An Exploratory Study of the Enzymatic Hydroxycinnamoylation of Sucrose and Its Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and General Remarks on the Selection of Acceptors and Donors
2.2. Free Sucrose as an Acceptor in Enzymatic Feruloylation
2.3. Enzymatic Hydroxycinnamoylation of 2,1′:4,6-Di-O-isopropylidene Sucrose 2
2.4. Enzymatic Hydroxycinnamoylation of 4,6-O-isopropylidene Sucrose 3
2.5. Enzymatic Cinnamoylation of 3′-O-acylated Sucroses 4a and 4b
3. Materials and Methods
3.1. General
3.2. Feruloylation of Free Sucrose Using Lipozyme TL IM
- 3,6-Di-O-feruloyl-α-d-glucopyranose (7bα); 2,6-di-O-feruloyl-α-d-glucopyranose (7aα); 3,6-di-O-feruloyl-β-d-glucopyranose (7bβ); 2,6-di-O-feruloyl-β-d-glucopyranose (7aβ) (3.6:2.4:2:1), Rf = 0.63 (CHCl3:MeOH–3:1). 1H NMR (400 MHz, CD3OD) δ 7.71 (d, J = 15.9 Hz, H-A), 7.68 (d, J = 15.9 Hz, H-A), 7.66 (d, J = 16.0 Hz, H-A), 7.65 (d, J = 16.0 Hz, H-A), 7.23, 7.21, 7.20, 7.17 (4xbs, H-Ph), 7.10, 7.09, 7.09 (4xd, J = 8.3 Hz, H-Ph), 6.83 (bdd, J = 8.2, 1.8 Hz, H-Ph), 6.46 (d, J = 16.1 Hz, H-B), 6.44 (d, J = 15.9 Hz, H-B), 6.42 (d, J = 16.1 Hz, H-B), 6.41 (d, J = 15.9 Hz, H-B), 5.38 (t, J = 9.4 Hz, H-3 (7bα)), 5.37 (d, J = 4.0 Hz, H-1 (7aα)), 5.20 (d, J = 3.7 Hz, H-1 (7bα)), 5.11 (t, J = 9.3 Hz, H-3 (7bβ)), 4.85 (t overlapped with HDO, H-2 (7aβ), 4.77 (d, J = 7.9 Hz, H-1 (7aβ)), 4.74 (dd, J = 10.0, 3.7 Hz, H-2 (7aα)), 4.67 (d, J = 7.8 Hz, H-1 (7bβ)), 4.60–4.46 (m, 4×H-6a), 4.44–4.34 (m, 4×H-6b), 4.19 (ddd, J = 10.3, 5.1, 2.2 Hz, H-5 (7bα)), 4.15–4.10 (m, H-5, (7aα)), 4.01 (dd, J = 10.0, 8.9 Hz, H-3 (7aα)), 3.91, 3.90 (8xs, OCH3), 3.71 (ddd, J = 7.6, 4.6, 1.7 Hz, H-5, (7bβ)), 3.68–3.63 (m, H-5, (7aβ)), 3.66 (t, J = 9.2, H-3 (7aβ), 3.65 (dd, J = 9.8, 3.7 Hz, H-2 (7bα)), 3.64 (t, J = 9.6 Hz, H-4 (7bβ)), 3.63 (t, J = 9.7 Hz, H-4 (7bα)), 3.53 (t, J = 9.6 Hz, H-4 (7aα)), 3.52 (t, J = 9.5 Hz, H-4 (7aβ)), 3.41 (dd, J = 9.6, 7.8 Hz, H-2 (7bβ)). 13C NMR (101 MHz, CD3OD) δ 169.3, 2×169.1, 3×169.0, 168.8, 168.5 (8×COO), 98.3 (C-1 (7bβ)), 96.6 (C-1 (7aβ)), 94.0 (C-1 (7bα)), 91.4 (C-1 (7aα)).
- 2,6,1′-Tri-O-feruloyl sucrose (6a) and 6,1′,4′-tri-O-feruloyl sucrose (6b) (1.9:1), Rf = 0.47 (CHCl3:MeOH—3:1). 1H NMR (400 MHz, CD3OD) δ 7.70–7.59 (m, 5×H-A), 7.50 (d, J = 15.9 Hz, H-A (6a)), 7.31–6.98 (m, 12H-Ph), 6.81 (d, J = 8.2 Hz, H-Ph (6a)), 6.81 (d, J = 8.2 Hz, H-Ph (6b)), 6.80 (d, J = 8.2 Hz, H-Ph (6b)), 6.79 (d, J = 8.2 Hz, H-Ph (6a)), 6.77 (d, J = 8.2 Hz, H-Ph (6a)), 6.75 (d, J = 8.2 Hz, H-Ph (6b)), 6.54 (d, J = 16.0 Hz, H-B (6b)), 6.41 (d, J = 15.9 Hz, H-B (6b)), 6.38 (d, J = 15.9 Hz, H-B (6b)), 6.47 (d, J = 15.9 Hz, (6a)), 6.40 (d, J = 15.9 Hz, (6a)), 6.32 (d, J = 15.9 Hz, H-B (6a)), 5.74 (d, J = 3.7 Hz, H-1 (6a)), 5.53 (d, J = 3.8 Hz, H-1 (6b)), 5.41 (t, J = 7.5 Hz, H-4′ (6b)), 4.84 (dd, H-2 (6a) overlapped with HDO), 4.61 (bd, J = 10.0 Hz, H-6a (6b)), 4.56 (dd, J = 11.5, 1.7 Hz, H-6a (6a)), 4.51 (d, J = 12.2 Hz, H-1′a (6b)), 4.49 (d, J = 7.9 Hz, H-3′ (6b)), 4.35 (d, J = 12.2 Hz, H-1′b (6b)), 4.32 (dd, J = 11.7, 6.5 Hz, H-6b (6a)), 4.26 (d, J = 11.9 Hz, H-1′a (6a)), 4.29–4.21 (m, H-5 (6a), H-5 (6b) and H-6b (6b)), 4.17 (d, J = 11.9 Hz, H-1′b (6a)), 4.14 (d, J = 8.5 Hz, H-3′ (6a)), 4.10 (t, J = 8.2 Hz, H-4′ (6a)), 4.09–3.98 (m, H-5′ (6b)), 4.05 (t, J = 9.6 Hz, H-3 (6a)), 4.01–3.76 (m, H-6′a (6b), H-6′a (6a), H-6′b (6b), H-5′ (6a) and H-6′b (6a)), 3.89, 3.89, 3.88, 3.88, 3.85, 3.83 (6xs, OCH3), 3.77 (t, J = 9.3 Hz, H-3 (6b)), 3.76 (dd, H-6′ (6a)), 3.50 (dd, J = 9.8, 3.8 Hz, H-2 (6b)), 3.48 (t, J = 9.5 Hz, H-4 (6a)), 3.32 (t, H-4 (6b) overlapped with CD3OD). 13C NMR (101 MHz, CD3OD) δ 169.4, 169.2, 168.9, 168.5, 2×168.4 (6×COO), 104.7 (C-2′ (6b)), 103.9 (C-2′ (6a)), 94.0 (CH-1 (6b)), 91.1 (CH-1 (6a)).
- 6,1′-Di-O-feruloyl sucrose (6c). White amorphous solid; = +11.1° (c = 1.0, CH3OH), Rf = 0.50 (CHCl3:MeOH—3:1). 1H NMR (400 MHz, CD3OD) δ 7.63 (2×d, J = 15.9 Hz, 2H, 2×H-A), 7.21 (d, J = 1.9 Hz, 1H, H-Ar), 7.18 (d, J = 2.0 Hz, 1H, H-Ar), 7.08 (dd, J = 8.2, 1.9 Hz, 1H, H-Ar), 7.07 (dd, J = 8.2, 1.9 Hz, 1H, H-Ar), 6.81 (d, J = 8.2 Hz, 1H, H-Ar), 6.80 (d, J = 8.1 Hz, 1H, H-Ar), 6.43 (d, J = 15.9 Hz, 1H, H-B), 6.37 (d, J = 15.9 Hz, 1H, H-B), 5.47 (d, J = 3.8 Hz, 1H, H-1), 4.53 (dd, J = 11.9, 2.0 Hz, 1H, H-6a), 4.44 (d, J = 12.1 Hz, 1H, H-1′a), 4.29 (d, J = 12.1 Hz, 1H, H-1′b), 4.27 (dd, J = 11.9, 6.4 Hz, 1H, H-6b), 4.19–4.13 (m, 1H, H-5), 4.18 (d, J = 8.5 Hz, 1H, H-3′), 4.11 (t, J = 8.1 Hz, 1H, H-4′), 3.89 (s, 3H, OCH3), 3.88 (s, 3H, OCH3), 3.87–3.77 (m, 3H, H-6′a, H-5′, H-6′b), 3.74 (dd, J = 9.8, 8.9 Hz, 1H, H-3), 3.48 (dd, J = 9.8, 3.9 Hz, 1H, H-2), 3.34 (t, J = 9.6 Hz, 1H, H-4). 13C NMR (101 MHz, CD3OD) δ 169.2 (COO), 168.5 (COO), 150.7 (C-Ar), 150.6 (C-Ar), 149.4 (C-Ar), 149.3 (C-Ar), 147.4 (CH-A), 147.1 (CH-A), 127.7 (C-Ar), 127.6 (C-Ar), 124.3 (CH-Ar), 124.3 (CH-Ar), 116.5 (CH-Ar), 116.4 (CH-Ar), 115.3 (CH-B), 115.0 (CH-B), 111.7 (2×CH-Ar), 104.3 (C-2′), 93.9 (C-1), 84.0 (C-5′), 78.8 (C-3′), 75.6 (C-4′), 74.6 (C-3), 73.0 (C-2), 72.1 (C-5), 72.0 (C-4), 65.1 (C-6), 64.1 (C-1′), 64.0 (C-6′), 56.5 (2×OCH3). HRMS (ESI): m/z calcd. for C32H38O17Na ([M + Na]+) 717.20012, found 717.20015.
- 1-Feruloyl-β-d-fructopyranose (8d), 1-feruloyl-α-d-fructofuranose (8b), 6-feruloyl-β-d-fructofuranose (8c). (1:1.2:1.4), Rf = 0.42 (CHCl3:MeOH–3:1). 13C NMR (101 MHz, CD3OD) δ 105.2 (C-2, 8b), 103.2 (C-2, 8c), 98.2 (C-2, 8d).
- 6-O-Feruloyl-α,β-d-glucopyranose. (7c, α:β—1:1), Rf = 0.39 (CHCl3:MeOH—3:1). 1H NMR (400 MHz, CD3OD) δ 7.63 (2×d, J = 15.9 Hz, 2H, 2×H-A), 7.18 (2×d, J = 1.9 Hz, 2H, 2×H-Ph), 7.07 (2×dd, J = 8.2, 2.0 Hz, 2H, 2×H-Ph), 6.82 (2×d, J = 8.1 Hz, 2H, 2×H), 6.36 (2×d, J = 15.9 Hz, 2H, 2×H-B), 5.11 (d, J = 3.7 Hz, 1H, H-1α), 4.51 (d, J = 7.9 Hz, 1H, H-1β), 4.51 (dd, J = 11.9, 2.2 Hz, 1H, H-6a), 4.46 (dd, J = 11.9, 2.3 Hz, 1H, H-6a), 4.34 (dd, J = 11.9, 5.5 Hz, 2H, H-6b), 4.31 (dd, J = 12.0, 5.8 Hz, 1H, H-6b), 4.04 (ddd, J = 10.1, 5.4, 2.3 Hz, 1H, H-5), 3.89 (2×s, 6H, 2×OCH3), 3.70 (t, J = 9.2 Hz, 1H, H-3α), 3.55 (ddd, J = 9.7, 5.8, 2.1 Hz, 1H, H-5), 3.42–3.33 (m, 4H, 2×H-4, H-2α, H-3β), 3.17 (dd, J = 9.2, 7.9 Hz, 1H, H-2β). 13C NMR (101 MHz, CD3OD) δ 169.2 (COO), 169.1 (COO), 150.8 (C-Ph), 150.7 (C-Ph), 149.5 (2×C-Ph), 147.0 (CH-A), 146.9 (CH-A), 127.8 (2×C-Ph), 124.1 (2×CH-Ph), 116.6 (2×CH-Ph), 115.4 (2×CH-B), 111.9 (2×CH-Ph), 98.3 (C-1β), 94.1 (C-1α), 76.3 (C-2β), 75.6 (C-5), 74.9 (C-3α), 78.0, 73.9, 72.1, 71.8 (C-2α, C-3β, 2×C-4), 70.9 (C-5), 65.0, 64.9 (2×C-6), 56.6 (2×OCH3).
