Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = cinnamoyl

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1592 KB  
Article
Multi-Omics Reveals Protected Cultivation Improves Chinese Plum (Prunus salicina L.) Quality via Light-Regulated Sugar Metabolism
by Liangliang Cao, Xi Long, Xiaolou Zhu, Jiangong Wang, Weidong Xu, Qiang Lu, Zanyu Ruan, Jiashun Miao and Zhangliang Yao
Plants 2026, 15(1), 164; https://doi.org/10.3390/plants15010164 - 5 Jan 2026
Viewed by 385
Abstract
The Chinese plum (Prunus salicina L.), ‘Zuili’, is a geographically protected cultivar that is valued for its high polyphenol levels and distinctive flavor. Light availability strongly influences sugar accumulation and secondary metabolism in plum fruit, yet the molecular processes associated with quality [...] Read more.
The Chinese plum (Prunus salicina L.), ‘Zuili’, is a geographically protected cultivar that is valued for its high polyphenol levels and distinctive flavor. Light availability strongly influences sugar accumulation and secondary metabolism in plum fruit, yet the molecular processes associated with quality variation under protected cultivation remain unclear. Here, we compare three cultivation systems—multi-span greenhouse (M), retractable electric rain shelter (R), and conventional open field (CK)—to evaluate their effect on fruit quality using integrated transcriptomic and metabolomic analyses. Field trials showed that M treatment increased fruit sweetness by 28.10% versus CK (14.68 vs. 11.46 °Brix, p < 0.001) without yield loss and significantly improved vertical fruit diameter. RNA-seq analysis identified 7561 and 7962 upregulated genes in the M and R treatments compared to CK, respectively, with significant functional enrichment in pathways related to sucrose metabolism, light-response, and ethylene-mediated signaling. Untargeted metabolomic signaling identified 1373 metabolites, with shading treatments increasing the abundance of several sugar-conjugated compounds (e.g., epicatechin 3-O-(2-trans-cinnamoyl)-β-D-allopyranoside). Multi-omics integration revealed coordinated changes in gene expression and metabolite abundance, suggesting that controlled light environments are associated with the concurrent modulation of sugar metabolism and phenylpropanoid-related pathways. These patterns were supported by the upregulation of GT2-family glycosyltransferase genes and the accumulation of lignin-related flavonoid precursors, such as pinobanksin and pinobanksinol. Collectively, these results highlight statistically robust associations between light-regulated cultivation practices and fruit quality traits, providing a molecular framework for optimizing protected cultivation strategies to enhance both the sensory and nutritional attributes of P. salicina fruit without compromising yield. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

15 pages, 3945 KB  
Article
Rice Cinnamoyl CoA Reductase-like Gene OsCCR14 Involved in Heat Stress via Regulation Lignin and Flavonoid Accumulation
by Hongwei Wang, Wei Tian, Yulu Teng, Yuxin Xue, Simin Qin, Jiaxin Liu and Shuangcheng Ding
Plants 2025, 14(23), 3626; https://doi.org/10.3390/plants14233626 - 28 Nov 2025
Viewed by 512
Abstract
Cinnamoyl-CoA reductases (CCRs) and their homologs, CCR-like proteins, play key roles in plant secondary metabolism and defense against environmental stresses; however, their functions in heat stress responses remain unclear. In this study, phylogenetic and sequence alignment analyses revealed that OsCCR14 encodes a CCR-like [...] Read more.
Cinnamoyl-CoA reductases (CCRs) and their homologs, CCR-like proteins, play key roles in plant secondary metabolism and defense against environmental stresses; however, their functions in heat stress responses remain unclear. In this study, phylogenetic and sequence alignment analyses revealed that OsCCR14 encodes a CCR-like protein. qRT-PCR assays showed that OsCCR14 is predominantly expressed in roots and is induced by heat stress. Notably, overexpression of OsCCR14 increased lignin content, and transgenic plants with enhanced OsCCR14 expression exhibited higher flavonoid accumulation in roots. Conversely, knockout of OsCCR14 reduced flavonoid content and impaired seedling heat tolerance. Furthermore, OsCCR14 overexpression improved heat tolerance, accompanied by increased root lignification and flavonoid accumulation. These results indicate that OsCCR14 acts as a critical regulator of lignin and flavonoid metabolism, thereby providing a potential target for enhancing crop heat tolerance. Full article
Show Figures

