Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (209)

Search Parameters:
Keywords = chlorogenic acid (CGA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 766 KiB  
Article
Effect of Ultrasonic Frequencies on the Aqueous Extraction of Polyphenols, Chlorogenic Acid, and Quercetin from the Whole Fruit of Pitaya (Hylocereus spp.)
by Wei-Ting Lian and Chun-Yao Yang
Molecules 2025, 30(15), 3253; https://doi.org/10.3390/molecules30153253 - 3 Aug 2025
Viewed by 200
Abstract
The effect of ultrasonic frequencies of 40 kHz/300 W (U-40) and 120 kHz/300 W (U-120) on the aqueous extraction of bioactive compounds from dried whole-fruit powders (DPs) of red-peel/white-flesh (WFP) and red-peel/red-flesh (RFP) pitayas was investigated, and shaking at 120 rpm (S-120) was [...] Read more.
The effect of ultrasonic frequencies of 40 kHz/300 W (U-40) and 120 kHz/300 W (U-120) on the aqueous extraction of bioactive compounds from dried whole-fruit powders (DPs) of red-peel/white-flesh (WFP) and red-peel/red-flesh (RFP) pitayas was investigated, and shaking at 120 rpm (S-120) was used for a comparison. The effects of temperature and the solid-to-liquid ratio on the extraction efficiencies of the total phenolic content (TPC) and ferric-reducing antioxidant power (FRAP) of WFP and RFP were evaluated. The impact of extraction time on the aqueous extraction of specific compounds, namely, chlorogenic acid (CGA) and quercetin, from WFP and RFP was assessed with extraction modes of U-40, U-120, and S-120. At 40 °C and a 1/20 (g DP/mL) solid-to-liquid ratio, the use of U-40 achieved higher TPC and FRAP values at 15 min than U-120 and S-120 for WFP. The use of U-40 and U-120 extracted higher amounts of free CGA and free quercetin from WFP and RFP at 15 and 60 min than S-120 but showed different extraction efficiencies for free CGA and free quercetin. This study demonstrates that different ultrasonic frequencies can be applied in the green extraction of target bioactive compounds for use in nutraceutical foods. Full article
Show Figures

Figure 1

23 pages, 2594 KiB  
Article
A Natural Polyphenol, Chlorogenic Acid, Attenuates Obesity-Related Metabolic Disorders in Male Rats via miR-146a-IRAK1-TRAF6 and NRF2-Mediated Antioxidant Pathways
by Rashid Fahed Alenezi, Adel Abdelkhalek, Gehad El-Sayed, Ioan Pet, Mirela Ahmadi, El Said El Sherbini, Daniela Pușcașiu and Ahmed Hamed Arisha
Biomolecules 2025, 15(8), 1086; https://doi.org/10.3390/biom15081086 - 27 Jul 2025
Viewed by 320
Abstract
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, [...] Read more.
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, administered at 10 mg and 100 mg/kg/day for the last 4 weeks of a 12-week HFD protocol. Both CGA doses reduced body weight gain, abdominal circumference, and visceral fat accumulation, with the higher dose showing greater efficacy. CGA improved metabolic parameters by lowering fasting glucose and insulin and enhancing lipid profiles. CGA suppressed orexigenic genes (Agrp, NPY) and upregulated anorexigenic genes (POMC, CARTPT), suggesting appetite regulation in the hypothalamus. In abdominal white adipose tissue (WAT), CGA boosted antioxidant defenses (SOD, CAT, GPx, HO-1), reduced lipid peroxidation (MDA), and suppressed pro-inflammatory cytokines including TNF-α, IFN-γ, and IL-1β, while increasing the anti-inflammatory cytokine IL-10. CGA modulated inflammatory signaling via upregulation of miR-146a and inhibition of IRAK1, TRAF6, and NF-κB. It also reduced apoptosis by downregulating p53, Bax, and Caspase-3, and restoring Bcl-2. These findings demonstrate that short-term CGA administration effectively reverses multiple HFD-induced impairments, highlighting its potential as an effective therapeutic for obesity-related metabolic disorders. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Activities of Phytochemicals)
Show Figures