- 6-O-Feruloyl sucrose (6d), Rf = 0.25 (CHCl3:MeOH—3:1). 1H NMR (400 MHz, CD3OD) δ 7.65 (d, J = 15.9 Hz, 1H, H-A), 7.19 (d, J = 2.0 Hz, 1H, H-Ar), 7.08 (dd, J = 8.3, 2.0 Hz, 1H, H-Ar), 6.80 (d, J = 8.1 Hz, 1H, H-Ar), 6.37 (d, J = 15.9 Hz, 1H, H-B), 5.40 (d, J = 3.8 Hz, 1H, H-1), 4.50 (dd, J = 11.7, 7.4 Hz, 1H, H-6a), 4.42 (dd, J = 11., 3.3 Hz, 1H, H-6b), 4.13 (d, J = 8.2 Hz, 1H, H-3′), 4.08 (t, J = 7.9 Hz, 1H, H-4′), 3.99 (td, J = 11.5, 3.2 Hz, 1H, H-5), 3.90 (s, 3H, OCH3), 3.89–3.81 (m, 2H, H-6′a, H-5′), 3.77–3.69 (m, 2H, H-6′b, H-3), 3.67 (d, J = 12.3 Hz, 1H, H-1′a), 3.63 (d, J = 12.5 Hz, 1H, H-1′b), 3.48 (dd, J = 9.8, 3.8 Hz, 1H, H-2), 3.34 (t, J = 9.5 Hz, 1H, H-4). 13C NMR (101 MHz, CD3OD) δ 105.6 (C-2′), 93.5 (CH-1).
3.3. General Procedure for the Enzymatic Hydroxycinnamoylation of 2,1′:4,6-Di-O-isopropylidene Sucrose 2
- 6′-O-Coumaroyl-2,1′:4,6-di-O-isopropylidene sucrose (9a). White amorphous solid; = +55.9° (c = 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.64 (d, J = 15.9 Hz, 1H, H-A), 7.46 (d, J = 8.7 Hz, 2H, H-Ph), 6.81 (d, J = 8.6 Hz, 2H, H-Ph), 6.35 (d, J = 15.9 Hz, 1H, H-B), 6.05 (d, J = 3.7 Hz, 1H, H-1), 4.47–4.41 (m, 1H, H-6′a), 4.31–4.22 (m, 1H, H-6′b), 4.13 (d, J = 12.3 Hz, 1H, H-1′a), 4.08–4.03 (m, 2H, H-4′, H-5′), 3.92–3.82 (m, 3H, H-3, H-5, H-6a), 3.75–3.67 (m, 3H, H-2, H-6b, H-3′), 3.55 (t, J = 9.4 Hz, 1H, H-4), 3.44 (d, J = 12.3 Hz, 1H, H-1′b), 1.50 (s, 3H, CH3), 1.47 (s, 3H, CH3), 1.38 (s, 6H, 2×CH3). 13C NMR (101 MHz, CD3OD) δ 169.0 (COO), 161.2 (C-Ph),146.7 (CH-A), 131.2 (CH-Ph), 127.2 (C-Ph), 116.8 (CH-Ph), 115.0 (CH-B), 105.2 (C-2′), 102.8 (C-izopr), 100.8 (C-izopr), 92.4 (C-1), 81.1 (C-5′), 80.0 (C-3′), 77.9 (C-4′), 75.2 (C-2), 74.8 (C-4), 70.9 (C-3), 67.5 (C-6′), 66.9 (C-1′), 64.6 (C-5), 63.4 (C-6), 29.5 (CH3), 25.5 (CH3), 24.4 (CH3), 19.3 (CH3). HRMS (ESI): m/z calcd. for C27H36O13Na ([M + Na]+) 591.20481, found 591.20485.
- 6′-O-Feruloyl-2,1′:4,6-di-O-isopropylidene sucrose (9b). White amorphous solid; = +57.7° (c = 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.63 (d, J = 15.9 Hz, 1H, H-A), 7.07 (dd, J = 8.2, 2.0 Hz, 1H, H-Ph), 6.81 (d, J = 8.2 Hz, 2H, H-Ph), 6.38 (d, J = 15.9 Hz, 1H, H-B), 6.05 (d, J = 3.8 Hz, 1H, H-1), 4.48–4.42 (m, 1H, H-6′a), 4.30–4.22 (m, 1H, H-6′b), 4.13 (d, J = 12.3 Hz, 1H, H-1′a), 4.08–4.03 (m, 2H, H-4′, H-5′), 3.89 (s, 3H, OCH3), 3.89–3.83 (m, 3H, H-3, H-5, H-6a), 3.75–3.66 (m, 3H, H-2, H-6b, H-3′), 3.55 (t, J = 9.3 Hz, 1H, H-4), 3.44 (d, J = 12.3 Hz, 1H, H-1′b), 1.50 (s, 3H, CH3), 1.47 (s, 3H, CH3), 1.38 (s, 6H, 2×CH3). 13C NMR (101 MHz, CD3OD) δ 168.9 (COO), 150.6 (C-Ph), 149.3 (C-Ph), 147.0 (CH-A), 127.7 (C-Ph), 124.1 (CH-Ph), 116.5 (CH-Ph), 115.3 (CH-B), 111.7 (CH-Ph), 105.2 (C-2′), 102.8 (C-izopr), 100.8 (C-izopr), 92.4 (C-1), 81.1 (C-5′), 80.0 (C-3′), 77.9 (C-4′), 75.2 (C-2), 74.8 (C-4), 70.9 (C-3), 67.5 (C-6′), 66.9 (C-1′), 64.6 (C-5), 63.4 (C-6), 56.5 (OCH3), 29.5 (CH3), 25.5 (CH3), 24.4 (CH3), 19.4 (CH3). HRMS (ESI): m/z calcd. for C28H38O14Na ([M + Na]+) 621.21538; found 621.21587.
3.4. General Procedure for the Enzymatic Hydroxycinnamoylation of 4,6-O-isopropylidene Sucrose 3
- 1′-O-Coumaroyl-4,6-O-isopropylidene sucrose (10a). White amorphous solid, = +15.2° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.65 (d, J = 15.9 Hz, 1H, H-A), 7.47 (d, J = 8.7 Hz, 2H, H-Ph), 6.81 (d, J = 8.7 Hz, 2H, H-Ph), 6.36 (d, J = 15.9 Hz, 1H, H-B), 5.43 (d, J = 4.0 Hz, 1H, H-1), 4.42 (d, J = 12.1 Hz, 1H, H-1′a), 4.23 (d, J = 12.1 Hz, 1H, H-1′b), 4.16 (d, J = 8.6 Hz, 1H, H-3′), 4.09 (t, J = 8.4 Hz, 1H, H-4′), 3.87 (t, J = 9.7 Hz, 1H), 3.94–3.83 (m, 2H, H-5, H-6a), 3.82–3.66 (m, 5H, H-5′, H-3, H-6′a, H-6′b, H-6b) 3.51 (dd, J = 9.5, 3.8 Hz, 1H, H-2), 3.51 (t, J = 9.5 Hz, 1H, H-4), 1.50 (s, 3H, CH3), 1.38 (s, 3H, CH3). 13C NMR (101 MHz, CD3OD) δ 168.4 (COO), 161.4 (C-Ph), 147.1 (CH-A), 131.3 (CH-Ph), 127.1 (C-Ph), 116.8 (CH-Ph), 114.7 (CH-B), 104.2 (C-2′), 100.8 (C-Izopr), 94.7 (C-1), 83.9 (C-5′), 78.5 (C-3′), 75.1 (C-4), 74.7 (C-4′), 73.7 (C-2), 71.9 (C-3), 65.4 (C-5), 63.7 (C-1′), 63.2, 62.9 (C-6, C-6′), 29.4 (CH3), 19.3 (CH3). HRMS (ESI): m/z calcd. for C24H32O13Na ([M + Na]+) 551.17351; found 551.17349.
- 4′-O-Coumaroyl-4,6-O-isopropylidene sucrose (11a). White foam, = +9.8° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.68 (d, J = 15.9 Hz, 1H, H-A), 7.48 (d, J = 8.7 Hz, 2H, H-Ph), 6.82 (d, J = 8.7 Hz, 2H, H-Ph), 6.38 (d, J = 15.9 Hz, 1H, H-B), 5.43 (d, J = 4.0 Hz, 1H, H-1), 5.38 (t, J = 7.6 Hz, 1H, H-4′), 4.47 (d, J = 7.9 Hz, 1H, H-3′), 4.02–3.96 (m, 2H, H-5′, H-5), 3.93 (dd, J = 10.2, 5.2 Hz, 1H, H-6a), 3.81 (t, J = 9.3 Hz, 1H, H-3), 3.77–3.71 (m, 3H, H-6′a, H-6′b, H-6b), 3.68 (d, J = 12.4 Hz, 1H, H-1′a), 3.61 (d, J = 12.4 Hz, 1H, H-1′b), 3.53 (dd, J = 9.4, 4.1 Hz, 1H, H-2), 3.52 (t, J = 9.4 Hz, 1H, H-4), 1.51 (s, 3H, CH3) 1.40 (s, 3H, CH3). 13C NMR (101 MHz, CD3OD) δ 168.6 (COO), 161.5 (C-Ph), 147.5 (CH-A), 131.3 (CH-Ph), 127.0 (C-Ph), 116.9 (CH-Ph), 114.5 (CH-B), 105.9 (C-2′), 100.8 (C-Izopr), 94.3 (C-1), 82.5 (C-5′), 77.8 (C-4′), 77.0 (C-3′), 75.1 (C-4), 73.7 (C-2), 72.0 (C-3), 65.4 (C-5), 63.6 (C-1′), 63.5 (C-6′), 63.2 (C-6), 29.5 (CH3), 19.4 (CH3). HRMS (ESI): m/z calcd. for C24H32O13Na ([M + Na]+) 551.17351; found 551.17356.
- 6′-O-Coumaroyl-4,6-O-isopropylidene sucrose (12a). White amorphous solid, = +52.3° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.64 (d, J = 16.0 Hz, 1H, H-A), 7.46 (d, J = 8.7 Hz, 2H, H-Ph), 6.81 (d, J = 8.6 Hz, 2H, H-Ph), 6.35 (d, J = 16.0 Hz, 1H, H-B), 5.37 (d, J = 4.0 Hz, 1H, H-1), 4.44–4.32 (m, 2H, H-6′a, H-6′b), 4.14 (d, J = 7.9 Hz, 1H, H-3′), 4.05 (t, J = 7.9 Hz, 1H, H-4′), 4.00 (ddd, J = 7.9, 6.0, 4.3 Hz, 1H, H-5′), 3.96–3.89 (m, 2H, H-5, H-6a), 3.78 (t, J = 9.3 Hz, 1H, H-3), 3.75–3.69 (m, 1H, H-6b), 3.65 (d, J = 12.2 Hz, 1H, H-1′a), 3.62 (d, J = 12.1 Hz, 1H, H-1′b), 3.49 (t, J = 9.4 Hz, 1H, H-4), 3.48 (dd, J = 9.4, 4.0 Hz, 1H, H-2), 1.49 (s, 3H, CH3), 1.37 (s, 3H, CH3). 13C NMR (101 MHz, CD3OD) δ 169.0 (COO), 161.3 (C-Ph), 146.8 (CH-A), 131.2 (CH-Ph), 127.2 (C-Ph), 116.8 (CH-Ph), 115.0 (CH-B), 105.7 (C-2′), 100.8 (C-Izopr), 94.1 (C-1), 80.8 (C-5′), 78.6 (C-2′), 76.8 (C-4′), 75.3 (C-4), 74.1 (C-2), 72.1 (C-3), 66.5 (C-6′), 65.3 (C-5), 63.5, 63.4 (C-1′, C-6), 29.5 (CH3), 19.3 (CH3). HRMS (ESI): m/z calcd. for C24H32O13Na ([M + Na]+) 551.17351; found 551.17339.