Figure 1

12 pages, 1741 KB  
Article
Reactive Anti-Solvent Engineering via Kornblum Reaction for Controlled Crystallization in (FA0.83MA0.17Cs0.05)Pb(I0.85Br0.15)3 Perovskite Solar Cells
by Shengcong Wu, Qiu Xiong, Abd. Rashid bin Mohd Yusoff and Peng Gao
Inorganics 2025, 13(9), 295; https://doi.org/10.3390/inorganics13090295 - 1 Sep 2025
Cited by 1 | Viewed by 1161
Abstract
Regulating the crystallization dynamics of perovskite films is key to improving the efficiency and operational stability of (FA0.83MA0.17Cs0.05)Pb(I0.85Br0.15)3 perovskite solar cells (PSCs). However, precise regulation of the crystallization process remains challenging. Here, [...] Read more.
Regulating the crystallization dynamics of perovskite films is key to improving the efficiency and operational stability of (FA0.83MA0.17Cs0.05)Pb(I0.85Br0.15)3 perovskite solar cells (PSCs). However, precise regulation of the crystallization process remains challenging. Here, we introduce a reactive anti-solvent strategy based on the Kornblum reaction to modulate crystallization via in-situ chemical transformation. Specifically, trans-cinnamoyl chloride (TCC) is employed as a single-component anti-solvent additive that reacts with dimethyl sulfoxide (DMSO) in the perovskite precursor solution. The resulting acylation reaction generates carbonyl-containing products and sulfur ions. The carbonyl oxygen coordinates with Pb2+ ions to form Pb–O bonds, which retard rapid crystallization, suppress heterogeneous nucleation, and facilitate the growth of larger perovskite grains with improved film uniformity. Additionally, the exothermic nature of the reaction accelerates local supersaturation and nucleation. This synergistic crystallization control significantly enhances the film morphology and device performance, yielding a champion power conversion efficiency (PCE) of 23.02% and a markedly improved fill factor (FF). This work provides a new pathway for anti-solvent engineering through in-situ chemical regulation, enabling efficient and scalable fabrication of high-performance PSCs. Full article
(This article belongs to the Special Issue New Semiconductor Materials for Energy Conversion, 2nd Edition)
Show Figures

Figure 1

20 pages, 4386 KB  
Article
Foliar Application of Salicylic Acid Stimulates Phenolic Compound Accumulation and Antioxidant Potential in Saposhnikovia divaricata Herb
by Daniil N. Olennikov, Nina I. Kashchenko and Nadezhda K. Chirikova
Horticulturae 2025, 11(8), 895; https://doi.org/10.3390/horticulturae11080895 - 2 Aug 2025
Viewed by 1305
Abstract
Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., commonly known as divaricate siler, is a well-known medicinal plant from the Apiaceae family. Its natural habitat is rapidly declining owing to the harvesting of its roots, used as fángfēng in traditional Oriental medicine. This underutilized herb [...] Read more.
Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., commonly known as divaricate siler, is a well-known medicinal plant from the Apiaceae family. Its natural habitat is rapidly declining owing to the harvesting of its roots, used as fángfēng in traditional Oriental medicine. This underutilized herb may serve as a valuable source of bioactive phenolic compounds, which can potentially be influenced by salicylic acid (SA) elicitation—a practical method to increase the concentration of valuable substances in plants. A field study showed that foliar application of SA on one-year-old S. divaricata positively influenced the total phenolic content in the herb, with the highest increase observed at 1.0 mM SA. Liquid chromatography–mass spectrometry (LC–MS) data became increasingly complex with rising SA levels, identifying up to 48 compounds, including cinnamoyl quinic acids (CQAs), dihydrofurochromones (DFCs), and flavonol O-glycosides (FOGs), most reported for the first time in this species. The highest concentrations of CQAs, DFCs, and FOGs in plants treated with 1.0 mM SA were 83.14, 3.75, and 60.53 mg/g, respectively, compared to 42.76, 0.95, and 40.73 mg/g in untreated (0.0 mM SA) plants. Nine in vitro antioxidant assays revealed strong radical-scavenging and nitric oxide (NO)- and Fe2+-chelating activities in 1.0 mM SA-treated plants, indicating robust antioxidative properties of the S. divaricata herb. Thus, foliar application of SA considerably enriches the herb with target antioxidants, increasing its medicinal value, which is reflected in the plant’s biological response. This could potentially reduce the overexploitation of natural populations of S. divaricata, helping to preserve this valuable plant. Full article
Show Figures

