72 × 105 | 2.81 × 108 | 1.20 × 108 | 1.54 × 106 | 1.33 × 108 | 6.73 × 108 | 3.72 × 105 |
Guangdong | 1.11 × 107 | 1.52 × 107 | 4.84 × 101 | 2.02 × 10−2 | 7.07 × 109 | 9.02 × 105 | 6.80 × 108 | 2.90 × 108 | 3.73 × 106 | 3.22 × 108 | 1.63 × 109 | 9.02 × 105 |
Guizhou | 6.10 × 106 | 3.58 × 106 | 4.84 × 101 | 1.43 × 10−2 | 1.66 × 109 | 2.13 × 105 | 1.60 × 108 | 6.82 × 107 | 8.80 × 105 | 7.56 × 107 | 3.83 × 108 | 2.13 × 105 |
Yunnan | 1.23 × 107 | 9.94 × 106 | 4.84 × 101 | 1.90 × 10−2 | 4.62 × 109 | 5.91 × 105 | 4.44 × 108 | 1.89 × 108 | 2.44 × 106 | 2.10 × 108 | 1.06 × 109 | 5.91 × 105 |
Hunan | 8.01 × 106 | 7.34 × 106 | 4.84 × 101 | 1.55 × 10−2 | 3.41 × 109 | 4.35 × 105 | 3.28 × 108 | 1.40 × 108 | 1.80 × 106 | 1.55 × 108 | 7.86 × 108 | 4.35 × 105 |
Liaoning | 1.23 × 107 | 9.36 × 106 | 4.84 × 101 | 6.62 × 10−3 | 4.35 × 109 | 5.56 × 105 | 4.19 × 108 | 1.78 × 108 | 2.30 × 106 | 1.98 × 108 | 1.00 × 109 | 5.56 × 105 |
Jilin | 9.29 × 106 | 1.08 × 107 | 4.84 × 101 | 5.96 × 10−3 | 5.03 × 109 | 6.42 × 105 | 4.83 × 108 | 2.06 × 108 | 2.65 × 106 | 2.29 × 108 | 1.16 × 109 | 6.42 × 105 |
Heilongjiang | 9.85 × 106 | 8.45 × 106 | 5.02 × 101 | 6.75 × 10−3 | 3.93 × 109 | 5.02 × 105 | 3.78 × 108 | 1.61 × 108 | 2.08 × 106 | 1.79 × 108 | 9.05 × 108 | 5.02 × 105 |
Sichuan | 5.60 × 106 | 6.41 × 106 | 4.84 × 101 | 6.31 × 10−2 | 2.98 × 109 | 3.80 × 105 | 2.86 × 108 | 1.22 × 108 | 1.57 × 106 | 1.36 × 108 | 6.86 × 108 | 3.80 × 105 |
Fujian | 5.75 × 106 | 5.18 × 106 | 4.84 × 101 | 1.29 × 10−2 | 2.41 × 109 | 3.08 × 105 | 2.32 × 108 | 9.88 × 107 | 1.27 × 106 | 1.10 × 108 | 5.55 × 108 | 3.08 × 105 |
Tianjin | 1.25 × 106 | 1.49 × 106 | 4.84 × 101 | 1.01 × 10−2 | 6.93 × 108 | 8.83 × 104 | 6.66 × 107 | 2.84 × 107 | 3.65 × 105 | 3.15 × 107 | 1.59 × 108 | 8.83 × 104 |
Hainan | 3.54 × 105 | 4.08 × 104 | 4.84 × 101 | 7.50 × 10−3 | 1.90 × 107 | 2.49 × 103 | 1.83 × 106 | 7.79 × 105 | 1.03 × 104 | 8.64 × 105 | 4.37 × 106 | 2.49 × 103 |
Guangxi | 9.02 × 106 | 1.25 × 107 | 4.84 × 101 | 1.84 × 10−2 | 5.82 × 109 | 7.42 × 105 | 5.60 × 108 | 2.39 × 108 | 3.07 × 106 | 2.65 × 108 | 1.34 × 109 | 7.42 × 105 |
Xizang | 6.17 × 104 | 1.13 × 105 | 5.02 × 101 | 3.93 × 10−1 | 5.27 × 107 | 6.71 × 103 | 5.07 × 106 | 2.16 × 106 | 2.78 × 104 | 2.40 × 106 | 1.21 × 107 | 6.71 × 103 |
Shanghai | 1.08 × 106 | 8.83 × 105 | 5.02 × 101 | 8.90 × 10−3 | 4.11 × 108 | 5.24 × 104 | 3.95 × 107 | 1.68 × 107 | 2.17 × 105 | 1.87 × 107 | 9.46 × 107 | 5.24 × 104 |