- 1′,4′-Di-O-coumaroyl-4,6-O-isopropylidene sucrose (13a). White foam, = +30.4° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.69 (d, J = 15.9 Hz, 1H, H-A1), 7.68 (d, J = 15.9 Hz, 1H, H-A2), 7.49 (d, J = 8.5 Hz, 2H, H-Ph1), 7.47 (d, J = 8.5 Hz, 2H, H-Ph2), 6.81 (d, J = 8.6 Hz, 2H, H-Ph1), 6.81 (d, J = 8.6 Hz, 2H, H-Ph2), 6.39 (d, J = 15.8 Hz, 1H, H-B1), 6.38 (d, J = 15.9 Hz, 1H, H-B2), 5.50 (d, J = 4.0 Hz, 1H, H-1), 5.41 (t, J = 7.8 Hz, 1H, H-4′), 4.48 (d, J = 8.0 Hz, 1H, H-3′), 4.47 (d, J = 12.2 Hz, 1H, H-1′a), 4.32 (d, J = 12.2 Hz, 1H, H-1′b), 4.05–3.98 (m, 2H, H-5, H-5′), 3.94 (dd, J = 10.3, 5.2 Hz, 1H, H-6a), 3.80 (t, J = 9.4 Hz, 1H, H-3), 3.81–3.72 (m, 3H, H-6′a, H-6′b, H-6b), 3.55 (dd, J = 9.5, 4.1 Hz, 1H, H-2), 3.54 (t, J = 9.4 Hz, 1H, H-4), 1.52 (s, 3H, CH3), 1.40 (s, 3H, CH3). 13C NMR (101 MHz, CD3OD) δ 168.5 (COO), 168.4 (COO), 161.5 (C-Ph), 161.4 (C-Ph), 147.6 (CH-A), 147.3 (CH-A), 131.4 (2×CH-Ph), 131.3 (2×CH-Ph), 127.1 (C-Ph), 127.0 (C-Ph), 116.9 (4×CH-Ph), 114.6 (CH-B), 114.4 (CH-B), 104.8 (C-2′), 100.8 (C-Izopr), 94.9 (C-1), 82.6 (C-5′), 77.2 (C-4′), 77.0 (C-3′), 75.2 (C-4), 73.8 (C-2), 72.1 (C-3), 65.5 (C-5), 63.7, 63.6 (C-1′, C-6′), 63.2 (C-6), 29.5 (CH3), 19.4 (CH3). HRMS (ESI): m/z calcd. for C33H38O15Na ([M + Na]+) 697.21029; found 697.21004.
- 1′,6′-Di-O-coumaroyl-4,6-O-isopropylidene sucrose (14a). White amorphous solid, = −14.5° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.67 (d, J = 15.9 Hz, 1H, H-A1), 7.64 (d, J = 16.0 Hz, 1H, H-A2), 7.48 (d, J = 8.5 Hz, 2H, H-Ph1), 7.46 (d, J = 8.6 Hz, 2H, H-Ph2), 6.81 (d, J = 8.8 Hz, 2H, H-Ph1), 6.80 (d, J = 8.8 Hz, 2H, H-Ph2), 6.38 (d, J = 15.9 Hz, 1H, H-B1), 6.38 (d, J = 16.0 Hz, 1H, H-B2), 5.43 (d, J = 4.0 Hz, 1H, H-1), 4.46–4.36 (m, 3H, H-1′a, H-6′a, H-6′b), 4.31 (d, J = 12.1 Hz, 1H, H-1′b), 4.17 (d, J = 8.2 Hz, 1H, H-3′), 4.09 (t, J = 8.2 Hz, 1H, H-4′), 4.01 (ddd, J = 8.1, 5.8, 4.2 Hz, 1H, H-5′), 3.98–3.93 (m, 1H, H-5), 3.91 (dd, J = 10.3, 5.2 Hz, 1H, H-6a), 3.78 (t, 9.2, 1H, H-3), 3.73 (t, J = 10.2 Hz, 1H, H-6b), 3.51 (t, J = 9.4 Hz, 1H, H-4), 3.50 (dd, J = 9.4, 4.2 Hz, 1H, H-2), 1.49 (s, 3H, CH3), 1.37 (s, 3H, CH3). 13C NMR (101 MHz, CD3OD) δ 169.0 (COO), 168.4 (COO), 161.4 (C-Ph1), 161.3 (C-Ph2), 147.2 (CH-A1), 146.8 (CH-A2), 131.3 (CH-Ph1), 131.3 (CH-Ph2), 127.2 (C-Ph1), 127.1 (C-Ph2), 116.8 (CH-Ph1), 116.8 (CH-Ph2), 115.0 (CH-B1), 114.7 (CH-B2), 104.6 (C-2′), 100.8 (C-Izopr), 94.6 (C-1), 80.9 (C-5′), 78.6 (C-3′), 76.1 (C-4′), 75.3 (C-4), 74.0 (C-2), 72.1 (C-3), 66.1 (C-6′), 65.4 (C-5), 63.8 (C-1′), 63.3 (C-6), 29.5 (CH3), 19.4 (CH3). HRMS (ESI): m/z calcd. for C33H38O15Na ([M + Na]+) 697.21029; found 697.21069.
- 1′-O-Feruloyl-4,6-O-isopropylidene sucrose (10b). White amorphous solid, = +14.7° (c 1.0, MeOH). 1H NMR (400 MHz, CD3OD) δ 7.65 (d, J = 15.9 Hz, 1H, H-A), 7.19 (d, J = 1.9 Hz, 1H, H-Ph), 7.08 (dd, J = 8.1, 1.9 Hz, 1H, H-Ph), 6.81 (d, J = 8.2 Hz, 1H, H-Ph), 6.39 (d, J = 15.9 Hz, 1H, H-B), 5.43 (d, J = 4.0 Hz, 1H, H-1), 4.42 (d, J = 12.2 Hz, 1H, H-1′a), 4.24 (d, J = 12.1 Hz, 1H, H-1′b), 4.17 (d, J = 8,6 Hz, 1H, H-3′), 4.09 (t, J = 8.5 Hz, 1H, H-4′), 3,93–3,83 (m, 2H, H-5, H-6a), 3.89 (s, 3H, OCH3), 3.82–3.67 (m, 4H, H-5′, H-6′a, H-6′b, H-6b), 3.78 (t, J = 9.8 Hz, 1H, H-3), 3.52 (dd, J = 9.6, 4.0 Hz, 1H, H-2), 3.51 (t, J = 9.3 Hz, 1H, H-4), 1.50 (s, 3H, CH3), 1.38 (s, 3H, CH3). 13C NMR (101 MHz, CD3OD) δ 168.4 (COO), 150.7 (C-Ph), 149.4 (C-Ph), 147.4 (C-A), 127.6 (C-Ph), 124.3 (CH-Ph), 116.5 (CH-Ph), 114.9 (CH-B), 111.7 (CH-Ph), 104.2 (C-2′), 100.8 (C-Izopr), 94.7 (C-1), 83.9 (C-5′), 78.5 (C-3′), 75.1 (C-4), 74.7 (C-4′), 73.7 (C-2), 71.9 (C-3), 65.4 (C-5), 63.7 (C-1′), 63.2 (C-6), 62.9 (C-6′), 56.5 (OCH3), 29.4 (CH3), 19.3 (CH3). HRMS (ESI): m/z calcd. for C25H34O14 [M + Na]+ = 581.18408, found 581.18411.
- 4′-O-Feruloyl-4,6-O-isopropylidene sucrose (11b). White foam, = +8.2° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.69 (d, J = 15.9 Hz, 1H, H-A), 7.22 (d, J = 2.0 Hz, 1H, H-Ph), 7.10 (dd, J = 8.2, 2.0 Hz, 1H, H-Ph), 6.82 (d, J = 8.1 Hz, 1H, H-Ph), 6.42 (d, J = 15.8 Hz, 1H, H-B), 5.43 (d, J = 4.0 Hz, 1H, H-1), 5.38 (t, J = 7.6 Hz, 1H, H-4′), 4.47 (d, J = 7.9 Hz, 1H, H-3′), 4.03–3.96 (m, 2H, H-5′, H-5), 3.94 (dd, J = 10.6, 5.2 Hz, 1H, H-6a), 3.90 (s, 3H, OCH3), 3.81 (t, J = 9.3 Hz, 1H, H-3), 3.77–3.70 (m, 3H, H-6′a, H-6′b, H-6), 3.68 (d, J = 12.4 Hz, 1H, H-1′a), 3.61 (d, J = 12.3 Hz, 1H, H-1′b), 3.53 (dd, J = 9.4, 4.1 Hz, 1H, H-2), 3.52 (t, J = 9.4 Hz, 1H, H-4), 1.52 (s, 3H), 1.40 (s, 3H). 13C NMR (101 MHz, CD3OD) δ 168.6 (COO), 150.9 (C-Ph), 149.4 (C-Ph), 147.7 (CH-A), 127.6 (C-Ph), 124.3 (CH-Ph), 116.5 (CH-Ph), 114.8 (CH-B), 111.8 (CH-Ph), 105.9 (C-2′), 100.8 (C-Izopr), 94.3 (C-1), 82.5 (C-5′), 77.8 (C-4′), 77.0 (C-3′), 75.2 (C-4), 73.9 (C-2), 72.0 (C-3), 65.5 (C-5), 63.6, 63.5 (C-6′, C-1′), 63.3 (C-6), 56.5 (OCH3), 29.5 (CH3), 19.4 (CH3). HRMS (ESI): m/z calcd. for C25H34O14 [M + Na]+ = 581.18408; found 581.18409.
- 6′-O-Feruloyl-4,6-O-isopropylidene sucrose (12b). White foam, = +49.0° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.63 (d, J = 15.9 Hz, 1H, H-A), 7.20 (d, J = 2.0 Hz, 1H, H-Ph), 7.07 (dd, J = 8.2, 1.9 Hz, 1H, H-Ph), 6.81 (d, J = 8.2 Hz, 1H, H-Ph), 6.40 (d, J = 15.9 Hz, 1H, H-B), 5.36 (d, J = 4.0 Hz, 1H, H-1), 4.39 (dd, J = 11.8, 5.9 Hz, 1H, H-6′a), 4.39 (dd, J = 11.5, 4.3 Hz, 1H, H-6′b), 4.15 (d, J = 7.9 Hz, 1H, H-3′), 4.05 (t, J = 7.9 Hz, 1H, H-4′), 4.00 (ddd, J = 7.7, 5.6, 4.2 Hz, 1H, H-5′), 3.96 (bdd, J = 10.0, 4.9 Hz, 1H, H-5), 3.91 (dd, J = 10.4, 4.4 Hz, 1H, H-6a), 3.90 (s, 3H, OCH3), 3.79 (t, J = 9.3 Hz, 1H, H-3), 3.72 (t, J = 10.1 Hz, 1H, H-6b), 3.67 (d, J = 12.4 Hz, 1H, H-1′a), 3.63 (d, J = 12.3 Hz, 1H, H-1′b), 3.49 (t, J = 9.0 Hz, 1H, H-4), 3.49 (dd, J = 9.2, 4.5 Hz, 1H, H-2), 1.49 (s, 3H, CH3), 1.37 (s, 3H, CH3). 13C NMR (101 MHz, CD3OD) δ 169.0 (COO), 150.6 (C-Ph), 149.4 (C-Ph), 147.1 (C-A), 127.7 (C-Ph), 124.2 (CH-Ph), 116.5 (CH-Ph), 115.3 (CH-B), 111.7 (CH-Ph), 105.7 (C-2′), 100.8 (C-Izopr), 94.2 (C-1), 80.8 (C-5′), 78.6 (C-3′), 76.8 (C-4′), 75.3 (C-4), 74.1 (C-2), 72.1 (C-3), 66.4 (C-6′), 65.3 (C-5), 2×63.4 (C-1′, C-6), 56.5 (OCH3), 29.5 (CH3), 19.4 (CH3). HRMS (ESI): m/z calcd. for C25H34O14 [M + Na]+ = 581.18408; found 581.18412.