Figure 1

30 pages, 3204 KB  
Article
Design, Synthesis, and Evaluation of Antinociceptive Properties of Novel CBD-Based Terpene-Cinnamoyl-Acyl-Hydrazone Analogues
by Mikaela Lucinda de Souza, João Pedro Barros de Paiva, Graziella dos Reis Rosa Franco, Vanessa Silva Gontijo, Marina Amaral Alves, Hygor Marcos Ribeiro de Souza, Anna Carolina Pereira Lontra, Eduardo Araújo de Oliveira, Thaís Biondino Sardella Giorno, Isabella Alvim Guedes, Laurent Emmanuel Dardenne, Patrícia Dias Fernandes and Claudio Viegas Jr.
Pharmaceuticals 2025, 18(5), 755; https://doi.org/10.3390/ph18050755 - 20 May 2025
Cited by 2 | Viewed by 1884
Abstract
Background/Objectives: Cannabidiol (CBD) has been reported for its antinociceptive, anti-inflammatory, and neuroprotective activities. However, several legal restrictions on its medicinal uses and even research have contributed to the development of synthetic analogues. Therefore, the aim of this study was the design and [...] Read more.
Background/Objectives: Cannabidiol (CBD) has been reported for its antinociceptive, anti-inflammatory, and neuroprotective activities. However, several legal restrictions on its medicinal uses and even research have contributed to the development of synthetic analogues. Therefore, the aim of this study was the design and synthesis of a novel series of CBD-based structural analogues, and the in vivo evaluation of their potential antinociceptive activity. Methods: Using a two-step synthetic route, 26 new terpene-cinnamoyl acyl-hydrazone analogues were obtained and were submitted to in vivo screening in the classical formalin-induced paw edema and hot plate assays. Results: The compounds PQM-292, PQM-293, PQM-295, PQM-307, PQM-308, and PQM-309 exhibited the best results in the neurogenic phase (first phase) of the formalin-induced licking response, showing comparable results to morphine. Notably, in the inflammatory phase (second phase), compound PQM-292 exhibited the best anti-inflammatory activity. Interestingly, in the hot plate model, six other compounds (PQM-274, PQM-291, PQM-294, PQM-304, PQM-305, and PQM-378) showed the best antinociceptive activity in comparison to morphine, especially PQM-274, which exhibited an antinociceptive effect almost equivalent to the reference drug. Interestingly, these findings suggested that these bioactive compounds, despite their structural similarity, act through different mechanisms, which were investigated by molecular docking with CB1, CB2, and TRPV1 receptors. In silico results indicated that the most active compounds should act through different mechanisms, probably involving interactions with TRPA1. Conclusions: Therefore, due to the promising antinociceptive activity observed for these highlighted compounds, particularly for PQM-292 and PQM-274, without apparent toxicity and psychoactive effects, and the possible involvement of diverse mechanisms of action, these compounds could be considered as promising starting points to the development of new drug candidate prototypes of clinical interest. Full article
Show Figures

Graphical abstract

19 pages, 5856 KB  
Article
Genome-Wide Identification of Phenylacetaldehyde Reductase Genes and Molecular Docking Simulation Study of OePAR1 in Olives
by Yutong Fan, Qizhen Cui, Shuyuan Li, Yufei Li, Gang Yi, Chenhe Wang, Qingqing Liu, Jianguo Zhang and Guodong Rao
Forests 2025, 16(4), 630; https://doi.org/10.3390/f16040630 - 3 Apr 2025
Viewed by 917
Abstract
Hydroxytyrosol is a natural phenolic compound found in olives. Phenylacetaldehyde reductase (PAR) is a key enzyme in the final step of the hydroxytyrosol biosynthesis pathway in olives. However, genome-wide studies on the PAR gene family in olives have not been reported. In this [...] Read more.
Hydroxytyrosol is a natural phenolic compound found in olives. Phenylacetaldehyde reductase (PAR) is a key enzyme in the final step of the hydroxytyrosol biosynthesis pathway in olives. However, genome-wide studies on the PAR gene family in olives have not been reported. In this study, 21 genes were identified through a genome-wide analysis. Phylogenetic analysis classified these genes into three subgroups: PAR, CCR (Cinnamoyl-CoA reductase), and DFR (Dihydroflavonol 4-reductase). Expression pattern analysis suggested that genes within these subfamilies may play crucial roles in the biosynthesis of polyphenols, lignin, and anthocyanins, respectively. Three-dimensional structural modeling and molecular docking of the OePAR1 revealed that hydrogen bonds, hydrophobic interactions, and π–π stacking interactions collectively influence the affinity between PAR and its substrates. Residues at the active site form hydrogen bonds, with variations contributing to substrate specificity. The substrate with the strongest affinity for OePAR1 was identified as 3,4-dihydroxyphenylacetaldehyde (3, 4-DHPAA), with a binding energy of −4.98 kcal/mol, in agreement with previous enzymatic activity validation. Subcellular localization studies revealed that OePAR1 is localized to the chloroplast. This study provides essential insights into the biological functions of OePARs in olives and lays the groundwork for enhancing olive oil quality through genetic engineering. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