Chongqing | 1.39 × 106 | 2.00 × 106 | 5.02 × 101 | 1.20 × 10−1 | 9.32 × 108 | 1.19 × 105 | 8.96 × 107 | 3.82 × 107 | 4.92 × 105 | 4.24 × 107 | 2.15 × 108 | 1.19 × 105 |
Beijing | 1.77 × 105 | 7.66 × 104 | 5.02 × 101 | 2.70 × 10−2 | 3.56 × 107 | 4.55 × 103 | 3.42 × 106 | 1.46 × 106 | 1.88 × 104 | 1.62 × 106 | 8.20 × 106 | 4.55 × 103 |
Province | Primary Energy Savings (GJ) | Recovery Energy (GJ) | Recovery Energy Intensity (GJ/USD) | Energy Payback Period (Years) | Direct Economic Gain (USD) | Terrestrial Acidification (kg SO2 eq) | Recovery Costs (USD) | Carbon Dioxide Emission Reduction (t CO2 eq) | Land Area Savings (m2) | Industrial Water Savings (m3) | Human Toxicity Potential (kg 1,4-DB eq) | Resource Savings (t) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shandong | 1.07 × 107 | 1.31 × 107 | 4.65 × 101 | 1.44 × 10−2 | 6.07 × 109 | 2.50 × 105 | 5.84 × 108 | 2.49 × 108 | 3.21 × 106 | 2.76 × 108 | 3.86 × 108 | 2.50 × 105 |
Jiangsu | 1.05 × 107 | 1.29 × 107 | 4.65 × 101 | 1.65 × 10−2 | 5.99 × 109 | 3.15 × 105 | 5.76 × 108 | 2.46 × 108 | 3.16 × 106 | 2.72 × 108 | 4.85 × 108 | 3.15 × 105 |
Hebei | 1.12 × 107 | 1.38 × 107 | 4.65 × 101 | 3.17 × 10−2 | 6.39 × 109 | 8.80 × 105 | 6.15 × 108 | 2.62 × 108 | 3.38 × 106 | 2.91 × 108 | 1.35 × 109 | 8.80 × 105 |
Zhejiang | 2.94 × 106 | 3.60 × 106 | 4.65 × 101 | 2.62 × 10−2 | 1.67 × 109 | 8.36 × 105 | 1.61 × 108 | 6.87 × 107 | 8.84 × 105 | 7.62 × 107 | 1.29 × 109 | 8.36 × 105 |
Anhui | 3.69 × 106 | 4.53 × 106 | 4.65 × 101 | 1.65 × 10−2 | 2.10 × 109 | 2.72 × 106 | 2.02 × 108 | 8.63 × 107 | 1.11 × 106 | 9.58 × 107 | 4.19 × 109 | 2.72 × 106 |
Qinghai | 1.03 × 107 | 1.26 × 107 | 5.02 × 101 | 1.23 × 10−1 | 5.88 × 109 | 1.39 × 106 | 5.65 × 108 | 2.41 × 108 | 3.11 × 106 | 2.68 × 108 | 2.14 × 109 | 1.39 × 106 |
Shanxi | 1.68 × 107 | 1.20 × 107 | 4.65 × 101 | 5.39 × 10−2 | 5.59 × 109 | 9.78 × 105 | 5.38 × 108 | 2.29 × 108 | 2.95 × 106 | 2.54 × 108 | 1.51 × 109 | 9.78 × 105 |
Inner Mongolia | 4.21 × 107 | 3.91 × 107 | 5.02 × 101 | 1.85 × 10−2 | 1.82 × 1010 | 5.05 × 105 | 1.75 × 109 | 7.45 × 108 | 9.60 × 106 | 8.27 × 108 | 7.78 × 108 | 5.05 × 105 |
Xinjiang | 2.35 × 107 | 2.00 × 107 | 5.02 × 101 | 7.22 × 10−2 | 9.29 × 109 | 3.39 × 105 | 8.93 × 108 | 3.81 × 108 | 4.91 × 106 | 4.22 × 108 | 5.21 × 108 | 3.39 × 105 |