Figure 1

17 pages, 5515 KiB  
Article
Hypoglycemic Effects of Silphium perfoliatum L. In Vitro and In Vivo and Its Active Composition Identification by UPLC-Triple-TOF-MS/MS
by Guoying Zhang, Liying Liu, Wenjing Jia, Luya Wang, Jihong Tao, Wei Zhang, Huilan Yue, Dejun Zhang and Xiaohui Zhao
Pharmaceuticals 2025, 18(8), 1087; https://doi.org/10.3390/ph18081087 - 23 Jul 2025
Viewed by 260
Abstract
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal [...] Read more.
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal medicine of North American Indigenous tribes, has efficacy of treating metabolic diseases, but its hypoglycemic activity and bioactive components have not been fully studied. Methods: In vitro α-glucosidase inhibition and in vivo sucrose/maltose/starch tolerance assays were performed to assess the hypoglycemic effects of SP extracts, and UPLC-Triple-TOF-MS/MS analysis was used to tentatively identify its chemical structure composition. In vitro enzyme inhibition and molecular docking were used to verify the effective ingredients. Results: In vitro hypoglycemic activities of four extracts of SP (SP-10/SP-40/SP-60/SP-C) showed that SP-10 exhibited strong α-glucosidase (sucrase and maltase) inhibitory effects with IC50 of 67.81 μg/mL and 62.99 μg/mL, respectively. Carbohydrate tolerance assays demonstrated that SP-10 could significantly reduce the PBG levels of diabetic mice, with a significant hypoglycemic effect at a dosage of 20 mg/kg. A total of 26 constituents, including 11 caffeoylquinic acids (CQAs) and 15 flavonol glycosides, were tentatively identified by mainly analyzing secondary MS fragmentation. Moreover, three CQAs rich in SP-10, namely chlorogenic acid (CGA), neochlorogenic acid (NCGA), and cryptochlorogenic acid (CCGA), may be the main hypoglycemic substances, as evidenced by their inhibitory effects on sucrase and maltase. Conclusions: The α-glucosidase inhibitory effects of SP extract both in vitro and in vivo and its active ingredients were systematically studied for the first time. Results indicated that SP extract, rich in CQAs, had significant hypoglycemic activity, supporting the considerable potential of SP as hypoglycemic functional food or cost-effective therapeutic agents for diabetes treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

18 pages, 2164 KiB  
Article
Pre-Chilling CGA Application Alleviates Chilling Injury in Tomato by Maintaining Photosynthetic Efficiency and Altering Phenylpropanoid Metabolism
by Yanmei Li, Luis A. J. Mur, Qiang Guo and Xiangnan Xu
Plants 2025, 14(13), 2026; https://doi.org/10.3390/plants14132026 - 2 Jul 2025
Viewed by 321
Abstract
Chilling injury can limit the productivity of tomato (Solanum lycopersicum L.), especially in over-wintering greenhouse. We here explored the effect of the pre-application of chlorogenic acid (CGA) in mitigating the impact of chilling on tomato. Flowering plants subjected to either chilling (15 [...] Read more.
Chilling injury can limit the productivity of tomato (Solanum lycopersicum L.), especially in over-wintering greenhouse. We here explored the effect of the pre-application of chlorogenic acid (CGA) in mitigating the impact of chilling on tomato. Flowering plants subjected to either chilling (15 °C/5 °C, day/night) or pre-treatment with CGA followed by chilling for 6 days and then by a two-day control recovery period were compared to plants maintained at control conditions (25 °C/18 °C, day/night). Chilling significantly affected the expression of PSII CP43 Chlorophyll Apoprotein, NAD (P) H-Quinone Oxidoreductase Subunit 5 and ATP Synthase CF1 Beta Subunit, reduced leaf Fv/Fm and increased malondialdehyde (MDA) levels, suggesting elevated oxidative stress. These correlated with reduced shoot biomass. All these aspects were mitigated by pretreatment with CGA. Transcriptomic and metabolomic co-analysis indicated that CGA also suppressed the shikimate pathway, phenylpropanoid biosynthesis and phenylalanine accumulation but enhanced cinnamic acid and indole acetate synthesis. Hence, the pre-chilling CGA protected the tomato plant from chilling injury by maintaining light energy utilization and reprograming secondary metabolism. This study describes the mechanism through which CGA pre-treatment can be used to maintain tomato productivity under chilling conditions. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