14 pages, 2240 KB  
Article
Simultaneous Down-Regulation of Dominant Cinnamoyl CoA Reductase and Cinnamyl Alcohol Dehydrogenase Dramatically Altered Lignin Content in Mulberry
by Shuai Huang, Xiaoru Kang, Rumeng Fu, Longyan Zheng, Peijun Li, Fengjuan Tang, Nan Chao and Li Liu
Plants 2024, 13(24), 3512; https://doi.org/10.3390/plants13243512 - 16 Dec 2024
Cited by 4 | Viewed by 1483
Abstract
Mulberry (Morus alba L.) is a significant economic tree species in China. The lignin component serves as a critical limiting factor that impacts both the forage quality and the conversion efficiency of mulberry biomass into biofuel. Cinnamoyl CoA reductase (CCR; EC 1.21.1.44) [...] Read more.
Mulberry (Morus alba L.) is a significant economic tree species in China. The lignin component serves as a critical limiting factor that impacts both the forage quality and the conversion efficiency of mulberry biomass into biofuel. Cinnamoyl CoA reductase (CCR; EC 1.21.1.44) and cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.95) are the key enzymes that catalyze the final two reductive steps in the biosynthesis of monolignols. In this study, we conducted a comprehensive functional analysis to validate the predominant CCR genes involved in monolignol biosynthesis. In this study, we initially validated the predominant CCR genes implicated in monolignol biosynthesis through an extensive functional analysis. Phylogenetic analysis, tissue-specific expression profiling and enzymatic assays indicated that MaCCR1 is the authentic CCR involved in lignin biosynthesis. Furthermore, the expression level of MaCCR1 exhibited a significant positive correlation with lignin content, and the down-regulation of MaCCR1 via virus-induced gene silencing resulted in altered lignin content in mulberry. The down-regulation of MaCCR1 and MaCAD3/4, both individually and concurrently, exhibited markedly different effects on lignin content and mulberry growth. Specifically, the simultaneous down-regulation of MaCCR1 and MaCAD3/4 significantly altered lignin content in mulberry, resulting in dwarfism of the plants. Conversely, the down-regulation of MaCAD3/4 alone not only decreased lignin content but also led to an increase in biomass. These findings offer compelling evidence elucidating the roles of MaCCRs in mulberry and identify specific target genes, thereby providing a crucial foundation for the genetic modification of lignin biosynthesis. Full article
(This article belongs to the Special Issue Genetic Breeding of Trees)
Show Figures

Figure 1

25 pages, 5418 KB  
Article
Transcriptomic Characterization of Genes Harboring Markers Linked to Maize Yield
by Agnieszka Tomkowiak, Tomasz Jamruszka, Jan Bocianowski, Aleksandra Sobiech, Karolina Jarzyniak, Maciej Lenort, Sylwia Mikołajczyk and Monika Żurek
Genes 2024, 15(12), 1558; https://doi.org/10.3390/genes15121558 - 29 Nov 2024
Cited by 1 | Viewed by 1483
Abstract
Background: It is currently believed that breeding priorities, including maize breeding, should focus on introducing varieties with greater utility value, specifically higher yields, into production. Global modern maize breeding relies on various molecular genetics techniques. Using the above mentioned technologies, we can identify [...] Read more.
Background: It is currently believed that breeding priorities, including maize breeding, should focus on introducing varieties with greater utility value, specifically higher yields, into production. Global modern maize breeding relies on various molecular genetics techniques. Using the above mentioned technologies, we can identify regions of the genome that are associated with various phenotypic traits, including yield, which is of fundamental importance for understanding and manipulating these regions. Objectives: The aim of the study was to analyze the expression of candidate genes associated with maize yield. To better understand the function of the analyzed genes in increasing maize yield, their expression in different organs and tissues was also assessed using publicly available transcriptome data. Methods: RT-qPCR analyses were performed using iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Each of the performed RT-qPCR experiments consisted of three biological replicates and three technical replicates, the results of which were averaged. Results: The research results allowed us to select three out of six candidate genes (cinnamoyl-CoA reductase 1—CCR1, aspartate aminotransferase—AAT and sucrose transporter 1—SUT1), which can significantly affect grain yield in maize. Not only our studies but also literature reports clearly indicate the participation of CCR1, AAT and SUT1 in the formation of yield. Identified molecular markers located within these genes can be used in breeding programs to select high yielding maize genotypes. Full article
(This article belongs to the Special Issue Genetic and Genomic Studies of Crop Breeding)
Show Figures