Henan | 1.26 × 107 | 1.41 × 107 | 4.65 × 101 | 1.31 × 10−2 | 6.54 × 109 | 1.00 × 106 | 6.29 × 108 | 2.68 × 108 | 3.45 × 106 | 2.98 × 108 | 1.54 × 109 | 1.00 × 106 |
Shaanxi | 7.54 × 106 | 7.27 × 106 | 4.84 × 101 | 1.21 × 10−1 | 3.38 × 109 | 1.96 × 105 | 3.25 × 108 | 1.38 × 108 | 1.78 × 106 | 1.54 × 108 | 3.02 × 108 | 1.96 × 105 |
Ningxia | 1.09 × 107 | 4.86 × 106 | 5.02 × 101 | 4.97 × 10−2 | 2.26 × 109 | 3.36 × 105 | 2.17 × 108 | 9.27 × 107 | 1.20 × 106 | 1.03 × 108 | 5.17 × 108 | 3.36 × 105 |
Gansu | 1.73 × 107 | 1.44 × 107 | 5.02 × 101 | 3.28 × 10−2 | 6.68 × 109 | 7.95 × 105 | 6.43 × 108 | 2.74 × 108 | 3.53 × 106 | 3.04 × 108 | 1.22 × 109 | 7.95 × 105 |
Jiangxi | 3.88 × 106 | 2.82 × 106 | 4.84 × 101 | 2.33 × 10−2 | 1.31 × 109 | 1.99 × 105 | 1.26 × 108 | 5.37 × 107 | 6.91 × 105 | 5.96 × 107 | 3.07 × 108 | 1.99 × 105 |
Hubei | 5.73 × 106 | 4.83 × 106 | 4.84 × 101 | 1.59 × 10−2 | 2.24 × 109 | 5.38 × 105 | 2.16 × 108 | 9.20 × 107 | 1.18 × 106 | 1.02 × 108 | 8.28 × 108 | 5.38 × 105 |
Guangdong | 9.42 × 106 | 1.14 × 107 | 4.84 × 101 | 2.02 × 10−2 | 5.31 × 109 | 3.92 × 105 | 5.11 × 108 | 2.18 × 108 | 2.81 × 106 | 2.42 × 108 | 6.04 × 108 | 3.92 × 105 |
Guizhou | 5.15 × 106 | 2.86 × 106 | 4.84 × 101 | 1.43 × 10−2 | 1.33 × 109 | 4.97 × 105 | 1.28 × 108 | 5.46 × 107 | 7.04 × 105 | 6.06 × 107 | 7.64 × 108 | 4.97 × 105 |
Yunnan | 1.04 × 107 | 7.73 × 106 | 4.84 × 101 | 1.90 × 10−2 | 3.60 × 109 | 5.64 × 105 | 3.46 × 108 | 1.47 × 108 | 1.90 × 106 | 1.64 × 108 | 8.68 × 108 | 5.64 × 105 |
Hunan | 6.77 × 106 | 5.64 × 106 | 4.84 × 101 | 1.55 × 10−2 | 2.62 × 109 | 4.49 × 105 | 2.52 × 108 | 1.08 × 108 | 1.38 × 106 | 1.19 × 108 | 6.90 × 108 | 4.49 × 105 |
Liaoning | 1.03 × 107 | 7.13 × 106 | 4.84 × 101 | 6.62 × 10−3 | 3.32 × 109 | 3.39 × 105 | 3.19 × 108 | 1.36 × 108 | 1.75 × 106 | 1.51 × 108 | 5.22 × 108 | 3.39 × 105 |
Jilin | 7.80 × 106 | 8.10 × 106 | 4.84 × 101 | 5.96 × 10−3 | 3.77 × 109 | 2.76 × 105 | 3.62 × 108 | 1.54 × 108 | 1.99 × 106 | 1.71 × 108 | 4.25 × 108 | 2.76 × 105 |
Heilongjiang | 8.26 × 106 | 6.44 × 106 | 5.02 × 101 | 6.75 × 10−3 | 3.00 × 109 | 7.78 × 104 | 2.88 × 108 | 1.23 × 108 | 1.58 × 106 | 1.36 × 108 | 1.20 × 108 | 7.78 × 104 |
Sichuan | 4.76 × 106 | 4.87 × 106 | 4.84 × 101 | 6.31 × 10−2 | 2.27 × 109 | 2.59 × 103 | 2.18 × 108 | 9.29 × 107 | 1.20 × 106 | 1.03 × 108 | 3.93 × 106 | 2.59 × 103 |
Fujian | 4.84 × 106 | 3.97 × 106 | 4.84 × 101 | 1.29 × 10−2 | 1.84 × 109 | 6.55 × 105 | 1.77 × 108 | 7.56 × 107 | 9.74 × 105 | 8.39 × 107 | 1.01 × 109 | 6.55 × 105 |