20 pages, 8532 KiB  
Article
Synergistic Effect of Stauntonia hexaphylla (Thunb.) Decne Fruit and Leaf on RAW 264.7 Osteoclast and MC3T3-E1 Osteoblast Differentiation
by Reshmi Akter, Muhammad Awais, Md Niaj Morshed, Jong Hak Kim, Byoung Man Kong, Dong Wook Lee, Sung Keun Choi, Chang Soon Lee, Jong Chan Ahn and Deok Chun Yang
Biomolecules 2025, 15(6), 844; https://doi.org/10.3390/biom15060844 - 10 Jun 2025
Viewed by 880
Abstract
Stauntonia hexaphylla (Thunb.) Decne (SH) is known for its anti-inflammatory, analgesic, antioxidant, and anti-osteoporotic properties. This study investigated the composition of SH leaves and fruits and assessed their individual and combined effects in an in vitro osteoporosis model. Extracts with varying leaf-to-fruit ratios [...] Read more.
Stauntonia hexaphylla (Thunb.) Decne (SH) is known for its anti-inflammatory, analgesic, antioxidant, and anti-osteoporotic properties. This study investigated the composition of SH leaves and fruits and assessed their individual and combined effects in an in vitro osteoporosis model. Extracts with varying leaf-to-fruit ratios (SH82, SH55, SH28) were evaluated in MC3T3-E1 and RAW264.7 cells to examine osteogenesis and bone resorption biomarkers. SH leaves were rich in chlorogenic acids (CGAs) and flavonoids, while fruits contained phenolic acids with minimal flavonoids. Leaf extracts exhibited superior antioxidant activity and ROS suppression. Both leaf and fruit extracts enhanced ALP activity, calcium deposition, and collagen formation in MC3T3-E1 cells, with leaf extracts demonstrating greater efficacy. Additionally, osteoblastogenesis-related genes were upregulated, while TRAP activity and osteoclast-related gene expression were significantly inhibited. The combined extract exerted a synergistic effect, with SH28 showing the most pronounced osteogenic enhancement and TRAP inhibition. Key components, including neo-CGA, CGA, rutin, and luteolin-7-O-glucoside, positively influenced ALP and TRAP activities. These findings highlight the potential of SH, particularly at a high leaf-to-fruit ratio, as a promising natural agent for osteoporosis prevention. Full article
Show Figures

Graphical abstract

21 pages, 449 KiB  
Review
Research Advances in the Synthesis, Metabolism, and Function of Chlorogenic Acid
by Yuxin He, Shengming Mao, Yingying Zhao and Jing Yang
Foods 2025, 14(11), 1914; https://doi.org/10.3390/foods14111914 - 28 May 2025
Viewed by 848
Abstract
Chlorogenic acids (CGAs) are a group of important plant secondary metabolites produced in the phenylpropanoid metabolic pathway; they are formed via the conjugation of caffeic and quinic acids and are widely distributed across different plant species. Renowned for their multifunctional activities—including antioxidant, anti-inflammatory, [...] Read more.
Chlorogenic acids (CGAs) are a group of important plant secondary metabolites produced in the phenylpropanoid metabolic pathway; they are formed via the conjugation of caffeic and quinic acids and are widely distributed across different plant species. Renowned for their multifunctional activities—including antioxidant, anti-inflammatory, antimicrobial, anticancer, antidiabetic, and anti-obesity properties—CGAs are versatile natural food additives with diverse industrial applications. This review summarizes five distinct CGA biosynthetic pathways, the structural and regulatory genes involved, and their key biological functions. The insights aim to facilitate a deeper understanding of CGA metabolism and streamline its exploitation in agriculture and human health. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