Figure 1

24 pages, 1060 KB  
Article
An Exploratory Study of the Enzymatic Hydroxycinnamoylation of Sucrose and Its Derivatives
by Matej Cvečko, Vladimír Mastihuba and Mária Mastihubová
Molecules 2024, 29(17), 4067; https://doi.org/10.3390/molecules29174067 - 28 Aug 2024
Cited by 3 | Viewed by 1781
Abstract
Phenylpropanoid sucrose esters are a large and important group of natural substances with significant therapeutic potential. This work describes a pilot study of the enzymatic hydroxycinnamoylation of sucrose and its derivatives which was carried out with the aim of obtaining precursors of natural [...] Read more.
Phenylpropanoid sucrose esters are a large and important group of natural substances with significant therapeutic potential. This work describes a pilot study of the enzymatic hydroxycinnamoylation of sucrose and its derivatives which was carried out with the aim of obtaining precursors of natural phenylpropanoid sucrose esters, e.g., vanicoside B. In addition to sucrose, some chemically prepared sucrose acetonides and substituted 3′-O-cinnamates were subjected to enzymatic transesterification with vinyl esters of coumaric, ferulic and 3,4,5-trimethoxycinnamic acid. Commercial enzyme preparations of Lipozyme TL IM lipase and Pentopan 500 BG exhibiting feruloyl esterase activity were tested as biocatalysts in these reactions. The substrate specificity of the used biocatalysts for the donor and acceptor as well as the regioselectivity of the reactions were evaluated and discussed. Surprisingly, Lipozyme TL IM catalyzed the cinnamoylation of sucrose derivatives more to the 1′-OH and 4′-OH positions than to the 6′-OH when the 3′-OH was free and the 6-OH was blocked by isopropylidene. In this case, Pentopan reacted comparably to 1′-OH and 6′-OH positions. If sucrose 3′-O-coumarate was used as an acceptor, in the case of feruloylation with Lipozyme in CH3CN, 6-O-ferulate was the main product (63%). Pentopan feruloylated sucrose 3′-O-coumarate comparably well at the 6-OH and 6′-OH positions (77%). When a proton-donor solvent was used, migration of the 3′-O-cinnamoyl group from fructose to the 2-OH position of glucose was observed. The enzyme hydroxycinnamoylations studied can shorten the targeted syntheses of various phenylpropanoid sucrose esters. Full article
Show Figures

Figure 1

16 pages, 2929 KB  
Article
Transcriptomic and Metabolomic Analysis Reveals the Potential Roles of Polyphenols and Flavonoids in Response to Sunburn Stress in Chinese Olive (Canarium album)
by Yu Long, Chaogui Shen, Ruilian Lai, Meihua Zhang, Qilin Tian, Xiaoxia Wei and Rujian Wu
Plants 2024, 13(17), 2369; https://doi.org/10.3390/plants13172369 - 25 Aug 2024
Cited by 3 | Viewed by 1990
Abstract
Sunburn stress is one of the main environmental stress factors that seriously affects the fruit development and quality of Chinese olive, a tropical and subtropical fruit in south China. Therefore, the understanding of the changes in physiological, biochemical, metabolic, and gene expression in [...] Read more.
Sunburn stress is one of the main environmental stress factors that seriously affects the fruit development and quality of Chinese olive, a tropical and subtropical fruit in south China. Therefore, the understanding of the changes in physiological, biochemical, metabolic, and gene expression in response to sunburn stress is of great significance for the industry and breeding of Chinese olive. In this study, the different stress degrees of Chinese olive fruits, including serious sunburn injury (SSI), mild sunburn injury (MSI), and ordinary (control check, CK) samples, were used to identify the physiological and biochemical changes and explore the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) by using transcriptomics and metabolomics. Compared with CK, the phenotypes, antioxidant capacity, and antioxidant-related enzyme activities of sunburn stress samples changed significantly. Based on DEG-based KEGG metabolic pathway analysis of transcriptomics, the polyphenol and flavonoid-related pathways, including phenylpropanoid biosynthesis, sesquiterpenoid, and triterpenoid biosynthesis, monoterpene biosynthesis, carotenoid biosynthesis, isoflavonoid biosynthesis, flavonoid biosynthesis, were enriched under sunburn stress of Chinese olive. Meanwhile, 33 differentially accumulated polyphenols and 99 differentially accumulated flavonoids were identified using metabolomics. According to the integration of transcriptome and metabolome, 15 and 8 DEGs were predicted to regulate polyphenol and flavonoid biosynthesis in Chinese olive, including 4-coumarate-CoA ligase (4CL), cinnamoyl-CoA reductase (CCR), cinnamoyl-alcohol dehydrogenase (CAD), chalcone synthase (CHS), flavanone-3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS). Additionally, the content of total polyphenols and flavonoids was found to be significantly increased in MSI and SSI samples compared with CK. Our research suggested that the sunburn stress probably activates the transcription of the structural genes involved in polyphenol and flavonoid biosynthesis in Chinese olive fruits to affect the antioxidant capacity and increase the accumulation of polyphenols and flavonoids, thereby responding to this abiotic stress. Full article
(This article belongs to the Special Issue Recent Advances in Horticultural Plant Genomics)
Show Figures