- 1′,4′-Di-O-feruloyl-4,6-O-isopropylidene sucrose (13b). Colorless foam, = +39.7° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.69 (d, J = 16.0 Hz, 1H, H-A1), 7.67 (d, J = 16.0 Hz, 1H, H-A2), 7.21 (d, J = 2.2 Hz, 1H, H-Ph1), 7.19 (d, J = 1.8 Hz, 1H, H-Ph1), 7.09 (dd, J = 8.2, 2.1 Hz, 1H, H-Ph1), 7.08 (dd, J = 8.3, 1.9 Hz, 1H, H-Ph2), 6.81 (d, J = 8.1 Hz, 2H, H-Ph1, H-Ph2), 6.43 (d, J = 16.0 Hz, 1H, H-B1), 6.41 (d, J = 15.9 Hz, 1H, H-B2), 5.50 (d, J = 4.0 Hz, 1H, H-1), 5.41 (t, J = 7.6 Hz, 1H, H-4′), 4.49 (d, J = 8.0 Hz, 1H, H-3′), 4.47 (d, J = 12.3 Hz, 1H, H-1′a), 4.33 (d, J = 12.2 Hz, 1H, H-1′b), 4.05 (ddd, J = 10.2, 5.2, 3.5 Hz, 1H, H-5′), 4.05–3.99 (m, 1H, H-5), 3.95 (dd, J = 10.3, 5.2 Hz, 1H, H-6a), 3.89 (s, 3H, OCH3), 3.88 (s, 3H, OCH3), 3.80 (t, J = 9.2 Hz, 1H, H-3), 3.79–3.71 (m, 3H, H-6′a, H-6′b, H-6b), 3.55 (dd, J = 9.5, 4.1 Hz, 1H, H-2), 3.54 (t, J = 9.6 Hz, 1H, H-4), 1.52 (s, 3H, CH3), 1.40 (s, 3H, CH3). 13C NMR (101 MHz, CD3OD) δ 168.5 (COO), 168.4 (COO), 150.9 (C-Ph1), 150.8 (C-Ph2), 2×149.4 (C-Ph1,C-Ph2), 147.8 (CH-A1), 147.6 (CH-A2), 2×127.6 (C-Ph1, C-Ph2), 124.4 (CH-Ph1), 124.3 (CH-Ph2), 2×116.5 (CH-Ph1, CH-Ph2), 114.9 (CH-B1), 114.7 (CH-B2), 2×111.7 (CH-Ph1, CH-Ph2), 104.8 (C-2′), 100.8 (C-Izopr), 94.9 (C-1), 82.6 (C-5′), 77.3 (C-4′), 77.0 (C-3′), 75.2 (C-4), 73.8 (C-2), 72.1 (C-3), 65.5 (C-5), 63.7 (C-1′), 63.7 (C-6′), 63.3 (C-6), 2×56.5 (2×OCH3), 29.5 (CH3), 19.4 (CH3). HRMS (ESI): m/z calcd. for C35H42O17 [M + Na]+ = 757.23142; found 757.23129.
- 1′,6′-Di-O-feruloyl-4,6-O-isopropylidene sucrose (14b). White amorphous solid, = −14.0° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.65 (d, J = 15.9 Hz, 1H, H-A1), 7.62 (d, J = 15.9 Hz, 1H, H-A2), 7.19 (d, J = 2.0 Hz, 1H, H-Ph1), 7.18 (d, J = 2.0 Hz, 1H, H-Ph2), 7.07 (dd, J = 8.3, 2.0 Hz, 1H, H-Ph1), 7.05 (dd, J = 8.4, 2.0 Hz, 1H, H-Ph2), 6.81 (d, J = 8.2 Hz, 1H, H-Ph1), 6.80 (d, J = 8.2 Hz, 1H, H-Ph1), 6.42 (d, J = 15.9 Hz, 1H, H-B1), 6.40 (d, J = 15.9 Hz, 1H, H-B2), 5.42 (d, J = 4.0 Hz, 1H, H-1), 4.44 (d, J = 12.2 Hz, 1H, H-1′a), 4.42–4.41 (m, 2H, H-6′a, H-6′b), 4.32 (d, J = 12.1 Hz, 1H, H-1′b), 4.19 (d, J = 8.2 Hz, 1H, H-3′), 4.09 (t, J = 8.2 Hz, 1H, H-4′), 4.03 (ddd, J = 10.1, 6.9, 4.6 Hz, 1H, H-5′), 3.99 (td, J = 10.2, 5.1 Hz, 1H, H-5), 3.91 (dd, J = 10.4, 5.2 Hz, 1H, H-6a), 3.88 (s, 6H, OCH3), 3.79 (t, J = 9.4 Hz, 1H, H-3), 3.73 (t, J = 10.5 Hz, 1H, H-6b), 3.51 (t, J = 9.5 Hz, 1H, H-4), 3.50 (dd, J = 9.5, 4.0 Hz, 1H, H-2), 1.49 (s, 3H, CH3), 1.36 (s, 3H, CH3). 13C NMR (101 MHz, CD3OD) δ 169.0 (COO), 168.4 (COO), 150.7 (C-Ph1), 150.6 (C-Ph2), 2×149.3 (C-Ph1,2), 147.5 (CH-A1), 147.1 (CH-A2), 127.7 (C-Ph1), 127.6 (C-Ph2), 2×124.3 (2×CH-Ph1,2), 116.5 (CH-Ph1), 116.4 (CH-Ph2), 115.3 (CH-B1), 114.9 (CH-B2), 2×111.7 (2×CH-Ph1,2), 104.6 (C-2′), 100.8 (C-Izopr), 94.8 (C-1), 80.9 (C-5′), 78.6 (C-3′), 76.1 (C-4′), 75.3 (C-4), 74.0 (C-2), 72.1 (C-3), 66.1 (C-6′), 65.4 (C-5), 63.7 (C-1′), 63.3 (C-6), 2×56.5 (2×OCH3), 29.4 (CH3), 19.4 (CH3). HRMS (ESI): m/z calcd. for C35H42O17 [M + Na]+ = 757.23142; found 757.23112
3.5. Preparation of 3′-O-acylated Sucrose 4a and 4b
- 3′-O-Coumaroyl sucrose (4a). White amorphous solid, = −8.8° (c 1.0, CH3OH), = −11.0° (c 1.03, CH3OH) [56]. 1H NMR (400 MHz, CD3OD) δ 7.71 (d, J = 15.9 Hz, 1H, H-A), 7.51 (d, J = 8.7 Hz, 2H, H-Ph), 6.81 (d, J = 8.7 Hz, 2H, H-Ph), 6.40 (d, J = 15.9 Hz, 1H, H-B), 5.46 (d, J = 7.9 Hz, 1H, H-3′), 5.43 (d, J = 3.7 Hz, 1H, H-1), 4.37 (t, J = 7.9 Hz, 1H, H-4′), 3.96–3.88 (m, 2H, H-5′, H-5), 3.85 (dd, J = 11.8, 2.3 Hz, 1H, H-6a), 3.87–3.78 (m, 2H, H-6′a, H-6′b), 3.77 (dd, J = 12.0, 4.3 Hz, 1H, H-6b), 3.66 (t, J = 9.4 Hz, 1H, H-3), 3.66 (d, J = 12.2 Hz, 1H, H-1′a), 3.59 (d, J = 12.2 Hz, 1H, H-1′b), 3.43 (dd, J = 9.8, 3.7 Hz, 1H, H-2), 3.40 (dd, J = 9.9, 8.9 Hz, 1H, H-4). 13C NMR (101 MHz, CD3OD) δ 168.4 (COO), 161.4 (C-Ph), 147.4 (CH-A), 131.4 (2×CH-Ph), 127.2 (C-Ph), 116.8 (2×CH-Ph), 114.8 (CH-B), 104.8 (C-2′), 93.3 (C-1), 84.1 (C-5′), 79.7 (C-3′), 74.9 (C-3), 74.6 (C-5), 73.8 (C-4′), 73.1 (C-2), 71.2 (C-4), 65.3 (C-1′), 62.9 (C-6′), 62.3 (C-6).
- 3′-O-(3,4,5-Trimethoxycinnamoyl) sucrose (4b). White crystals, m.p. = 80–83 C; = +16.2° (c 1.0, CH3OH), = +5.7° (c 1.39, CH3OH) [57]; 1H NMR (400 MHz, CD3OD) δ 7.72 (d, J = 15.9 Hz, 1H, H-A), 6.98 (s, 2H, H-Ph), 6.55 (d, J = 15.9 Hz, 1H, H-B), 5.48 (d, J = 7.8 Hz, 1H, H-3′), 5.44 (d, J = 3.7 Hz, 1H, H-1), 4.39 (t, J = 7.8 Hz, 1H, H-4), 3.96–3.91 (m, 2H, H-5′, H-5), 3.88 (s, 6H, m-OCH3), 3.88–3.80 (m, 3H, H-6a, H-6′a, H-6′b), 3.79 (s, 3H, p-OCH3), 3.79–3.75 (m, 1H, H-6b), 3.67 (dd, J = 9.7, 8.9 Hz, 1H, H-3), 3.66 (d, J = 12.2 Hz, 1H, H-1′a), 3.58 (d, J = 12.2 Hz, 1H, H-1′b), 3.44 (dd, J = 9.7, 3.7 Hz, 1H, H-2), 3.40 (dd, J = 10.0, 8.9 Hz, 1H, H-4). 13C NMR (101 MHz, CD3OD) δ 167.7 (COO), 154.8 (2×C-Ph), 147.2 (CH-A), 141.4 (C-Ph), 131.5 (C-Ph), 117.9 (CH-B), 107.0 (2×CH-Ph), 104.8 (C-2′), 93.3 (C-1), 84.2 (C-5′), 79.8 (C-3′), 75.0 (C-3), 74.6 (C-5), 73.9 (C-4), 73.1 (C-2), 71.2 (C-4), 65.4 (C-1′), 62.9 (C-6′), 62.4 (C-6), 61.2 (p-OCH3), 56.8 (2×m-OCH3). HRMS (ESI): m/z calcd. for C24H34O15 [M + Na]+ = 585.17899; found 585.18030.
3.6. General Procedure for the Enzymatic Hydroxycinnamoylation of 3′-O-acylated Sucrose 4a and 4b
- 6,3′-Di-O-coumaroyl sucrose (15a). White amorphous solid, = −35.6° (c 1.0, CH3OH), = −72.0° (c 0.3, CH3OH) [58]. 1H NMR (400 MHz, CD3OD) δ 7.71 (d, J = 15.9 Hz, 1H, H-A1), 7.64 (d, J = 15.9 Hz, 1H, H-A1), 7.51 (d, J = 8.7 Hz, 2H, H-Ph1), 7.47 (d, J = 8.7 Hz, 2H, H-Ph2), 6.80 (d, J = 8.7 Hz, 1H, H-Ph1), 6.79 (d, J = 8.6 Hz, 1H, H-Ph2), 6.42 (d, J = 16.1 Hz, 1H, H-B2), 6.41 (d, J = 15.9 Hz, 1H, H-B1), 5.48 (d, J = 7.9 Hz, 1H, H-3′), 5.47 (d, J = 4.1 Hz, 1H, H-1), 4.58 (dd, J = 11.9, 1.9 Hz, 1H, H-6a), 4.42 (t, J = 8.0 Hz, 1H, H-4′), 4.29 (dd, J = 11.8, 6.3 Hz, 1H, H-6b), 4.20 (ddd, J = 10.1, 6.3, 1.9 Hz, 1H, H-5), 3.97 (ddd, J = 7.9, 6.9, 2.9 Hz, 1H, H-5′), 3.91 (dd, J = 11.8, 6.9 Hz, 1H, H-6′a), 3.81 (dd, J = 11.8, 2.9 Hz, 1H, H-6′b), 3.67 (dd, J = 9.7, 8.9 Hz, 1H, H-3), 3.64 (d, J = 12.2 Hz, 1H, H-1′a), 3.59 (d, J = 12.2 Hz, 1H, H-1′b), 3.47 (dd, J = 9.7, 3.8 Hz, 1H, H-2), 3.35 (dd, J = 10.0, 8.9 Hz, 1H, H-4). 13C NMR (101 MHz, CD3OD) δ 169.2 (COO), 168.4 (COO), 161.4 (C-Ph1), 161.3 (C-Ph2), 147.5 (CH-A1), 146.9 (CH-A2), 131.4 (2×CH-Ph1), 131.3 (2×CH-Ph2), 127.2, 127.1 (C-Ph1, C-Ph2), 116.8 (2×CH-Ph1, 2×CH-Ph2), 115.0, 114.7 (CH-B1, CH-B2), 104.8 (C-2′), 92.9 (C-1), 84.2 (C-5′), 79.5 (C-3′), 74.9 (C-3), 74.1 (C-4′), 73.1 (C-2), 72.3 (C-5), 71.8 (C-4), 65.5 (C-1′), 65.2 (C-6), 63.8 (C-6′). HRMS (ESI): m/z calcd. for C30H34O15 [M + Na]+ = 657.17899, found 657.18914.