21 pages, 8307 KiB  
Article
Isochlorogenic Acid C Alleviates Allergic Asthma via Interactions Between Its Bioactive Form and the Gut Microbiome
by Jing-Yi Xu, Xiao-Juan Rong, Zhen Shen, Yun-Dan Guo, Yi-Xuan Zhang, Chen-Chen Ding, Yi Wang, Yan-Xing Han, Tian-Le Gao and Cai Tie
Int. J. Mol. Sci. 2025, 26(10), 4864; https://doi.org/10.3390/ijms26104864 - 19 May 2025
Viewed by 663
Abstract
The global prevalence of asthma is approximately 4.3%, and current asthma treatments focus on reducing symptoms, maintaining normal activity levels, and preventing the deterioration of lung function, rather than achieving a cure or complete prevention. We identified isochlorogenic acid C (ICGAC) as a [...] Read more.
The global prevalence of asthma is approximately 4.3%, and current asthma treatments focus on reducing symptoms, maintaining normal activity levels, and preventing the deterioration of lung function, rather than achieving a cure or complete prevention. We identified isochlorogenic acid C (ICGAC) as a potential natural medicine for the treatment of asthma. However, the bioavailability of ICGAC was low, ranging from 14.4% to 16.9%, suggesting the involvement of the gut microbiota. The full spectrum of ICGAC’s anti-asthmatic mechanism remains to be elucidated. This study investigated the mechanism by which ICGAC alleviates allergic asthma through the gut–lung axis. We discovered anti-asthma pathways and targets based on the selective regulation of lipid peroxidation and employed pharmacological tools to preliminarily validate their mechanisms and efficacy. To study the role of ICGAC in regulating the gut microbiota, we performed 16S rRNA gene sequencing and metabolite analysis. Furthermore, by combining molecular biology and lipid metabolomics, we elucidated the underlying anti-asthma mechanisms of ICGAC. The effective form of ICGAC varies between single and long-term administration. The oral administration of ICGAC enhances the gut-microbiota-derived production of short-chain fatty acids (SCFAs) as the active substances, modulates immune cell activity, influences the differentiation of T- and B-cells, and reduces airway inflammation. ICGAC also regulates the metabolic network of lipid mediators (LMs) and polyunsaturated fatty acids (PUFAs), thus exerting anti-inflammatory effects by modulating arachidonate lipoxygenase (ALOX) activity and LM levels. In addition, ICGAC enhanced the antioxidant response by upregulating the expression of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), and nuclear factor erythroid 2-related factor 2 (Nrf2), while inhibiting the release of interleukin-4 (IL-4), thereby suppressing asthma inflammation and IgE production. The anti-asthmatic mechanism of oral ICGAC involves the inhibition of lipid peroxidation by chlorogenic acid (CGA) and SCFAs produced by the gut microbiota. ICGAC suppresses asthma-associated inflammatory and oxidative stress responses through the upregulation of GPX4, SLC7A11, and Nrf2 in lung tissue. This study not only provides a solid foundation for the potential clinical use of ICGAC in asthma treatment but also offers novel insights for future research and therapeutic strategies targeting asthma. Full article
(This article belongs to the Special Issue Natural Products in Drug Discovery and Development)
Show Figures

Graphical abstract

21 pages, 1937 KiB  
Review
Biosynthetic Mechanisms of Plant Chlorogenic Acid from a Microbiological Perspective
by Jiasi Zhong, Qingsong Ran, Yanfeng Han, Longzhan Gan and Chunbo Dong
Microorganisms 2025, 13(5), 1114; https://doi.org/10.3390/microorganisms13051114 - 13 May 2025
Cited by 1 | Viewed by 1111
Abstract
Chlorogenic acid (CGA), a phenolic compound with diverse bioactivities, plays a crucial role in plant defense mechanisms and has significant therapeutic potential in human inflammatory and cardiovascular diseases. The biosynthesis and accumulation of CGA in plants result from a complex interplay between internal [...] Read more.
Chlorogenic acid (CGA), a phenolic compound with diverse bioactivities, plays a crucial role in plant defense mechanisms and has significant therapeutic potential in human inflammatory and cardiovascular diseases. The biosynthesis and accumulation of CGA in plants result from a complex interplay between internal factors (e.g., hormones, enzymes, and genes) and external factors (e.g., microbial interactions, drought, and temperature fluctuations). This review systematically investigates the influence of microbes on internal regulatory factors governing CGA biosynthesis in plants. CGA is synthesized through four distinct metabolic pathways, with hormones, enzymes, and genes as key regulators. Notably, microbes enhance CGA biosynthesis by improving plant nutrient uptake, supplying essential hormones, regulating the expression of related enzymes and genes, and the interaction between bacteria and fungi. In addition, our review summarizes the challenges currently present in the research and proposes a series of innovative strategies. These include in-depth investigations into the molecular mechanisms of microbial regulation of plant gene expression, gene editing, development of microbial inoculants, construction of synthetic microbial communities, and exogenous application of plant hormones. Full article
Show Figures