Figure 1

14 pages, 2957 KB  
Article
Integrated Transcriptomic and Metabolomic Analysis Reveals the Molecular Regulatory Mechanism of Flavonoid Biosynthesis in Maize Roots under Lead Stress
by Zhaolai Guo, Xinqi Yuan, Ting Li, Sichen Wang, Yadong Yu, Chang’e Liu and Changqun Duan
Int. J. Mol. Sci. 2024, 25(11), 6050; https://doi.org/10.3390/ijms25116050 - 31 May 2024
Cited by 8 | Viewed by 2181
Abstract
Flavonoids are secondary metabolites that play important roles in the resistance of plants to abiotic stress. Despite the widely reported adverse effects of lead (Pb) contamination on maize, the effects of Pb on the biosynthetic processes of flavonoids in maize roots are still [...] Read more.
Flavonoids are secondary metabolites that play important roles in the resistance of plants to abiotic stress. Despite the widely reported adverse effects of lead (Pb) contamination on maize, the effects of Pb on the biosynthetic processes of flavonoids in maize roots are still unknown. In the present work, we employed a combination of multi-omics and conventional assay methods to investigate the effects of two concentrations of Pb (40 and 250 mg/kg) on flavonoid biosynthesis in maize roots and the associated molecular regulatory mechanisms. Analysis using conventional assays revealed that 40 and 250 mg/kg Pb exposure increased the lead content of maize root to 0.67 ± 0.18 mg/kg and 3.09 ± 0.02 mg/kg, respectively, but they did not result in significant changes in maize root length. The multi-omics results suggested that exposure to 40 mg/kg of Pb caused differential expression of 33 genes and 34 metabolites related to flavonoids in the maize root system, while 250 mg/kg of Pb caused differential expression of 34 genes and 31 metabolites. Not only did these differentially expressed genes and metabolites participate in transferase activity, anthocyanin-containing compound biosynthetic processes, metal ion binding, hydroxyl group binding, cinnamoyl transferase activity, hydroxycinnamoyl transferase activity, and flavanone 4-reductase activity but they were also significantly enriched in the flavonoid, isoflavonoid, flavone, and flavonol biosynthesis pathways. These results show that Pb is involved in the regulation of maize root growth by interfering with the biosynthesis of flavonoids in the maize root system. The results of this study will enable the elucidation of the mechanisms of the effects of lead on maize root systems. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

26 pages, 5077 KB  
Article
The Conjugates of Indolo[2,3-b]quinoline as Anti-Pancreatic Cancer Agents: Design, Synthesis, Molecular Docking and Biological Evaluations
by Marcin Cybulski, Katarzyna Sidoryk, Magdalena Zaremba-Czogalla, Bartosz Trzaskowski, Marek Kubiszewski, Joanna Tobiasz, Anna Jaromin and Olga Michalak
Int. J. Mol. Sci. 2024, 25(5), 2573; https://doi.org/10.3390/ijms25052573 - 22 Feb 2024
Cited by 6 | Viewed by 3355
Abstract
New amide conjugates of hydroxycinnamic acids (HCAs) and the known antineoplastic 5,11-dimethyl-5H-indolo[2,3-b]quinoline (DiMIQ), an analog of the natural alkaloid neocryptolepine, were synthesized and tested in vitro for anticancer activity. The compound 9-[((2-hydroxy)cinnamoyl)amino]-5,11-dimethyl-5H-indolo[2,3-b]quinoline (2), [...] Read more.
New amide conjugates of hydroxycinnamic acids (HCAs) and the known antineoplastic 5,11-dimethyl-5H-indolo[2,3-b]quinoline (DiMIQ), an analog of the natural alkaloid neocryptolepine, were synthesized and tested in vitro for anticancer activity. The compound 9-[((2-hydroxy)cinnamoyl)amino]-5,11-dimethyl-5H-indolo[2,3-b]quinoline (2), which contains the ortho-coumaric acid fragment, demonstrated dose-dependent effectiveness against both normal BxPC-3 and metastatic AsPC-1 pancreatic cancer cells. The IC50 values for AsPC-1 and BxPC-3 were 336.5 nM and 347.5 nM, respectively, with a selectivity index of approximately 5 for both pancreatic cancer cells compared to normal dermal fibroblasts. Conjugate 2 did not exhibit any hemolytic activity against human erythrocytes at the tested concentration. Computational studies were performed to predict the pharmacokinetic profile and potential mechanism of action of the synthesized conjugates. These studies focused on the ADME properties of the conjugates and their interactions with DNA, as well as DNA–topoisomerase alpha and beta complexes. All of the conjugates studied showed approximately one order of magnitude stronger binding to DNA compared to the reference DiMIQ, and approximately two orders of magnitude stronger binding to the topoisomerase II–DNA complex compared to DiMIQ. Conjugate 2 was predicted to have the strongest binding to the enzyme–DNA complex, with a Ki value of 2.8 nM. Full article
(This article belongs to the Special Issue Development and Synthesis of Biologically Active Compounds)
Show Figures