Tianjin | 1.05 × 106 | 1.12 × 106 | 4.84 × 101 | 1.01 × 10−2 | 5.20 × 108 | 5.87 × 103 | 5.00 × 107 | 2.13 × 107 | 2.75 × 105 | 2.37 × 107 | 9.05 × 106 | 5.87 × 103 |
Hainan | 2.90 × 105 | 3.67 × 104 | 4.84 × 101 | 7.50 × 10−3 | 1.71 × 107 | 4.70 × 104 | 1.64 × 106 | 7.00 × 105 | 9.15 × 103 | 7.76 × 105 | 7.23 × 107 | 4.70 × 104 |
Guangxi | 7.68 × 106 | 9.42 × 106 | 4.84 × 101 | 1.84 × 10−2 | 4.38 × 109 | 1.05 × 105 | 4.21 × 108 | 1.80 × 108 | 2.31 × 106 | 1.99 × 108 | 1.62 × 108 | 1.05 × 105 |
Xizang | 5.32 × 104 | 8.45 × 104 | 5.02 × 101 | 3.93 × 10−1 | 3.93 × 107 | 4.08 × 103 | 3.78 × 106 | 1.61 × 106 | 2.07 × 104 | 1.79 × 106 | 6.27 × 106 | 4.08 × 103 |
Shanghai | 9.05 × 105 | 6.75 × 105 | 5.02 × 101 | 8.90 × 10−3 | 3.14 × 108 | 2.50 × 105 | 3.02 × 107 | 1.29 × 107 | 1.66 × 105 | 1.43 × 107 | 3.86 × 108 | 2.50 × 105 |
Chongqing | 1.18 × 106 | 1.51 × 106 | 5.02 × 101 | 1.20 × 10−1 | 7.01 × 108 | 3.15 × 105 | 6.74 × 107 | 2.88 × 107 | 3.70 × 105 | 3.19 × 107 | 4.85 × 108 | 3.15 × 105 |
Beijing | 1.18 × 106 | 5.86 × 104 | 5.02 × 101 | 2.70 × 10−2 | 2.72 × 107 | 8.80 × 105 | 2.62 × 106 | 1.12 × 106 | 1.44 × 104 | 1.24 × 106 | 1.35 × 109 | 8.80 × 105 |
Appendix B
References
- Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement Pledges May Limit Warming Just below 2 °C. Nature 2022, 604, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Tian, L. The Regulatory Effect of Government Fiscal Intervention on Carbon Reduction—A System Analysis Based on Economy–Energy–Environment. Sustainability 2025, 17, 2873. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, M.; Chi, X.; Khan, A.U. Game Analysis of Green Technology Innovation Ecosystem Evolution at Carbon Peaking. Sustainability 2025, 17, 2728. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y. Did Carbon Emission Trade Improve Resource Misallocation? Evidence from China. Sustainability 2025, 17, 2749. [Google Scholar] [CrossRef]
- Wei, D.; Li, W.; Yang, W.; Chen, H. Assessing the Progress and Spatial Patterns of Sustainable Eco-Environmental Development Based on the 2030 Agenda for SDGs in China. Int. J. Sustain. Dev. World Ecol. 2023, 30, 387–401. [Google Scholar] [CrossRef]
- Renewable Capacity Statistics. 2024. Available online: https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024 (accessed on 18 April 2025).