Figure 1

20 pages, 7827 KiB  
Article
Neuroprotective Effects of Cilomilast and Chlorogenic Acid Against Scopolamine-Induced Memory Deficits via Modulation of the cAMP/PKA–CREB–BDNF Pathway
by Esraa M. Mosalam, Soha M. Atya, Noha M. Mesbah, Shady Allam and Eman T. Mehanna
Int. J. Mol. Sci. 2025, 26(7), 3108; https://doi.org/10.3390/ijms26073108 - 28 Mar 2025
Cited by 1 | Viewed by 823
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline, neuroinflammation and neuronal damage. This study aimed to investigate the neuroprotective effects of cilomilast (CILO), a phosphodiesterase-4 (PDE4) inhibitor, alone and in combination with chlorogenic acid (CGA), a natural polyphenol, against scopolamine [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline, neuroinflammation and neuronal damage. This study aimed to investigate the neuroprotective effects of cilomilast (CILO), a phosphodiesterase-4 (PDE4) inhibitor, alone and in combination with chlorogenic acid (CGA), a natural polyphenol, against scopolamine (SCOP)-induced cognitive impairment in mice. Forty male albino mice were divided into five groups: normal control, SCOP control, CGA + SCOP, CILO + SCOP and CILO + CGA + SCOP. Behavioral assessments, including the Y-maze and pole climbing tests, demonstrated that SCOP significantly impaired cognition, while treatment with CILO and CGA reversed these deficits, with the combination group showing the greatest improvement. Histopathological analyses revealed that CILO and CGA reduced neuronal damage and amyloid beta (Aβ) accumulation. Immunohistochemical and biochemical assessments confirmed a decrease in neuroinflammatory markers, including tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB). Molecular analyses showed that CILO restored cyclic adenosine monophosphate (cAMP) levels, leading to activation of protein kinase A (PKA), cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), key regulators of neuronal plasticity and survival. CGA enhanced these effects by further inhibiting PDE4, amplifying the neuroprotective response. These findings suggest that PDE4 inhibitors, particularly in combination with CGA, may represent promising therapeutic strategies for AD-related cognitive impairment. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

23 pages, 3470 KiB  
Article
Major Bioactive Compounds in Seeds, Husks, and Leaves of Selected Genotypes of Coffea canephora cv. Conilon from Three Consecutive Crops
by Juliana DePaula, Fábio Luiz Partelli, Alessandro M. Batista, Veronica Calado and Adriana Farah
Plants 2025, 14(7), 1040; https://doi.org/10.3390/plants14071040 - 27 Mar 2025
Viewed by 679
Abstract
This study aimed to investigate: (1) the bioactive profile of seeds, husks, and leaves of selected conilon coffee genotypes (n = 42) from three consecutive crops for the selection of plants to meet health interests, (2) the variability in the content of [...] Read more.
This study aimed to investigate: (1) the bioactive profile of seeds, husks, and leaves of selected conilon coffee genotypes (n = 42) from three consecutive crops for the selection of plants to meet health interests, (2) the variability in the content of these bioactive compounds over the crops, and (3) possible correlations among the contents of the evaluated compounds in the different parts of the plant. Selected conilon plants were reproduced by clonal propagation. Bioactive compounds were analyzed using HPLC-DAD. Eight chlorogenic acids (CGA), caffeine, trigonelline, and minor phenolic compounds were quantified (dry basis) in all extracts. CGA contents in seeds, husks, and leaves ranged between 3.71 and 9.71 g/100 g, 0.43 and 1.65 g/100 g, and 0.80 and 2.22 g/100 g, respectively. Caffeine contents ranged between 1.21 and 2.63 g/100 g, 0.13 and 0.84 g/100 g, and 0.33 and 2.01 g/100 g in seeds, husks, and leaves, respectively. Trigonelline contents ranged between 0.83 and 1.12 g/100 g, 0.59 and 1.24 g/100 g, and 0.74 and 1.84 g/100 g, respectively. Variation among the three crops was observed to be higher for CGA. A discrete correlation between CGA and caffeine was observed in the seeds (r: 0.72, p = 0.003). Some of the genotypes showed consistently higher contents of these bioactive compounds than others (not only in the seeds but also in the husks and leaves), being good candidates for cultivar registration to meet various market demands in the food and pharmaceutical industries. Studies that evaluate the potential use of new genotypes and byproducts are important for diversification and maximum use of coffee plants, promoting sustainability and financial return to the farmers and the producing country. Full article
(This article belongs to the Special Issue Chemistry, Biology and Health Aspects of Plants of the Coffea Genus)
Show Figures