Graphical abstract

16 pages, 5447 KB  
Article
Influence of Bagging on Fruit Quality, Incidence of Peel Browning Spots, and Lignin Content of ‘Huangguan’ Pears
by Yeqing Guan, Xiaoli Qin, Chuangqi Wei, Yunxiao Feng, Yudou Cheng, Yang Zhang and Junfeng Guan
Plants 2024, 13(4), 516; https://doi.org/10.3390/plants13040516 - 13 Feb 2024
Cited by 16 | Viewed by 2818
Abstract
The ‘Huangguan’ pear is one of the high-quality pear cultivars produced in China. However, the bagged fruit of the ‘Huangguan’ pear often suffers from peel browning spots after rain during their mature period. In this study, in an effort to discover the impact [...] Read more.
The ‘Huangguan’ pear is one of the high-quality pear cultivars produced in China. However, the bagged fruit of the ‘Huangguan’ pear often suffers from peel browning spots after rain during their mature period. In this study, in an effort to discover the impact of bagging treatments on the occurrence of peel browning spots and fruit quality, fruits were covered by single-layer, two-layer, or triple-layer paper bags six weeks after reaching full bloom. The results showed that the bagged fruits were characterized by smooth surfaces and reduced lenticels compared with the unbagged ones. The unbagged and the two-layer bagged fruits had yellow/green peels, while the single- and triple-layer bagged ones had yellow/white peels. Compared with the unbagged fruits, the bagged fruits had higher vitamin C (Vc) contents and values of peel color indexes L and a and lower soluble solid contents (SSCs), titratable acid (TA) contents, absorbance index differences (IAD), and b values. Additionally, the triple-layer bagged group was superior to other groups in terms of fruit quality, but it also had the maximum incidence of peel browning spots. Before and after the appearance of peel browning spots, the bagged fruits had smoother and thinner cuticles compared with the unbagged ones. Furthermore, the triple-layer bagged fruits had minimum lignin contents and maximum phenolic contents in their peels, with minimum activity of lignin synthesis-related enzymes such as phenylalanine ammonia lyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO), as well as minimum expressions of relevant genes such as cinnamyl alcohol dehydrogenase (CAD), cinnamoyl CoA reductase (CCR), 4-coumarate: coenzyme A ligase (4CL6), and cinnamate 4-hydroxylase (C4H1). It was deduced that POD activity and the relative expressions of CAD9, CCR3, CCR4, and CCR5 may play key roles in the occurrence of peel browning spots. In summary, lignin synthesis affected the incidence of peel browning spots in bagged ‘Huangguan’ pears. This study provides a theoretical basis for understanding the incidence of peel browning spots in ‘Huangguan’ pears. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

23 pages, 3962 KB  
Article
Biomedical Promise of Sustainable Microwave-Engineered Symmetric Curcumin Derivatives
by Cristina Doina Niţu, Maria Mernea, Raluca Ioana Vlasceanu, Bianca Voicu-Balasea, Madalina Andreea Badea, Florentina Monica Raduly, Valentin Rădiţoiu, Alina Rădiţoiu, Speranta Avram, Dan F. Mihailescu, Ionela C. Voinea and Miruna Silvia Stan
Pharmaceutics 2024, 16(2), 205; https://doi.org/10.3390/pharmaceutics16020205 - 31 Jan 2024
Cited by 3 | Viewed by 2284
Abstract
Curcumin is a polyphenol of the Curcuma longa plant, which can be used for various medicinal purposes, such as inflammation and cancer treatment. In this context, two symmetric curcumin derivatives (D1—(1E,6E)-1,7-bis(4-acetamidophenyl)hepta-1,6-diene-3,5-dione and D2—p,p-dihydroxy di-cinnamoyl methane) were obtained by the microwave-based method and evaluated [...] Read more.
Curcumin is a polyphenol of the Curcuma longa plant, which can be used for various medicinal purposes, such as inflammation and cancer treatment. In this context, two symmetric curcumin derivatives (D1—(1E,6E)-1,7-bis(4-acetamidophenyl)hepta-1,6-diene-3,5-dione and D2—p,p-dihydroxy di-cinnamoyl methane) were obtained by the microwave-based method and evaluated for their antitumoral effect on human cervix cancer in comparison with toxicity on non-tumoral cells, taking into account that they were predicted to act as apoptosis agonists or anti-inflammatory agents. The HeLa cell line was incubated for 24 and 72 h with a concentration of 50 μg/mL of derivatives that killed almost half of the cells compared to the control. In contrast, these compounds did not alter the viability of MRC-5 non-tumoral lung fibroblasts until 72 h of incubation. The nitric oxide level released by HeLa cells was higher compared to MRC-5 fibroblasts after the incubation with 100 μg/mL. Both derivatives induced the decrease of catalase activity and glutathione levels in cancer cells without targeting the same effect in non-tumoral cells. Furthermore, the Western blot showed an increased protein expression of HSP70 and a decreased expression of HSP60 and MCM2 in cells incubated with D2 compared to control cells. We noticed differences regarding the intensity of cell death between the tested derivatives, suggesting that the modified structure after synthesis can modulate their function, the most prominent effect being observed for sample D2. In conclusion, the outcomes of our in vitro study revealed that these microwave-engineered curcumin derivatives targeted tumor cells, much more specifically, inducing their death. Full article
Show Figures