- Johst, P.; Bühl, M.; Enderle, C.; Kupfer, R.; Modler, N.; Böhm, R. Forecasting Wind Turbine Blade Waste with Material Composition and Geographical Distribution: Methodology and Application to Germany. Resour. Conserv. Recycl. 2024, 211, 107876. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Li, Y.; Wang, Y.; Li, G.; Liu, X. Wind Turbine Blade Recycling: A Review of the Recovery and High-Value Utilization of Decommissioned Wind Turbine Blades. Resour. Conserv. Recycl. 2024, 210, 107813. [Google Scholar] [CrossRef]
- Liu, P.; Barlow, C.Y. Wind Turbine Blade Waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Shi, X. Sustainable Development Pathways of China’s Wind Power Industry under Uncertainties: Perspective from Economic Benefits and Technical Potential. Energy Policy 2023, 182, 113737. [Google Scholar] [CrossRef]
- Cooperman, A.; Eberle, A.; Lantz, E. Wind Turbine Blade Material in the United States: Quantities, Costs, and End-of-Life Options. Resour. Conserv. Recycl. 2021, 168, 105439. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, G.; Zheng, L.; Zhang, Y.; Qi, X.; Ke, S.; Gao, L.; Bai, R.; Liu, G. Modeling Waste Generation and End-of-Life Management of Wind Power Development in Guangdong, China until 2050. Resour. Conserv. Recycl. 2021, 169, 105533. [Google Scholar] [CrossRef]
- Lefeuvre, A.; Garnier, S.; Jacquemin, L.; Pillain, B.; Sonnemann, G. Anticipating In-Use Stocks of Carbon Fibre Reinforced Polymers and Related Waste Generated by the Wind Power Sector until 2050. Resour. Conserv. Recycl. 2019, 141, 30–39. [Google Scholar] [CrossRef]
- Ortegon, K.; Nies, L.F.; Sutherland, J.W. Preparing for End of Service Life of Wind Turbines. J. Clean. Prod. 2013, 39, 191–199. [Google Scholar] [CrossRef]
- Tazi, N.; Kim, J.; Bouzidi, Y.; Chatelet, E.; Liu, G. Waste and Material Flow Analysis in the End-of-Life Wind Energy System. Resour. Conserv. Recycl. 2019, 145, 199–207. [Google Scholar] [CrossRef]
- Lichtenegger, G.; Rentizelas, A.A.; Trivyza, N.; Siegl, S. Offshore and Onshore Wind Turbine Blade Waste Material Forecast at a Regional Level in Europe until 2050. Waste Manag. 2020, 106, 120–131. [Google Scholar] [CrossRef]
- Xu, M.; Ji, H.; Wu, Y.; Meng, X.; Di, J.; Yang, J.; Lu, Q. Recovering Glass Fibers from Waste Wind Turbine Blades: Recycling Methods, Fiber Properties, and Potential Utilization. Renew. Sustain. Energy Rev. 2024, 202, 114690. [Google Scholar] [CrossRef]
- Liu, P.; Meng, F.; Barlow, C.Y. Wind Turbine Blade End-of-Life Options: An Eco-Audit Comparison. J. Clean. Prod. 2019, 212, 1268–1281. [Google Scholar] [CrossRef]
- Majewski, P.; Florin, N.; Jit, J.; Stewart, R.A. End-of-Life Policy Considerations for Wind Turbine Blades. Renew. Sustain. Energy Rev. 2022, 164, 112538. [Google Scholar] [CrossRef]
- Yang, J.; Meng, F.; Zhang, L.; McKechnie, J.; Chang, Y.; Ma, B.; Hao, Y.; Li, X.; Pender, K.; Yang, L.; et al. Solutions for Recycling Emerging Wind Turbine Blade Waste in China Are Not yet Effective. Commun. Earth Environ. 2023, 4, 1–14. [Google Scholar] [CrossRef]
- Zhang, J.; Chevali, V.S.; Wang, H.; Wang, C.-H. Current Status of Carbon Fibre and Carbon Fibre Composites Recycling. Compos. Part B Eng. 2020, 193, 108053. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Prabhakara, H.M.; Bramer, E.A.; Dierkes, W.; Akkerman, R.; Brem, G. A Critical Review on Recycling of End-of-Life Carbon Fibre/Glass Fibre Reinforced Composites Waste Using Pyrolysis towards a Circular Economy. Resour. Conserv. Recycl. 2018, 136, 118–129. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current Status of Recycling of Fibre Reinforced Polymers: Review of Technologies, Reuse and Resulting Properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef]