Figure 1

12 pages, 1593 KiB  
Article
Addition of Chlorogenic Acid to Human Semen: Effects on Sperm Motility, DNA Integrity, Oxidative Stress, and Nrf2 Expression
by Cinzia Signorini, Roberta Corsaro, Giulia Collodel, Robert Maettner, Karl Sterzik, Erwin Strehler, Laura Liguori and Elena Moretti
Antioxidants 2025, 14(4), 382; https://doi.org/10.3390/antiox14040382 - 25 Mar 2025
Viewed by 651
Abstract
This study evaluated the effects of chlorogenic acid (CGA) on human semen and on oxidative stress (OS) induced in vitro in human spermatozoa. After the treatment of the basal semen with 100 µM CGA, rapid and slow sperm progressive motility were evaluated and [...] Read more.
This study evaluated the effects of chlorogenic acid (CGA) on human semen and on oxidative stress (OS) induced in vitro in human spermatozoa. After the treatment of the basal semen with 100 µM CGA, rapid and slow sperm progressive motility were evaluated and seminal F2-Isoprostanes (F2-IsoPs), a marker of OS, were quantified by ELISA. In a second set of experiments, semen was treated with 100 µM CGA, 1 mM H2O2 to induce OS, or H2O2+CGA; untreated samples were used as controls. Then, sperm motility, DNA integrity by the acridine orange test, F2-IsoPs and Nrf2 mRNA expression by RT-PCR were quantified. In CGA-treated specimens, rapid progressive sperm motility was increased (p < 0.01) and F2-IsoP levels decreased (p < 0.001) versus controls. The increase of F2-IsoP levels and DNA damage and the decrease of sperm motility after H2O2 treatment was reversed in the presence of CGA, which upregulated Nrf2 mRNA expression. These findings contributed to clarifying CGA’s antioxidant activity and highlighted the positive impact of CGA on sperm progressive motility, suggesting also a possible mechanism of action based on the Nrf2 pathway. CGA can be useful during human semen handling procedures in the laboratory and in optimizing the recovery of motile spermatozoa through selection techniques during assisted reproductive technology protocols. Full article
(This article belongs to the Special Issue Oxidative and Nitrosative Stress in Male Reproduction)
Show Figures

Figure 1

20 pages, 6578 KiB  
Article
Hydrotalcite Supported on Polycaprolactone:Poly(methyl methacrylate) Fiber Membranes for Chlorogenic Acid Removal
by Andressa Cristina de Almeida Nascimento, João Otávio Donizette Malafatti, Maria Luiza Lopes Sierra e Silva, Ailton José Moreira, Adriana Coatrini Thomazi, Simone Quaranta and Elaine Cristina Paris
Water 2025, 17(7), 931; https://doi.org/10.3390/w17070931 - 22 Mar 2025
Viewed by 582
Abstract
Polyphenols are organic molecules extracted from various fruits, such as coffee and citrus, that possess biological activity and antioxidant properties. However, the presence of polyphenols in the environment is hazardous to water quality and living health. Among a variety of water remediation methods, [...] Read more.
Polyphenols are organic molecules extracted from various fruits, such as coffee and citrus, that possess biological activity and antioxidant properties. However, the presence of polyphenols in the environment is hazardous to water quality and living health. Among a variety of water remediation methods, adsorption remains a staple in the field. Therefore, this work aims to develop porous polycaprolactone: poly(methyl methacrylate) (PCL:PMMA) membranes as a support for hydrotalcite immobilization for the removal of chlorogenic acid polyphenol (CGA) from aqueous solutions. Due to the hydrophilic nature of hydrotalcite, the adsorbent was functionalized with hexadecyltrimethylammonium bromide (CTAB) to increase its affinity for CGA, resulting in a removal efficiency of approximately 96%. Composite fiber membranes were prepared by solution-blowing spinning with specific amounts of hydrotalcite added (i.e., 1 to 60 wt%). A 3:1 PCL:PMMA blend resulted in superior mechanical traction (0.8 MPa) and stress deformation (70%) compared to pure PCL (0.7 MPa and 37%) and PMMA (0.1 MPa and 5%) fibers. PCL:PMMA membranes with 60% LDH-CTAB exhibited CGA removal rates equal to 55% in the first cycle while maintaining the capacity to remove 30% of the polyphenol after five consecutive reuses. Removal rates up to 90% could also be achieved with an appropriate adsorbent dose (2 g L−1). Adsorption was found to follow pseudo-second-order kinetics and was adequately described by the Langmuir model, saturating LDH-CTAB active sites in four hours. PCL:PMMA:LDH-CTAB composites can be considered a potential alternative to support adsorbents for water remediation. Full article
Show Figures