Figure 1

29 pages, 7540 KB  
Article
Exploring Cinnamoyl-Substituted Mannopyranosides: Synthesis, Evaluation of Antimicrobial Properties, and Molecular Docking Studies Targeting H5N1 Influenza A Virus
by Sabina Akter, Bader Y. Alhatlani, Emad M. Abdallah, Supriyo Saha, Jannatul Ferdous, Md Emdad Hossain, Ferdausi Ali and Sarkar M. A. Kawsar
Molecules 2023, 28(24), 8001; https://doi.org/10.3390/molecules28248001 - 7 Dec 2023
Cited by 26 | Viewed by 2804
Abstract
The pursuit of innovative combinations for the development of novel antimicrobial and antiviral medications has garnered worldwide interest among scientists in recent times. Monosaccharides and their glycosides, such as methyl α-d-mannopyranoside derivatives, play a significant role in the potential treatment of [...] Read more.
The pursuit of innovative combinations for the development of novel antimicrobial and antiviral medications has garnered worldwide interest among scientists in recent times. Monosaccharides and their glycosides, such as methyl α-d-mannopyranoside derivatives, play a significant role in the potential treatment of viral respiratory pathologies. This study was undertaken to investigate and assess the synthesis and spectral characterization of methyl α-d-mannopyranoside derivatives 26, incorporating various aliphatic and aromatic groups. The investigation encompassed comprehensive in vitro antimicrobial screening, examination of physicochemical properties, molecular docking analysis, molecular dynamics simulations, and pharmacokinetic predictions. A unimolar one-step cinnamoylation reaction was employed under controlled conditions to produce methyl 6-O-cinnamoyl-α-d-mannopyranoside 2, demonstrating selectivity at the C-6 position. This represented a pivotal step in the development of potential antimicrobial derivatives based on methyl α-d-mannopyranoside. Subsequently, four additional methyl 6-O-cinnamoyl-α-d-mannopyranoside derivatives were synthesized with reasonably high yields. The chemical structures of these novel analogs were confirmed through a thorough analysis of their physicochemical properties, elemental composition, and spectroscopic data. In vitro antimicrobial assays were conducted against six bacterial strains and two fungal strains, revealing promising antifungal properties of these methyl α-d-mannopyranoside derivatives in comparison to their antibacterial activity. Moreover, cytotoxicity testing revealed that the compounds are less toxic. Further supporting these findings, molecular docking studies were performed against the H5N1 influenza A virus, indicating significant binding affinities and nonbonding interactions with the target protein 6VMZ. Notably, compounds 4 (−7.2) and 6 (−7.0) exhibited the highest binding affinities. Additionally, a 100 ns molecular dynamics simulation was conducted to assess the stability of the complex formed between the receptor 6VMZ and methyl α-d-mannopyranoside derivatives under in silico physiological conditions. The results revealed a stable conformation and binding pattern within the stimulating environment. In silico pharmacokinetic and toxicity assessments of the synthesized molecules were performed using Osiris software (version 2.9.1). Compounds 4 and 6 demonstrated favorable computational and pharmacological activities, albeit with a low drug score, possibly attributed to their higher molecular weight and irritancy. In conclusion, this study showcases the synthesis and evaluation of methyl α-d-mannopyranoside derivatives as promising candidates for antimicrobial and antifungal agents. Molecular docking and dynamics simulations, along with pharmacological predictions, contribute to our understanding of their potential therapeutic utility, although further research may be warranted to address certain pharmacological aspects. Full article
(This article belongs to the Special Issue Natural and Designed Molecules in Drug Discovery)
Show Figures

Figure 1

Back to TopTop