- 3′,6′-Di-O-coumaroyl sucrose (16a). NMR data extracted from the mixture with 15a, 1H NMR (400 MHz, CD3OD), δ 7.72 (d, J = 15.8 Hz, 1H, H-A1), 7.66 (d, J = 15.9 Hz, 1H, H-A2), 7.51 (d, J = 8.6 Hz, 1H, 2×H-Ph), 7.46 (d, J = 8.8 Hz, 2H, 2×H-Ph), 6.81 (d, J = 8.6 Hz, 4H, 4×H-Ph), 6.41 (d, J = 15.9 Hz, 1H, H-B1), 6.36 (d, J = 16.0 Hz, 1H, H-B2), 5.49 (d, J = 8.0 Hz, 1H, H-3′), 5.45 (d, J = 3.8 Hz, 1H, H-1), 4.57 (dd, J = 11.9, 7.5 Hz, 1H, H-6′a), 4.51 (dd, J = 11.9, 3.9 Hz, 1H, H-6′b), 4.45 (t, J = 7.6 Hz, 1H, H-4′), 4.19–4.12 (m, 1H, H-5′), 3.94–3.77 (m, 3H, H-5, H-6a, H-6b), 3.68 (t, J = 9.5 Hz, 1H, H-3), 3.67 (d, J = 12.2 Hz, 1H, H-1′a), 3.61 (d, J = 12.0 Hz, 1H, H-1′b), 3.44 (dd, J = 9.7, 3.8 Hz, 1H, H-2), 3.41 (t, J = 8.9 Hz, 1H, H-4). 13C NMR (101 MHz, CD3OD) δ 169.0 (COO), 168.3 (COO), 161.3 (C-Ph), 161.2 (C-Ph), 147.5 (CH-A1), 146.9 (CH-A2), 131.4 (2×CH-Ph), 131.2 (2×CH-Ph), 127.5, 127.1 (C-Ph1, C-Ph2), 116.8 (2×CH-Ph1, 2×CH-Ph2), 114.8, 114.6 (CH-B1, CH-B2), 105.0 (C-2′), 93.1 (C-1), 81.2 (C-5′), 79.3 (C-3′), 74.9 (C-3), 74.1 (C-4′), 73.1 (C-2), 72.3 (C-5), 71.8 (C-4), 66.3 (C-6′), 65.1 (C-1′), 62.6 (C-6).
- 6,3′,4′-Tri-O-coumaroyl sucrose (17a). White foam, = −128.2° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.71 (d, J = 15.9 Hz, 1H, H-A1), 7.62 (d, J = 15.9 Hz, 1H, H-A2), 7.61 (d, J = 16.0 Hz, 1H, H-A3), 7.51 (d, J = 8.7 Hz, 2H, H-Ph1), 7.43 (d, J = 8.7 Hz, 4H, H-Ph2, H-Ph3), 6.80 (d, J = 8.6 Hz, 2H, H-Ph2), 6.79 (d, J = 8.7 Hz, 2H, H-Ph1), 6.70 (d, J = 8.7 Hz, 2H, H-Ph3), 6.48 (d, J = 16.0 Hz, 1H, H-B3), 6.40 (d, J = 15.9 Hz, 1H, H-B1), 6.31 (d, J = 16.0 Hz, 1H, H-B2), 5.81 (d, J = 7.5 Hz, 1H, H-3′), 5.68 (t, J = 7.4 Hz, 1H, H-4′), 5.52 (d, J = 3.7 Hz, 1H, H-1), 4.67–4.64 (m, 1H, H-6a), 4.34–4.22 (m, 2H, H-6b, H-5), 4.20 (ddd, J = 7.4, 4.5, 3.0 Hz, 1H, H-5′), 4.01 (dd, J = 12.2, 7.5 Hz, 1H, H-6′a), 3.85 (dd, J = 12.1, 3.8 Hz, 1H, H-6′b), 3.71 (dd, J = 9.8, 8.9 Hz, 1H, H-3), 3.67 (d, J = 12.6 Hz, 1H, H-1′a), 3.62 (d, J = 12.4 Hz, 1H, H-1′b), 3.50 (dd, J = 9.8, 3.7 Hz, 1H, H-2), 3.33 (t, signal overlapped by CD3OD, H-4). 13C NMR (101 MHz, CD3OD) δ 169.4 (COO), 168.2 (COO), 168.0 COO), 161.5 (C-Ph), 161.42 (C-Ph), 161.1 (C-Ph), 2×147.8 (CH-A1, CH-A2), 146.7 (CH-A3), 131.5 (2×CH-Ph1), 131.4, 131.3 (2×CH-Ph2, 2×CH-Ph3), 127.2 (C-Ph), 127.1 (C-Ph), 127.0 (C-Ph), 116.9, 116.8, 116.7 (2×CH-Ph1, 2×CH-Ph2, 2×CH-Ph3), 115.3 (CH-B3), 114.4 (CH-B1), 114.1 (CH-B2), 105.4 (C-2′), 93.1 (C-1), 83.0 (C-3′), 77.2 (C-3′), 76.3 (C-4′), 74.9 (C-3), 73.0 (C-2), 72.7 (C-5), 72.0 (C-4), 65.6 (C-6), 65.0 (C-1′), 64.1 (C-6′).
- 6,3′,6′-Tri-O-coumaroyl sucrose (18a). = −13.0° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.72 (d, J = 16.0 Hz, 1H, H-A1), 7.62 (d, J = 15.8 Hz, 1H, H-A2), 7.60 (d, J = 16.0 Hz, 1H, H-A3), 7.52 (d, J = 8.7 Hz, 2H, H-Ph1), 7.41 (d, J = 8.7 Hz, 2H, H-Ph2), 7.38 (d, J = 8.7 Hz, 2H, H-Ph3), 6.81 (d, J = 8.8 Hz, 2H, H-Ph1), 6.79 (d, J = 8.6 Hz, 2H, H-Ph3), 6.75 (d, J = 8.7 Hz, 2H, H-Ph2), 6.42 (d, J = 15.9 Hz, 1H, H-B1), 6.41 (d, J = 15.9 Hz, 1H, H-B2), 6.28 (d, J = 15.9 Hz, 1H, H-B3), 5.53 (d, J = 4.1 Hz, 1H, H-1), 5.51 (d, J = 8.4 Hz, 1H, H-3′), 4.67 (dd, J = 11.4, 1.9 Hz, 1H, H-6a), 4.61 (t, J = 8.0 Hz, 1H, H-4′), 4.64–4.47 (m, 2H, H-6′a, H-6′b), 4.32–4.23 (m, 2H, H-6b, H-5), 4.16 (ddd, J = 8.1, 6.2, 4.3 Hz, 1H, H-5′), 3.67 (t, J = 9.4 Hz, 1H, H-3), 3.66 (d, J = 12.3 Hz, 1H, H-1′a), 3.60 (d, J = 12.2 Hz, 1H, H-1′b), 3.48 (dd, J = 9.7, 4.0 Hz, 1H, H-2), 3.32 (t, signal overlapped by CD3OD, H-4). 13C NMR (101 MHz, CD3OD) δ 169.4 (COO), 168.9 (COO), 168.4 (COO), 161.4 (C-Ph), 161.3 (C-Ph), 161.2 (C-Ph), 147.6 (CH-A1), 146.9, 146.8 (CH-A2, CH-A3), 131.5 (2×CH-Ph1) 131.4 (2×CH-Ph3), 131.2 (2×CH-Ph2), 127.2 (C-Ph), 127.1 (2×C-Ph), 116.8 (4×CH-Ph1,2), 116.7 (2×CH-Ph3), 115.0, 114.9, 114.6 (CH-B1, CH-B2, CH-B3), 105.0 (C-2′), 92.6 (C-1), 81.2 (C-5′), 79.1 (C-3′), 75.0 (C-3), 74.7 (C-4′), 73.1 (C-2), 72.3 (C-5), 72.1 (C-4), 65.6 (C-6, C-6′), 65.4 (C-1′). HRMS (ESI): m/z calcd. for C39H40O17 [M + Na]+ = 803.21577, found 803.21580.
- 6,3′,1′,6′-Tetra-O-coumaroyl sucrose (19a, vanicoside D). Amorphous white solid, mp 147.6–154.2 °C [59]; = +25.0° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.72 (d, J = 15.9 Hz, 1H, A1), 7.66 (d, J = 15.9 Hz, 1H, A2), 7.63 (d, J = 16.0 Hz, 1H, A3), 7.61 (d, J = 16.0 Hz, 1H, A4), 7.49 (d, J = 8.8 Hz, 2H, H-Ph), 7.42 (d, J = 8.8 Hz, 2H, H-Ph), 7.41 (d, J = 8.5 Hz, 2H, H-Ph), 7.39 (d, J = 8.5 Hz, 2H, H-Ph), 6.80 (d, J = 8.7 Hz, 2H, H-Ph), 6.78 (d, J = 8.7 Hz, 2H, H-Ph), 6.76 (d, J = 8.6 Hz, 2H, H-Ph), 6.75 (d, J = 8.6 Hz, 2H, H-Ph), 6.44 (d, J = 16.0 Hz, 2H, H-Ph), 6.41 (d, J = 15.9 Hz, 1H, H-B1), 6.35 (d, J = 16.1 Hz, 1H, H-B3), 6.31 (d, J = 16.2 Hz, 1H, H-B2), 5.63 (d, J = 8.6 Hz, 1H, H-B4), 5.63 (d, J = 8.6 Hz, 1H, H-3′), 5.58 (d, J = 3.8 Hz, 1H, H-1), 4.69 (t, J = 8.7 Hz, 1H, H-4′), 4.69 (dd, J = 11.3, 1.5 Hz, 1H, H-6a), 4.62–4.46 (m, 2H, H-6′a, H-6′b), 4.35 (d, J = 12.0 Hz, 1H, H-1′a), 4.32 (d, J = 12.0 Hz, 1H, H-1′b), 4.31–4.24 (m, 1H, H-5), 4.29 (dd, J = 11.0, 8.8 Hz, 1H, H-6a), 4.19 (ddd, J = 9.3, 5.2, 3.0 Hz, 1H, H-5′), 3.66 (t, J = 9.3 Hz, 1H, H-3), 3.47 (dd, J = 9.7, 4.0 Hz, 1H, H-2), 3.34 (t, J = 9.1 Hz, 1H, H-4). HRMS (ESI): m/z calcd. for C48H46O19 [M + Na]+ = 949.25255, found 949.25200.
- 6-O-feruloyl-3′-O-coumaroyl sucrose (15b). White foam, = −54.9° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.71 (d, J = 15.9 Hz, 1H, H-A1), 7.62 (d, J = 15.8 Hz, 1H, H-A2), 7.51 (d, J = 8.7 Hz, 2H, H-Cou), 7.22 (d, J = 2.2 Hz, 1H, H-Fer), 7.06 (dd, J = 8.2, 1.9 Hz, 1H, H-Fer), 6.80 (d, J = 8.6 Hz, 2H, H-Cou), 6.79 (d, J = 8.4 Hz, 1H, H-Fer), 6.45 (d, J = 15.9 Hz, 1H, H-B2), 6.42 (d, J = 15.9 Hz, 1H, H-B1), 5.49 (d, J = 7.9 Hz, 1H, H-3′), 5.48 (d, J = 4.3 Hz, 1H, H-1), 4.60 (dd, J = 11.5, 1.4 Hz, 1H, H-6a), 4.46 (t, J = 8.1 Hz, 1H, H-4′), 4.27 (dd, J = 11.4, 6.8 Hz, 1H, H-6b), 4.27–4.18 (m, 1H, H-5), 3.97 (td, J = 7.5, 2.8 Hz, 1H, H-5′), 3.91 (dd, J = 11.8, 7.0 Hz, 1H, H-6′a), 3.87 (s, 3H, OCH3), 3.82 (dd, J = 11.8, 2.9 Hz, 1H, H-6′b), 3.67 (t, J = 9.3 Hz, 1H, H-3), 3.64 (d, J = 12.2 Hz, 1H, H-1′a), 3.59 (d, J = 12.2 Hz, 1H, H-1′b), 3.47 (dd, J = 9.7, 3.8 Hz, 1H, H-2), 3.33 (t, J = 9.4 Hz, 1H, H-4). 13C NMR (101 MHz, CD3OD) δ 169.2 (COO), 168.4 (COO), 161.4 (C-Cou), 150.6 (C-Fer), 149.4 (C-Fer), 147.5 (CH-A1), 147.1 (CH-A2), 131.4 (2×CH-Cou), 127.7 (C-Fer), 127.2 (C-Cou), 124.3 (CH-Fer), 116.8 (2×CH-Cou), 116.4 (CH-Fer), 115.4 (CH-B2), 114.7 (CH-B1), 111.6 (CH-Fer), 104.8 (C-2′), 92.8 (H-1), 84.2 (C-5′), 79.4 (C-3′), 75.0 (C-3), 74.2 (C-4′), 73.1 (C-2), 72.3 (C-5), 71.9 (C-4), 65.5 (C-1′), 65.4 (C-6), 63.9 (C-6′), 56.5 (OCH3). HRMS (ESI): m/z calcd. for C31H36O16 [M + Na]+ = 687.18956, found 687.18949.