Graphical abstract

17 pages, 1259 KiB  
Article
Fermentation of Light and Dark Bean Coffee Brews with SCOBY and Lactic Acid Bacteria
by Rusen Metin Yildirim
Fermentation 2025, 11(3), 158; https://doi.org/10.3390/fermentation11030158 - 20 Mar 2025
Viewed by 1047
Abstract
This study investigated the effects of fermentation with a SCOBY (symbiotic culture of bacteria and yeast) and lactic acid bacteria (LAB) on the physicochemical and sensory properties of coffee brews prepared from light-roasted (LR) and dark-roasted (DR) coffee beans, with and without the [...] Read more.
This study investigated the effects of fermentation with a SCOBY (symbiotic culture of bacteria and yeast) and lactic acid bacteria (LAB) on the physicochemical and sensory properties of coffee brews prepared from light-roasted (LR) and dark-roasted (DR) coffee beans, with and without the addition of spent coffee grounds (SC). Total phenolic content (TPC), total flavonoid content (TFC), antioxidant activities (DPPH and FRAP), caffeine, and individual phenolic acids were analyzed. Fermentation significantly increased TPC and the concentrations of chlorogenic acids (CGAs), particularly in LR samples, with 5-caffeoylquinic acid (5-CQA) as the most abundant phenolic acid. The addition of spent coffee grounds further enhanced TPC and CGA levels, with total CGA concentrations increasing from 1412.32 to 2458.57 mg/L in LR samples and from 519.77 to 586.37 mg/L in DR samples. Fermentation also led to the isomerization of 5-CQA into 3-CQA and 4-CQA, as well as the release of caffeic acid in LAB-fermented samples. Acetic acid production was exclusive to SCOBY-fermented samples, with higher levels in LR samples (6658 mg/L) compared to DR samples (4331 mg/L). In contrast, lactic acid production was observed only in LAB-fermented samples, reaching 6559 mg/L in LR samples with spent coffee grounds. Antioxidant activity varied depending on the assay, with FRAP values decreasing in fermented samples, while DPPH values remained largely unchanged. Sensory evaluation identified the dark-roasted SCOBY-fermented sample with spent coffee grounds (SK) as the most preferred, characterized by balanced flavor and high overall acceptability. These findings highlight the influence of roasting degree, fermentation type, and substrate composition on the bioactive and sensory properties of fermented coffee, providing insights for the development of novel coffee-based fermented beverages with enhanced functional and sensory profiles. Full article
Show Figures

