Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = chlorinative stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2816 KiB  
Article
A Colorimetric/Ratiometric Fluorescent Probe Based on Aggregation-Induced Emission Effect for Detecting Hypochlorous Acid in Real Samples and Bioimaging Applications
by Junliang Chen, Pingping Xiong, Huawei Niu, Weiwei Cao, Wenfen Zhang and Shusheng Zhang
Foods 2025, 14(14), 2491; https://doi.org/10.3390/foods14142491 - 16 Jul 2025
Viewed by 296
Abstract
Hypochlorous acid (HClO) serves as a biological mediator and is widely utilized as a disinfectant in food processing and water treatment. However, excessive HClO residues in food and environmental water raise concerns due to the potential formation of carcinogenic chlorinated byproducts and disinfection [...] Read more.
Hypochlorous acid (HClO) serves as a biological mediator and is widely utilized as a disinfectant in food processing and water treatment. However, excessive HClO residues in food and environmental water raise concerns due to the potential formation of carcinogenic chlorinated byproducts and disinfection byproducts (DBPs). Despite its importance, traditional methods for HClO detection often involve complex sample preparation, sophisticated instrumentation, and skilled operators. Herein, we report an aggregation-induced emission (AIE) small molecule fluorescent probe (NYV) that integrates colorimetric and ratiometric fluorescence responses for the detection of HClO. This probe exhibits high sensitivity, with a detection limit of 0.35 μM, a rapid response time of 1 min, and a wide linear range (0–142.5 μM), along with anti-interference capabilities, making it suitable for real-time monitoring. Furthermore, we have developed a portable solid-state sensor based on probe NYV for the rapid visual detection of HClO. The potential applications of this probe in real sample analysis and bioimaging experiments are demonstrated. Our findings contribute to the development of innovative fluorescent probes for HClO detection, with broad applications in food safety, environmental monitoring, and biomedical research on oxidative stress and ferroptosis. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

22 pages, 940 KiB  
Review
Sucralose: A Review of Environmental, Oxidative and Genomic Stress
by Volodymyr V. Tkach, Tetiana V. Morozova, Isabel O’Neill de Mascarenhas Gaivão, Natasha Gomes de Miranda, Yana G. Ivanushko, José Inácio Ferrão de Paiva Martins and Ana Novo Barros
Nutrients 2025, 17(13), 2199; https://doi.org/10.3390/nu17132199 - 1 Jul 2025
Viewed by 1232
Abstract
This review explores current knowledge on the environmental, oxidative, and genomic effects of sucralose (E955), an artificial sweetener widely used in food products, including those for children, and known to cross both the placental barrier and into breast milk. Although initially considered safe, [...] Read more.
This review explores current knowledge on the environmental, oxidative, and genomic effects of sucralose (E955), an artificial sweetener widely used in food products, including those for children, and known to cross both the placental barrier and into breast milk. Although initially considered safe, research conducted over the past two decades has presented conflicting evidence regarding its long-term impact, particularly on ecosystems and biological systems. Structurally similar to chlorinated compounds such as perfluoralkyl substances (PFAS), sucralose is highly persistent in the environment, which complicates its degradation and removal, especially from aquatic systems. Several studies have reported behavioral, metabolic, and even genomic alterations in aquatic organisms exposed to sucralose, raising concerns about its broader ecological safety. In addition, its presence has been linked to shifts in microbiota composition in both environmental and human contexts. Reports of sucralose-induced oxidative stress further highlight the need for caution in its continued use, particularly in sensitive formulations. Given its widespread presence and resistance to degradation, further investigation into the environmental and biological safety of sucralose is urgently needed. Full article
Show Figures