- 3′-O-coumaroyl-6′-O-feruloyl sucrose (16b). NMR data extracted from the mixture with 15b (reaction with Pentopan, Table 3, entry 5); 1H NMR (400 MHz, CD3OD) δ 7.72 (d, J = 15.8 Hz, 1H, H-A1), 7.66 (d, J = 15.9 Hz, 1H, H-A2), 7.50 (d, J = 8.8 Hz, 2H, H-Cou), 7.18 (d, J = 2.0 Hz, 1H, H-Fer), 7.09 (dd, J = 8.2, 1.9 Hz, 1H, H-Fer), 6.82 (d, J = 8.2 Hz, 2H, H-Fer), 6.81 (d, J = 8.8 Hz, 1H, H-Cou), 6.41 (d, J = 16.0 Hz, 1H, H-B1), 6.40 (d, J = 15.9 Hz, 1H, H-B2), 5.49 (d, J = 8.0 Hz, 1H, H-3′), 5.45 (d, J = 3.7 Hz, 1H, H-1), 4.57 (dd, J = 11.7, 7.4 Hz, 1H, H-6′a), 4.51 (dd, J = 11.8, 3.7 Hz, H-6′b), 4.45 (t, J = 7.9 Hz, 1H, H-4′), 4.18 (td, J = 7.7, 3.9 Hz, 1H, H-5′), 3.97 (dt, J = 7.7, 3.6 Hz, 1H, H-5), 3.92 (bd, J = 10.4 Hz, 1H, H-6a), 3.82–3.78 (m, 1H, H-6b), 3.89 (s, 3H, OCH3), 3.68 (t, J = 9.4 Hz, 1H, H-3), 3.67 (d, J = 12.5 Hz, 1H, H-1′a), 3.61 (d, J = 12.4 Hz, 1H, H-1′b), 3.44 (dd, J = 9.7, 3.7 Hz, 1H, H-2), 3.41 (t, J = 9.4 Hz, 1H, H-4). 13C NMR (101 MHz, CD3OD) δ 169.0 (COO), 168.3 (COO), 161.3 (C-Cou), 150.6 (C-Fer), 149.3 (C-Fer), 147.5 (CH-A1), 147.2 (CH-A2), 131.4 (2×CH-Cou), 127.7 (C-Fer), 127.1 (C-Cou), 124.2 (CH-Fer), 116.8 (2×CH-Cou), 116.5 (CH-Fer), 115.2 (CH-B2), 114.6 (CH-B1), 111.7 (CH-Fer), 105.1 (C-2′), 93.1 (H-1), 81.2 (C-5′), 79.3 (C-3′), 2×75.0 (C-3, C-4′), 74.4 (C-5), 73.2 (C-2), 71.4 (C-4), 66.3 (C-6′), 65.1 (C-1′), 62.6 (C-6), 56.5 (OCH3).
- 6,4′-di-O-feruloyl-3′-O-coumaroyl sucrose (17b). NMR data extracted from the fraction with 15b (reaction with Lipozyme, Table 3, entry 4). 1H NMR (400 MHz, CD3OD) δ 7.71 (d, J = 15.8 Hz, 1H, H-A), 7.60 (d, J = 15.9 Hz, 1H, H-2), 7.56 (d, J = 15.8 Hz, 1H, H-3), 7.50 (d, J = 8.6 Hz, 2H, H-Cou), 7.13 (d, J = 2.0 Hz, 1H, H-Fer1), 7.09 (d, J = 2.0 Hz, 1H, H-Fer2), 7.03 (dd, J = 8.4, 2.2 Hz, 1H, H-Fer1), 7.01 (dd, J = 8.4, 2.2 Hz, 1H, H-Fer2), 6.79 (d, J = 8.1 Hz, 1H, H-Fer2), 6.79 (d, J = 8.7 Hz, 2H, H-Cou), 6.70 (d, J = 8.1 Hz, 1H), 6.49 (d, J = 15.4 Hz, 1H, H-B2), 6.41 (d, J = 15.8 Hz, 1H, H-B1), 6.29 (d, J = 15.9 Hz, 1H, H-B3), 5.82 (d, J = 7.6 Hz, 1H, H-3′), 5.68 (t, J = 7.5 Hz, 1H, H-4′), 5.53 (d, J = 3.6 Hz, 1H, H-1), 4.68 (bd, J = 10.9 Hz, 1H, H-6a), 4.35–4.28 (m, 1H, C-5), 4.29–4.24 (m, 1H, H-6b), 4.24–4.17 (m, 1H, H-5′), 4.01 (dd, J = 12.1, 7.2 Hz, 1H, H-6′a), 3.90 (dd, J = 12.0, 3.7, 1H, H-6′b), 3.87 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 3.71 (t, J = 9.4 Hz, 1H, H-3), 3.67 (d, J = 12.4 Hz, 1H, H-1′a), 3.63 (d, J = 12.2 Hz, 1H, H-1′b), 3.51 (dd, J = 9.8, 3.8 Hz, 1H, H-2), 3.32 (t, J = 9.7 Hz, 1H, H-4). 13C NMR (101 MHz, MeOD) δ 169.4 (COO), 168.2 (COO), 168.0 (COO), 161.4 (C-Cou), 150.8 (C-Fer1), 150.5 (C-Fer2), 149.3 (C-Fer1), 149.2 (C-Fer2), 148.0 (CH-A3), 147.9 (CH-A1), 146.9 (C-A2), 131.5 (2×CH-Cou), 127.8 (C-Fer), 127.5 (C-Fer), 127.1 (C-Cou), 124.4 (CH-Fer2), 124.2 (CH-Fer1), 116.8 (2×CH-Cou), 116.5 (CH-Fer2), 116.4 (CH-Fer1), 115.6 (CH-B2), 114.4 (CH-B1), 114.3 (CH-B3), 111.9 (CH-Fer1), 111.8 (CH-Fer2), 105.3 (C-2′), 93.1 (C-1), 82.9 (C-5′), 77.1 (C-3′), 76.4 (C-4′), 74.9 (C-3), 73.0 (C-2), 72.8 (C-5), 72.0 (C-4), 65.7 (C-6), 65.0 (C-1′), 64.1 (C-6′), 56.5 (2×OCH3).
- 6,6′-Di-O-feruloyl-3′-O-coumaroyl sucrose (18b). White foam, = −15.0° (c 1.0, CH3OH). 1H NMR (400 MHz, CD3OD) δ 7.72 (d, J = 15.9 Hz, 1H, H-A1)), 7.60 (d, J = 15.9 Hz, 1H, H-A2), 7.57 (d, J = 16.0 Hz, 1H, H-A3), 7.51 (d, J = 8.7 Hz, 2H, H-Cou), 7.19 (d, J = 1.9 Hz, 1H, H-Fer1), 7.08 (d, J = 1.9 Hz, 1H, H-Fer2), 6.99 (dd, J = 8.3, 2.0 Hz, 1H, H-Fer1), 6.98 (dd, J = 8.3, 2.0 Hz, 1H, H-Fer2), 6.80 (d, J = 9.0 Hz, 2H, H-Cou), 6.78 (d, J = 8.7 Hz, 1H, H-Fer2), 6.74 (d, J = 8.1 Hz, 1H, H-Fer1), 6.46 (d, J = 15.8 Hz, 1H, H-B2), 6.43 (d, J = 15.9 Hz, 1H, H-B1), 6.28 (d, J = 15.9 Hz, 1H, H-B3), 5.52 (d, J = 8.1 Hz, 1H, H-3′), 5.52 (d, J = 4.2 Hz, 1H, H-1), 4.70 (dd, J = 11.5, 1.5 Hz, 1H, H-6a), 4.64 (t, J = 8.2 Hz, 1H, H-4′), 4.60 (dd, J = 11.9, 4.1 Hz, 1H, H-6′a), 4.52 (dd, J = 11.9, 6.5 Hz, 1H, 6′b), 4.35–4.24 (m, 1H, H-5), 4.22 (dd, J = 7.5, 11.6 Hz, 1H, H-6b), 4.17 (ddd, J = 8.1, 6.5, 4.1 Hz, 1H, H-5′), 3.87 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 3.67 (t, J = 9.3 Hz, 1H, H-3), 3.65 (d, J = 12.1 Hz, 1H, H-1′a), 3.60 (d, J = 12.2 Hz, 1H, H-1′b), 3.47 (dd, J = 9.8, 3.8 Hz, 1H, H-2), 3.29 (dd, J = 9.9, 9.0 Hz, 1H, H-4). 13C NMR (101 MHz, CD3OD) δ 169.3 (COO), 168.8 (COO), 168.4 (COO), 161.4 (C-Cou), 150.6 (C-Fer1), 150.6 (C-Fer2), 149.3 (C-Fer1), 149.3 (C-Fer2), 147.6 (CH-A1), 147.2 (CH-A2), 147.0 (CH-A3), 131.5 (2×CH-Cou), 127.7 (C-Fer1), 127.7 (C-Fer2), 127.2 (C-Cou), 124.5 (CH-Fer1), 124.1 (CH-Fer2), 116.8 (2×CH-Cou), 116.5 (CH-Fer2), 116.3 (CH-Fer1), 115.3 (CH-B2), 115.2 (CH-B3), 114.6 (CH-B1), 111.7 (CH-Fer2), 111.6 (CH-Fer2), 104.9 (C-2′), 92.6 (C-1), 81.2 (C-5′), 79.1 (C-3′), 75.0 (C-3), 74.7 (C-4′), 73.1 (C-2), 72.4 (C-5), 72.2 (C-4), 65.8 (C-6), 65.7 (C-6′), 65.5 (C-1′), 56.5 (OCH3), 56.4 (OCH3). HRMS (ESI): m/z calcd. for C41H44O19 [M + Na]+ = 863.23690, found 893.23625.
- 6,3′-Di-O-(3,4,5-tri-O-methoxycinnamoyl) sucrose (15c, glomeratose D). White solid, m.p. = 101–103 °C; = −49.7° (c 1.0, MeOH), = −55.8° (c 0.53, MeOH) [57]. 1H NMR (400 MHz, CD3OD) δ 7.69 (d, J = 16.0 Hz, 1H, H-A1), 7.61 (d, J = 15.9 Hz, 1H, H-A2), 6.95 (s, 2H, H-Ph1), 6.91 (s, 2H, H-Ph2), 6.55 (d, J = 16.0 Hz, 1H, H-B2), 6.54 (d, J = 15.7 Hz, 1H, H-B1), 5.53 (d, J = 8.0 Hz, 1H, H-3′), 5.52 (d, J = 3.8 Hz, 1H, H-1), 4.71 (d, J = 11.6, 1.6 Hz, 1H, H-6a), 4.51 (t, J = 8.0 Hz, 1H, H-4′), 4.32–4.26 (m, 1H, H-5), 4.21 (d, J = 11.5, 7.4 Hz 1H, H-6b), 3.98 (ddd, J = 8.1, 6.8, 3.2 Hz, 1H, H-5′), 3.87 (s, 6H, 2×m-OCH3), 3.85 (s, 6H, 2×m-OCH3), 3.92–3.80 (m, 2H, H-6′a, H-6′b, overlapped by OCH3 groups), 3.79 (s, 3H, p-OCH3), 3.78 (s, 3H, p-OCH3), 3.67 (dd, J = 9.7, 8.8 Hz, 1H, H-3), 3.63 (d, J = 12.1 Hz, 1H, H-1′a), 3.58 (d, J = 12.2 Hz, 1H, H-1′b), 3.48 (dd, J = 9.6, 4.0 Hz, 1H, H-2), 3.31 (t, J = 9.6 Hz, 1H, H-4, overlapped by CD3OD). 13C NMR (101 MHz, CD3OD) δ 168.6 (COO), 167.8 (COO), 154.8 (2×C-Ph1), 154.7 (2×C-Ph2), 147.2 (C-A1), 146.6 (C-A2), 141.3 (C-Ph1), 141.2 (C-Ph2), 131.5 (C-Ph1) 131.5 (C-Ph2), 118.1 (CH-B1), 117.8 (CH-B2), 106.9 (2×CH-Ph1), 106.8 (2×CH-Ph2), 104.8 (C-2′), 92.7 (C-1), 84.3 (C-5′), 79.4 (C-3′), 75.1 (C-3), 74.2 (C-4′), 73.1 (C-2), 72.5 (C-5), 72.0 (C-4), 65.8, 65.7 (C-1′, C-6), 63.8 (C-6′), 61.2 (p-OCH3), 61.1 (p-OCH3), 56.8 (2×m-OCH3), 56.7 (2×m-OCH3). HRMS (ESI): m/z calcd. for C36H46O19 [M + Na]+ = 805.25255; found 805.25299.
- 6,3′,4′-Di-O-(3,4,5-tri-O-methoxycinnamoyl) sucrose (16c). Selected signals from impurity below 5% in fraction of 17c. 1H NMR (400 MHz, CD3OD) δ 5.86 (d, J = 7.5 Hz, 1H), 5.73 (t, J = 7.5 Hz, 1H), 5.57 (d, J = 3.9 Hz, 1H).