Figure 1

20 pages, 6065 KiB  
Article
Major Bioactive Compounds, Volatile and Sensory Profiles of Coffea canephora Flowers and Infusions for Waste Management in Coffee Production
by Juliana DePaula, Sara C. Cunha, Fábio Luiz Partelli, José O. Fernandes and Adriana Farah
Foods 2025, 14(6), 911; https://doi.org/10.3390/foods14060911 - 7 Mar 2025
Viewed by 1453
Abstract
This study aimed to investigate the content of major bioactive compounds and characterize the volatile and sensory profiles of Coffea canephora flowers and their infusions. Dried flowers from six selected genotypes of C. canephora trees and their infusions were analyzed for bioactive compounds [...] Read more.
This study aimed to investigate the content of major bioactive compounds and characterize the volatile and sensory profiles of Coffea canephora flowers and their infusions. Dried flowers from six selected genotypes of C. canephora trees and their infusions were analyzed for bioactive compounds using HPLC–DAD, while volatile organic compounds (VOC) were analyzed using GC–MS. Eight chlorogenic acids (CGA), seven phenolic acids, and the alkaloids caffeine and trigonelline were quantified in all methanolic flower extracts. Total CGA, phenolic acids, caffeine, and trigonelline contents in the methanolic extracts ranged between 342.8 and 1079.4 mg/100 g, 27.1 and 41.0 mg/100 g, 515.6 and 745.9 mg/100 g, and 453.8 and 645.2 mg/100 g, respectively. CGA, caffeine, and trigonelline were well extracted (84%, 91%, and 74%, respectively) when the flowers were infused in hot water. No free phenolic acids were identified in the infusions. Eighty-five VOC were identified in the flowers. Aldehydes, monoterpenes, esters, alcohols, monoterpene alcohols, acids, and ketones prevailed in order of the number of compounds. In the infusions, 38 VOC were accurately identified. Monoterpenes and monoterpene alcohols prevailed. In general, floral, jasmine and orange blossom, herbal, green coffee, woody, and sweet were the most cited sensory attributes for fragrance, aroma, and flavor. Considering the typically weak aroma of C. canephora seeds, the aroma and flavor of the flower’s infusions were surprisingly strong and pleasant, showing great marketing potential. Full article
Show Figures

Graphical abstract

24 pages, 11816 KiB  
Article
Coffee Compounds Protection Against Lipotoxicity Is Associated with Lipid Droplet Formation and Antioxidant Response in Primary Rat Hepatocytes
by Johanna C. Arroyave-Ospina, Magnolia Martínez, Manon Buist-Homan, Victoria Palasantzas, Marco Arrese and Han Moshage
Antioxidants 2025, 14(2), 175; https://doi.org/10.3390/antiox14020175 - 31 Jan 2025
Cited by 1 | Viewed by 1279
Abstract
Metabolic dysfunction associated with steatotic liver disease (MASLD) is the result of disturbed lipid metabolism. In MASLD, the accumulation of free fatty acids (FFAs) in hepatocytes causes lipotoxicity mediated by oxidative stress. Coffee compounds are known for their beneficial effects in MASLD; however, [...] Read more.
Metabolic dysfunction associated with steatotic liver disease (MASLD) is the result of disturbed lipid metabolism. In MASLD, the accumulation of free fatty acids (FFAs) in hepatocytes causes lipotoxicity mediated by oxidative stress. Coffee compounds are known for their beneficial effects in MASLD; however, the mechanisms still need to be further explored. The aim of this study was to elucidate the protective mechanisms of coffee compounds against palmitate-induced lipotoxicity in primary hepatocytes. Methods: Primary hepatocytes were isolated from male Wistar rats and treated with palmitate (1 mmol/L) in combination with caffeine (CF: 1 mmol/L) or chlorogenic acid (CGA: 5 µmol/L). Mitochondrial ROS production, palmitate-induced necrosis, antioxidant response, ER stress markers and lipid droplet (LD) formation were assessed. Monoacylglycerols 2-SG (2-Stearolylglycerol), 2-OG (2-Oleoylglycerol) and SCD-1 (Stearoyl-CoA Desaturase 1) inhibitors were used to modulate LD formation. LD formation in steatotic Zucker rat hepatocytes was also investigated. Results: CF and CGA prevented palmitate-induced cell death and reduced ROS production. CF and CGA induced the antioxidant response, especially HO-1 expression, but had no significant effect on ER stress markers. CF and CGA increased LD formation in palmitate-treated cells. This effect was significantly reduced by 2-SG and SCD-1 inhibitors but enhanced by 2-OG. Lipid droplets were associated with lower palmitate toxicity and reduced ROS production. Conclusions: CF and CGA protect hepatocytes from lipotoxicity via modulation of the antioxidant response and enhance lipid droplet formation via an SCD-1-dependent mechanism. Oxidative stress-related toxicity in hepatocytes can be prevented by enhancing LD formation. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

Back to TopTop