- Liu, P.; Meng, F.; Barlow, C.Y. Wind Turbine Blade End-of-Life Options: An Economic Comparison. Resour. Conserv. Recycl. 2022, 180, 106202. [Google Scholar] [CrossRef]
- Freiberg, A.; Schefter, C.; Girbig, M.; Murta, V.C.; Seidler, A. Health Effects of Wind Turbines on Humans in Residential Settings: Results of a Scoping Review. Environ. Res. 2019, 169, 446–463. [Google Scholar] [CrossRef] [PubMed]
- Diez-Cañamero, B.; Mendoza, J.M.F. Circular Economy Performance and Carbon Footprint of Wind Turbine Blade Waste Management Alternatives. Waste Manag. 2023, 164, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Galvani, S.; Bagheri, A.; Farhadi-Kangarlu, M.; Nikdel, N. A Multi-Objective Probabilistic Approach for Smart Voltage Control in Wind-Energy Integrated Networks Considering Correlated Parameters. Sustain. Cities Soc. 2022, 78, 103651. [Google Scholar] [CrossRef]
- Saha, A.K. Multi-Population-Based Adaptive Sine Cosine Algorithm with Modified Mutualism Strategy for Global Optimization. Knowl.-Based Syst. 2022, 251, 109326. [Google Scholar] [CrossRef]
- Liu, J.; Yang, F.; Yan, K.; Jiang, L. Household Energy Consumption Forecasting Based on Adaptive Signal Decomposition Enhanced iTransformer Network. Energy Build. 2024, 324, 114894. [Google Scholar] [CrossRef]
- Ma, W.; Chen, H.; Zhang, W.; Huang, H.; Wu, J.; Peng, X.; Sun, Q. DSYOLO-Trash: An Attention Mechanism-Integrated and Object Tracking Algorithm for Solid Waste Detection. Waste Manag. 2024, 178, 46–56. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, X.; Zhou, Y.; Yuan, T. Conversion Potential of Renewable Energy Surplus to Methane in China Based on Power Generation Forecasting. Sustainability 2025, 17, 2879. [Google Scholar] [CrossRef]
- Cubillos, M. Multi-Site Household Waste Generation Forecasting Using a Deep Learning Approach. Waste Manag. 2020, 115, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, N.; Joshi, B.; Song, G.; Mo, Y.L. Repurposing Decommissioned Wind Turbine Blades: A Circular Economy Approach to Sustainable Resource Management and Infrastructure Innovation. Renew. Sustain. Energy Rev. 2025, 215, 115629. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, F.; Liang, D.; Lv, G.; Chen, C. A Comprehensive Review of Waste Wind Turbine Blades in China: Current Status and Resource Utilization. J. Environ. Chem. Eng. 2024, 12, 113077. [Google Scholar] [CrossRef]
- Gennitsaris, S.; Sagani, A.; Sofianopoulou, S.; Dedoussis, V. Integrated LCA and DEA Approach for Circular Economy-Driven Performance Evaluation of Wind Turbine End-of-Life Treatment Options. Appl. Energy 2023, 339, 120951. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Stasiulaitiene, I.; Zakarauskas, K.; Striūgas, N. Recovery of Energy and Carbon Fibre from Wind Turbine Blades Waste (Carbon Fibre/Unsaturated Polyester Resin) Using Pyrolysis Process and Its Life-Cycle Assessment. Environ. Res. 2024, 245, 118016. [Google Scholar] [CrossRef]
- China Meteorological Administration Wind and Solar Energy Centre, China’s wind and solar energy resources annual bulletin. In China Energy News; China Meteorological Administration: Beijing, China, 2022.