- 6,3′,6′-Tri-O-(3,4,5-tri-O-methoxycinnamoyl) sucrose (17c). White solid; = −10.0° (c 1.0, CH3OH) 1H NMR (400 MHz, CD3OD) δ 7.70 (d, J = 15.9 Hz, 1H, H-A1), 7.57 (d, J = 16.1 Hz, 1H, H-A2), 7.53 (d, J = 16.1 Hz, 1H, H-A3), 6.95 (s, 2H, H-Ph1), 6.84 (s, 2H, H-Ph2), 6.78 (s, 2H, H-Ph3), 6.55 (d, J = 16.0 Hz, 1H, H-B1), 6.54 (d, J = 15.9 Hz, 1H, H-B2), 6.37 (d, J = 15.9 Hz, 1H, H-B3), 5.56 (d, J = 7.8 Hz, 1H, H-3′), 5.53 (d, J = 3.9 Hz, 1H, H-1), 4.79 (dd, J = 11.8, 1.7 Hz, 1H, H-6a), 4.68 (t, J = 7.9 Hz, 1H, H-4′), 4.62 (dd, J = 11.9, 4.3 Hz, 1H, H-6′a), 4.53 (dd, J = 11.9, 6.5 Hz, 1H, H-6′b), 4.35 (ddd, J = 10.1, 8.1, 1.7 Hz, 1H, H-5), 4.20 (ddd, J = 10.0, 6.4, 4.2 Hz, 1H, H-5′), 4.17 (dd, J = 11.9, 8.1 Hz, 1H, H-6b), 3.86 (s, 6H, 2×m-OCH3), 3.83 (s, 6H, 2×m-OCH3), 3.79 (s, 6H, m-OCH3), 3.78 (s, 3H, p-OCH3), 3.77 (s, 3H, p-OCH3), 3.72 (s, 3H, p-OCH3), 3.68 (dd, J = 9.8, 8.8 Hz, 1H, H-3), 3.65 (d, J = 12.2 Hz, 1H, H-1′a), 3.60 (d, J = 12.3 Hz, 1H, H-1′b), 3.49 (dd, J = 9.7, 3.9 Hz, 1H, H-2), 3.27 (dd, J = 10.1, 8.8 Hz, 1H, H-4). HRMS (ESI): m/z calcd. for C48H58O23 [M + Na]+ = 1025.32611, found 1025.32666.
- 2,6-Di-O-(3,4,5-tri-O-methoxycinnamoyl) sucrose (20). White amorphous solid, t.t. = 171–174 C; = + 28.0° (c 0.5, MeOH); 1H NMR (400 MHz, CD3OD) δ 7.74 (d, J = 15.9 Hz, 1H, H-A1), 7.67 (d, J = 16.0 Hz, 1H, H-A2), 6.98 (s, 2H, H-Ph1), 6.95 (s, 2H, H-Ph2), 6.58 (d, J = 15.9 Hz, 1H, H-B2), 6.54 (d, J = 16.0 Hz, 1H, H-B1), 5.62 (d, J = 3.8 Hz, 1H, H-1), 4.75 (dd, J = 10.1, 3.7 Hz, 1H, H-2), 4.56 (dd, J = 11.9, 1.8 Hz, 1H, H-6a), 4.32 (dd, J = 11.8, 6.6 Hz, 1H, H-6b), 4.22 (d, J = 8.8 Hz, 1H, H-3′), 4.23–4.19 (m, 1H, H-5), 4.08 (t, J = 8.7 Hz, 1H, H-4′), 4.02 (dd, J = 10.1, 8.9 Hz, 1H, H-3), 3.88 (s, 6H, m-OCH3), 3.88 (s, 6H, m-OCH3), 3.87–3.81 (m, 2H, H-6′a, H-5′, overlapped with signals of OCH3), 3.80 (s, 3H, p-OCH3), 3.80 (s, 3H, p-OCH3), 3.76 (dd, J = 12.1, 6.2 Hz, 1H, 6′b), 3.53 (d, J = 11.9 Hz, 1H, H-1′a), 3.45 (dd, J = 10.1, 8.9 Hz, 1H, H-4), 3.32 (d, J = 11.9 Hz, 1H, H-1′b). 13C NMR (101 MHz, CD3OD) δ 168.6 (COO), 168.3 (COO), 154.9 (2×C-Ph1), 154.8 (2×C-Ph2), 147.2 (C-A1), 146.6 (C-A2), 141.5 (C-Ph1), 141.3 (C-Ph2), 131.6 (C-Ph1) 131.5 (C-Ph2), 118.1 (CH-B2), 117.9 (CH-B1), 106.9 (2×CH-Ph1), 106.8 (2×CH-Ph2), 105.7 (C-2′), 90.5 (C-1), 84.0 (C-5′), 77.1 (C-3′), 75.7 (C-4′), 74.6 (C-2), 72.1 (C-4), 72.0 (C-3), 71.9 (C-5), 65.3 (C-6), 64.2 (C-6′), 63.1 (C-1′), 61.2 (2×p-OCH3), 56.8 (4xm-OCH3). HRMS (ESI): m/z calcd. for C36H46O19 [M + Na]+ = 805.25255; found 805.25263.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.Y.; Wang, R.F.; Liu, B. An update on oligosaccharides and their esters from traditional Chinese medicines: Chemical structures and biological activities. Evid.-Based Complement. Altern. Med. 2015, 2015, 512675. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, W.; Lu, Y.; Wang, Y.; Chen, X.; Bai, S.; Zhao, Y.; He, T.; Lao, F.; Shang, Y.; et al. Naturally occurring cinnamic acid sugar ester derivatives. Molecules 2016, 21, 1402. [Google Scholar] [CrossRef] [PubMed]
- Panda, P.; Appalashetti, M.; Judeh, Z.M.A. Phenylpropanoid Sucrose Esters: Plant-Derived Natural Products as Potential Leads for New Therapeutics. Curr. Med. Chem. 2011, 18, 3234–3251. [Google Scholar] [CrossRef]
- Deng, R.; Li, W.; Berhow, M.A.; Jander, G.; Zhou, S. Phenolic sucrose esters: Evolution, regulation, biosynthesis, and biological functions. Plant Mol. Biol. 2022, 109, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, S.; Yip, Y.M.; Panda, P.; Ong, L.L.; Wong, P.W.K.; Zhang, D.; Ali, Y.; Judeh, Z. Feruloyl Sucrose Esters: Potent and Selective Inhibitors of α-glucosidase and α-amylase. Curr. Med. Chem. 2021, 29, 1606–1621. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, S.; Yip, Y.M.; Panda, P.; Ong, L.L.; Wong, P.W.K.; Zhang, D.; Judeh, Z. Cinnamoyl sucrose esters as alpha glucosidase inhibitors for the treatment of diabetes. Molecules 2021, 26, 469. [Google Scholar] [CrossRef]
- Kathy, W.P.W.; Ong, L.L.; Devaraj, S.; Khong, D.T.; Judeh, Z.M.A. Targeted Synthesis of 3,3′-, 3,4′- and 3,6′-Phenylpropanoid Sucrose Esters. Molecules 2022, 27, 535. [Google Scholar] [CrossRef]
- Queneau, Y.; Jarosz, S.; Lewandowski, B.; Fitremann, J. Sucrose Chemistry and Applications of Sucrochemicals. Adv. Carbohydr. Chem. Biochem. 2007, 61, 217–292. [Google Scholar]
- Panda, P.; Appalashetti, M.; Natarajan, M.; Chan-Park, M.B.; Venkatraman, S.S.; Judeh, Z.M.A. Synthesis and antitumor activity of lapathoside D and its analogs. Eur. J. Med. Chem. 2012, 53, 1–12. [Google Scholar] [CrossRef]
- Panda, P.; Appalashetti, M.; Natarajan, M.; Mary, C.P.; Venkatraman, S.S.; Judeh, Z.M.A. Synthesis and antiproliferative activity of helonioside A, 3′,4′,6′-tri-O-feruloylsucrose, lapathoside C and their analogs. Eur. J. Med. Chem. 2012, 58, 418–430. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, Q.; Lei, H.; Liu, X.; Luan, L. Studies on the total synthesis of tenuifoliside B. Tetrahedron 2014, 70, 3757–3761. [Google Scholar] [CrossRef]
- Ong, L.L.; Wong, P.W.K.; Deva Raj, S.; Khong, D.T.; Panda, P.; Santoso, M.; Judeh, Z.M.A. An orthogonal approach for the precise synthesis of phenylpropanoid sucrose esters. New J. Chem. 2022, 46, 9710–9717. [Google Scholar] [CrossRef]
- Barros, M.T.; Maycock, C.D.; Sineriz, F.S.; Thomassigny, C. Fast galloylation of a sugar moiety: Preparation of three monogalloylsucroses as references for antioxidant activity. A method for the selective deprotection of tert-butyldiphenylsilyl ethers. Tetrahedron 2000, 56, 6511–6516. [Google Scholar] [CrossRef]
- Polat, T.; Linhardt, R.J. Syntheses and applications of sucrose-based esters. J. Surfactants Deterg. 2001, 4, 415–421. [Google Scholar] [CrossRef]
- Mora Vargas, J.A.; Orduña Ortega, J.; Metzker, G.; Larrahondo, J.E.; Boscolo, M. Natural sucrose esters: Perspectives on the chemical and physiological use of an under investigated chemical class of compounds. Phytochemistry 2020, 177, 112433. [Google Scholar] [CrossRef]
- Teng, Y.; Stewart, S.G.; Hai, Y.W.; Li, X.; Banwell, M.G.; Lan, P. Sucrose fatty acid esters: Synthesis, emulsifying capacities, biological activities and structure-property profiles. Crit. Rev. Food Sci. Nutr. 2021, 61, 3297–3317. [Google Scholar] [CrossRef]
- Shi, Y.G.; Li, J.R.; Chu, Y.H. Enzyme-catalyzed regioselective synthesis of sucrose-based esters. J. Chem. Technol. Biotechnol. 2011, 86, 1457–1468. [Google Scholar] [CrossRef]
- Karamać, M.; Amarowicz, R. Inhibition of Pancreatic Lipase by Phenolic Acids—Examination in vitro. Z. Fur Naturforsch.—Sect. C J. Biosci. 1996, 51, 903–906. [Google Scholar] [CrossRef]
- Buzatu, A.R.; Frissen, A.E.; van den Broek, L.A.M.; Todea, A.; Motoc, M.; Boeriu, C.G. Chemoenzymatic synthesis of new aromatic esters of mono-and oligosaccharides. Processes 2020, 8, 1638. [Google Scholar] [CrossRef]
- Couto, J.; St-Louis, R.; Karboune, S. Optimization of feruloyl esterase-catalyzed synthesis of feruloylated oligosaccharides by response surface methodology. J. Mol. Catal. B Enzym. 2011, 73, 53–62. [Google Scholar] [CrossRef]
- Vega-Rodríguez, M.A.D.; Rodríguez-González, J.A.; Armendáriz-Ruiz, M.A.; Asaff-Torres, A.; Sotelo-Mundo, R.R.; Velasco-Lozano, S.; Mateos-Díaz, J.C. Feruloyl Esterases Protein Engineering to Enhance Their Performance as Biocatalysts: A Review. ChemBioChem 2022, 23, e202200354. [Google Scholar] [CrossRef]
- Faulds, C.B. What can feruloyl esterases do for us? Phytochem. Rev. 2010, 9, 121–132. [Google Scholar] [CrossRef]
- Topakas, E.; Vafiadi, C.; Christakopoulos, P. Microbial production, characterization and applications of feruloyl esterases. Process Biochem. 2007, 42, 497–509. [Google Scholar] [CrossRef]
- Oliveira, D.M.; Mota, T.R.; Oliva, B.; Segato, F.; Marchiosi, R.; Ferrarese-Filho, O.; Faulds, C.B.; dos Santos, W.D. Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresour. Technol. 2019, 278, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Crepin, V.F.; Faulds, C.B.; Connerton, I.F. Functional classification of the microbial feruloyl esterases. Appl. Microbiol. Biotechnol. 2004, 63, 647–652. [Google Scholar] [CrossRef]
- Benoit, I.; Danchin, E.G.J.; Bleichrodt, R.J.; De Vries, R.P. Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol. Lett. 2008, 30, 387–396. [Google Scholar] [CrossRef]
- Dilokpimol, A.; Mäkelä, M.R.; Aguilar-Pontes, M.V.; Benoit-Gelber, I.; Hildén, K.S.; De Vries, R.P. Diversity of fungal feruloyl esterases: Updated phylogenetic classification, properties, and industrial applications. Biotechnol. Biofuels 2016, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, I.; Dilokpimol, A.; Iancu, L.; Mäkelä, M.R.; Varriale, S.; Cerullo, G.; Hüttner, S.; Uthoff, S.; Jütten, P.; Piechot, A.; et al. The synthetic potential of fungal feruloyl esterases: A correlation with current classification systems and predicted structural properties. Catalysts 2018, 8, 242. [Google Scholar] [CrossRef]
- Mastihubová, M.; Mastihuba, V.; Bilaničová, D.; Boreková, M. Commercial enzyme preparations catalyse feruloylation of glycosides. J. Mol. Catal. B Enzym. 2006, 38, 54–57. [Google Scholar] [CrossRef]
- Mastihubová, M.; Mastihuba, V. Donor specificity and regioselectivity in Lipolase mediated acylations of methyl α-D-glucopyranoside by vinyl esters of phenolic acids and their analogues. Bioorg. Med. Chem. Lett. 2013, 23, 5389–5392. [Google Scholar] [CrossRef]
- Mastihuba, V.; Kremnický, L.; Mastihubová, M.; Willett, J.L.; Côté, G.L. A spectrophotometric assay for feruloyl esterases. Anal. Biochem. 2002, 309, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Mastihubová, M.; Mastihuba, V.; Kremnicky, L.; Willet, J.L.; Côté, G.L. Chemoenzymatic Preparation of Novel Substrates for Feruloyl Esterases. Synlett 2001, 2001, 1559–1560. [Google Scholar] [CrossRef]
- Chyba, A.; Mastihuba, V.; Mastihubová, M. Synthesis of 4-nitrophenyl caffeate and its use in assays of caffeoyl esterases. Anal. Biochem. 2014, 445, 49–53. [Google Scholar] [CrossRef]
- Chyba, A.; Mastihubová, M.; Mastihuba, V. Regioselective galloylation of methyl β-d-glucopyranoside by a lipase. Monatshefte Für Chem.—Chem. Mon. 2016, 147, 1137–1142. [Google Scholar] [CrossRef]
- Mastihubová, M.; Mastihuba, V. From Hamamelitannin Synthesis to the Study of Enzymatic Acylations of d-Hamamelose. Biomolecules 2023, 13, 519. [Google Scholar] [CrossRef]
- Chyba, A.; Mastihuba, V.; Mastihubová, M. Effective enzymatic caffeoylation of natural glucopyranosides. Bioorg. Med. Chem. Lett. 2016, 26, 1567–1570. [Google Scholar] [CrossRef]
- Fernandez-Lafuente, R. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Mol. Catal. B Enzym. 2010, 62, 197–212. [Google Scholar] [CrossRef]
- Levasseur, A.; Gouret, P.; Lesage-Meessen, L.; Asther, M.; Asther, M.; Record, E.; Pontarotti, P. Tracking the connection between evolutionary and functional shifts using the fungal lipase/feruloyl esterase a family. BMC Evol. Biol. 2006, 6, 92. [Google Scholar] [CrossRef]
- Hermoso, J.A.; Sanz-Aparicio, J.; Molina, R.; Juge, N.; González, R.; Faulds, C.B. The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J. Mol. Biol. 2004, 338, 495–506. [Google Scholar] [CrossRef]
- Andersen, A.; Svendsen, A.; Vind, J.; Lassen, S.F.; Hjort, C.; Borch, K.; Patkar, S.A. Studies on ferulic acid esterase activity in fungal lipases and cutinases. Colloids Surf. B Biointerfaces 2002, 26, 47–55. [Google Scholar] [CrossRef]
- Gherbovet, O.; Ferreira, F.; Clément, A.; Ragon, M.; Durand, J.; Bozonnet, S.; O’Donohue, M.J.; Fauré, R. Regioselective chemoenzymatic syntheses of ferulate conjugates as chromogenic substrates for feruloyl esterases. Beilstein J. Org. Chem. 2021, 17, 325–333. [Google Scholar] [CrossRef]
- Saulnier, L.; Marot, C.; Elgorriaga, M.; Bonnin, E.; Thibault, J.F. Thermal and enzymatic treatments for the release of free ferulic acid from maize bran. Carbohydr. Polym. 2001, 45, 269–275. [Google Scholar] [CrossRef]
- Hatzakis, N.S.; Smonou, I. Asymmetric transesterification of secondary alcohols catalyzed by feruloyl esterase from Humicola insolens. Bioorg. Chem. 2005, 33, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Hatzakis, N.S.; Daphnomili, D.; Smonou, I. Ferulic acid esterase from Humicola Insolens catalyzes enantioselective transesterification of secondary alcohols. J. Mol. Catal. B Enzym. 2003, 21, 309–311. [Google Scholar] [CrossRef]
- Kim, D.; Wang, C.Y.; Hu, R.; Lee, J.Y.; Luu, T.T.T.; Park, H.J.; Lee, S.K. Antitumor Activity of Vanicoside B Isolated from Persicaria dissitiflora by Targeting CDK8 in Triple-Negative Breast Cancer Cells. J. Nat. Prod. 2019, 82, 3140–3149. [Google Scholar] [CrossRef] [PubMed]
- Nawrot-Hadzik, I.; Choromańska, A.; Abel, R.; Preissner, R.; Saczko, J.; Matkowski, A.; Hadzik, J. Cytotoxic effect of vanicosides A and B from Reynoutria sachalinensis against melanotic and amelanotic melanoma cell lines and in silico evaluation for inhibition of BRAFV600E and MEK1. Int. J. Mol. Sci. 2020, 21, 4611. [Google Scholar] [CrossRef]
- Arita, M.; Fuchino, H. Characterization of Anti-Poliovirus Compounds Isolated from Edible Plants. Viruses 2023, 15, 903. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Su, X.; Lu, J.; Wu, M.; Yang, S.Y.; Mai, Y.; Deng, W.; Xue, Y. In Vitro and in Silico Analysis of Phytochemicals From Fallopia dentatoalata as Dual Functional Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. Front. Pharmacol. 2022, 13, 905708. [Google Scholar] [CrossRef]
- Queneau, Y.; Fitremann, J.; Trombotto, S. The chemistry of unprotected sucrose: The selectivity issue. Comptes Rendus Chim. 2004, 7, 177–188. [Google Scholar] [CrossRef]
- Manzo, E.; Barone, G.; Parrilli, M. An efficient catalysed ceric ammonium nitrate acetonation method for carbohydrates. Synlett 2000, 2000, 887–889. [Google Scholar] [CrossRef]
- Fanton, E.; Gelas, J.; Horton, D.; Karl, H.; Khan, R.; Lee, C.K.; Patel, G. Kinetic Acetonation of Sucrose; Preparative Access to a Chirally Substituted 1,3,6-Trioxacyclooctane System. J. Org. Chem. 1981, 46, 4057–4060. [Google Scholar] [CrossRef]
- Navia, J.L.; Roberts, R.A.; Wingard, R.E. Study on the Selectivity of Benzoylation of Metal Chelates of Sucrose 1. J. Carbohydr. Chem. 1995, 14, 465–480. [Google Scholar] [CrossRef]
- Ferrer, M.; Cruces, M.A.; Bernabé, M.; Ballesteros, A.; Plou, F.J. Lipase-catalyzed regioselective acylation of sucrose in two-solvent mixtures. Biotechnol. Bioeng. 1999, 65, 10–16. [Google Scholar] [CrossRef]
- Zeuner, B.; Kontogeorgis, G.M.; Riisager, A.; Meyer, A.S. Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media. New Biotechnol. 2012, 29, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Sarney, D.B.; Barnard, M.J.; MacManus, D.A.; Vulfson, E.N. Application of lipases to the regioselective synthesis of sucrose fatty acid monoesters. JAOCS J. Am. Oil Chem. Soc. 1996, 73, 1481–1487. [Google Scholar] [CrossRef]
- Yoshinari, K.; Sashida, Y.; Mimaki, Y.; Shimomura, H. New Polyacylated Sucrose Derivatives from the Bark of Prunus padus. Chem. Pharm. Bull. 1990, 38, 415–417. [Google Scholar] [CrossRef]
- Zhang, D.; Miyase, T.; Kuroyanagi, M.; Umehara, K.; Noguchi, H. Oligosaccharide polyesters from roots of Polygala glomerata. Phytochemistry 1998, 47, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Sashida, Y.; Ori, K.; Mimaki, Y. Studies on the Chemical Constituents of the Bulbs of Lilium mackliniae. Chem. Pharm. Bull. 1991, 39, 2362–2368. [Google Scholar] [CrossRef]
- Brown, L.V.L.; Larson, S.R.; Sneden, A.T. Vanicosides C-F, new phenylpropanoid glycosides from Polygonum pensylvanicum. J. Nat. Prod. 1998, 61, 762–766. [Google Scholar] [CrossRef]
Entry | Enzyme | Donor | Solvent | Time (days) | Product | Yield (%) |
---|---|---|---|---|---|---|
1 | LPZ | 5a | CH3CN | 7 | n.d. | - |
2 | LPZ | 5b | t-BuOH | 7 | n.d. | - |
3 | LPZ | 5b | CH3CN | 30 | n.d. | - |
4 | LPZ | 5c | CH3CN | 20 | n.d. | - |
5 | PT | 5a | CH3CN | 62 | 9a | 41 |
6 | PT | 5b | CH3CN | 59 | 9b | 44 |
7 | PT | 5c | CH3CN | 72 | n.d. | - |
Entry | Enzyme | Donor | Solvent | Time (h) | Acylated Products/Yields (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
10a | 11a | 12a | 13a | 14a | Triacyls 1 | |||||
1 | LPZ | 5a | CH3CN | 120 | 30 | 5 | 13 | 12 | 12 | 7 1 |
2 | LPZ | 5a | MeTHF | 116 | 32 | 4 | 19 | 7 | 12 | 4 1 |
3 | PT | 5a | CH3CN | 129 2 | 19 | n.d. | 14 | n.d | 3 | n.d |
10b | 11b | 12b | 13b | 14b | ||||||
4 | LPZ | 5b | CH3CN | 114 | 31 | 3 | 18 | 4 | 4 | traces |
5 | LPZ | 5b | MeTHF | 108 | 29 | 4 | 18 | 5 | 7 | n.d |
6 | PT | 5b | CH3CN | 68 2 | 25 | n.d. | 23 | n.d | 10 | n.d |
7 | PT | 5b | MeTHF | 153 2 | n.d | n.d | n.d | n.d | n.d | n.d |
Entry | Enzyme | Acceptor/Donor | Solvent | Time (h) | Acylated Products /Yields (%) | ||||
---|---|---|---|---|---|---|---|---|---|
15a | 16a | 17a | 18a | Tetraacyls | |||||
1 | LPZ | 4a/5a | CH3CN | 112 | 65 | n.d. | 22 (1:4) | traces | |
2 | LPZ | 4a/5a | MeTHF | 65 | 24 | n.d. | 16 | 49 | 2 1 + 7 (19a) |
3 | PT | 4a/5a | CH3CN | 71 3 | 43 (1:1) | n.d. | 6 | n.d. | |
15b | 16b | 17b | 18b | ||||||
4 | LPZ | 4a/5b | CH3CN | 163 | 63 | n.d. | 13 (1:5) | n.d. | |
5 | PT | 4a/5b | CH3CN | 71 3 | 77 (1:1) | n.d. | 16 | n.d. | |
6 | PT | 4a/5b | MeTHF | 120 3 | n.d. | n.d. | n.d. | n.d. | n.d. |
15c | 16c | 17c | 18c | ||||||
7 | LPZ | 4b/5c | CH3CN | 105 | 56 | n.d. | traces | 16 | n.d. |
8 | LPZ | 4b/5c | t-AmOH | 72 | 48 2 | n.d. | n.d. | 8 | n.d. |
9 | PP | 4b/5c | CH3CN | 63 3 | n.d. | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cvečko, M.; Mastihuba, V.; Mastihubová, M. An Exploratory Study of the Enzymatic Hydroxycinnamoylation of Sucrose and Its Derivatives. Molecules 2024, 29, 4067. https://doi.org/10.3390/molecules29174067
Cvečko M, Mastihuba V, Mastihubová M. An Exploratory Study of the Enzymatic Hydroxycinnamoylation of Sucrose and Its Derivatives. Molecules. 2024; 29(17):4067. https://doi.org/10.3390/molecules29174067
Chicago/Turabian StyleCvečko, Matej, Vladimír Mastihuba, and Mária Mastihubová. 2024. "An Exploratory Study of the Enzymatic Hydroxycinnamoylation of Sucrose and Its Derivatives" Molecules 29, no. 17: 4067. https://doi.org/10.3390/molecules29174067
APA StyleCvečko, M., Mastihuba, V., & Mastihubová, M. (2024). An Exploratory Study of the Enzymatic Hydroxycinnamoylation of Sucrose and Its Derivatives. Molecules, 29(17), 4067. https://doi.org/10.3390/molecules29174067