- Rahimizadeh, A.; Kalman, J.; Fayazbakhsh, K.; Lessard, L. Recycling of Fiberglass Wind Turbine Blades into Reinforced Filaments for Use in Additive Manufacturing. Compos. Part B Eng. 2019, 175, 107101. [Google Scholar] [CrossRef]
- Han, X.; Gooi, L.-M. Multi-Level Determinants of Sustainable Blockchain Technology Adoption in SCM: Individual, Organisational, and Societal Perspectives. Sustainability 2025, 17, 2621. [Google Scholar] [CrossRef]
- Spini, F.; Bettini, P. End-of-Life Wind Turbine Blades: Review on Recycling Strategies. Compos. Part B Eng. 2024, 275, 111290. [Google Scholar] [CrossRef]
- Cao, Z.; O’Sullivan, C.; Tan, J.; Kalvig, P.; Ciacci, L.; Chen, W.; Kim, J.; Liu, G. Resourcing the Fairytale Country with Wind Power: A Dynamic Material Flow Analysis. Environ. Sci. Technol. 2019, 53, 11313–11322. [Google Scholar] [CrossRef]
- More Circular, Less Carbon: Chemical Recycling Holds Promise for Wind-Turbine Blade Waste. Available online: https://environment.ec.europa.eu/news/more-circular-less-carbon-chemical-recycling-holds-promise-wind-turbine-blade-waste-2023-10-19_en (accessed on 18 April 2025).
- Leon, M., Jr. Recycling of Wind Turbine Blades: Recent Developments. Curr. Opin. Green Sustain. Chem. 2023, 39, 100746. [Google Scholar] [CrossRef]
Essential Factor | Research Elements Mentioned in the Existing Literature | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
Energy conservation | √ | √ | √ | √ | |||||||||||
Recovering energy consumption | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
Energy recovery intensity | √ | √ | |||||||||||||
Energy payback period | √ | √ | |||||||||||||
Direct economic benefits | √ | √ | √ | √ | √ | √ | √ | √ | |||||||
Recovery cost | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
Greenhouse gas emissions | √ | √ | √ | √ | √ | √ | √ | √ | |||||||
Land area conservation | √ | √ | √ | √ | √ | ||||||||||
Resource conservation | √ | √ | √ | √ | √ | √ | √ | ||||||||
Land acidification | √ | √ | |||||||||||||
Industrial water conservation | √ | √ | |||||||||||||
Carcinogenic toxicity to humans | √ | √ | |||||||||||||
Stratospheric ozone depletion | √ | ||||||||||||||
Marine eutrophication | √ | ||||||||||||||
Laws and regulations | √ | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; He, J.; Xu, Z. Sustainability and Material Flow Analysis of Wind Turbine Blade Recycling in China. Sustainability 2025, 17, 4307. https://doi.org/10.3390/su17104307
Li J, He J, Xu Z. Sustainability and Material Flow Analysis of Wind Turbine Blade Recycling in China. Sustainability. 2025; 17(10):4307. https://doi.org/10.3390/su17104307
Chicago/Turabian StyleLi, Jianling, Juan He, and Zihan Xu. 2025. "Sustainability and Material Flow Analysis of Wind Turbine Blade Recycling in China" Sustainability 17, no. 10: 4307. https://doi.org/10.3390/su17104307
APA StyleLi, J., He, J., & Xu, Z. (2025). Sustainability and Material Flow Analysis of Wind Turbine Blade Recycling in China. Sustainability, 17(10), 4307. https://doi.org/10.3390/su17104307