Figure 1

22 pages, 2268 KiB  
Article
Evaluation of Water Quality in the Production of Rainbow Trout (Oncorhynchus mykiss) in a Recirculating Aquaculture System (RAS) in the Precordilleran Region of Northern Chile
by Renzo Pepe-Victoriano, Piera Pepe-Vargas, Anahí Pérez-Aravena, Héctor Aravena-Ambrosetti, Jordan I. Huanacuni, Felipe Méndez-Abarca, Germán Olivares-Cantillano, Olger Acosta-Angulo and Luis Espinoza-Ramos
Water 2025, 17(11), 1685; https://doi.org/10.3390/w17111685 - 2 Jun 2025
Viewed by 1457
Abstract
Water quality and the culture performance of juvenile rainbow trout (Oncorhynchus mykiss) were evaluated between 2014 and 2017 in a recirculating aquaculture system (RAS) in the Chilean Altiplano. Key parameters such as temperature, total ammonia nitrogen (TAN), nitrates, and dissolved oxygen [...] Read more.
Water quality and the culture performance of juvenile rainbow trout (Oncorhynchus mykiss) were evaluated between 2014 and 2017 in a recirculating aquaculture system (RAS) in the Chilean Altiplano. Key parameters such as temperature, total ammonia nitrogen (TAN), nitrates, and dissolved oxygen were monitored, with values ranging from 7 to 21 °C, <0.1 to 0.63 mg/L, 2.0 to 135 mg/L, and 1.8 to 7.5 mg/L, respectively. Additional parameters—including alkalinity, arsenic, chlorine, true color, conductivity, hardness, phosphorus, pH, potassium, suspended solids, and salinity—were also assessed, comparing different points within the system (head tank, culture tanks, and settling tanks). The results showed that water quality remained within acceptable ranges for aquaculture, although fluctuations in pH and low alkalinity levels caused stress in the fish. Despite these challenges, the specific growth rate (SGR) was 1.49, the feed conversion ratio (FCR) was 1.52, and weight gain reached 298.7%, with a survival rate of 96.2%. This study demonstrates that aquaculture in the Altiplano is feasible and can contribute to the sustainable development of aquaculture in the region. Furthermore, it highlights the importance of comprehensive water quality monitoring to optimize RAS performance in challenging environments. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

26 pages, 11049 KiB  
Article
Dynamics of Physiological Changes of Shiga Toxin-Producing Escherichia coli O157:H7 on Romaine Lettuce During Pre-Processing Cold Storage, and Subsequent Effects on Virulence and Stress Tolerance
by Dimple Sharma, Joshua O. Owade, Corrine J. Kamphuis, Avery Evans, E. Shaney Rump, Cleary Catur, Jade Mitchell and Teresa M. Bergholz
Appl. Microbiol. 2025, 5(2), 45; https://doi.org/10.3390/applmicrobiol5020045 - 6 May 2025
Viewed by 681
Abstract
If lettuce is contaminated in the field, Shiga toxin-producing E. coli (STEC) O157:H7 can survive through the distribution chain. Prolonged cold storage during transportation may impact pathogen physiology, affecting subsequent stress survival and virulence. Greenhouse-grown Romaine lettuce, inoculated with three STEC O157:H7 strains, [...] Read more.
If lettuce is contaminated in the field, Shiga toxin-producing E. coli (STEC) O157:H7 can survive through the distribution chain. Prolonged cold storage during transportation may impact pathogen physiology, affecting subsequent stress survival and virulence. Greenhouse-grown Romaine lettuce, inoculated with three STEC O157:H7 strains, was harvested after 24 h and stored at 2 °C for 5 d following 4 h at harvest temperature (9 °C or 17 °C). Culturable, persister, and viable but non-culturable (VBNC) cells were quantified. Virulence was evaluated using Galleria mellonella and acid tolerance at pH 2.5 and tolerance to 20–25 ppm free chlorine were quantified. Colder harvest temperature (9 °C) before cold storage led to greater transformation of STEC O157:H7 into dormant states and decreased virulence in most cases. Increasing length of cold storage led to decreased virulence and acid tolerance of STEC O157:H7 on lettuce, while having no significant effect on chlorine tolerance. These findings highlight that entry of STEC O157:H7 into dormant states during harvest and transportation at cold temperatures leads to decreased stress tolerance and virulence with increasing cold storage. Changes in STEC O157:H7 physiology on lettuce during cold storage can be integrated into risk assessment tools for producers, which can assist in identifying practices that minimize risk of STEC O157:H7 from consumption of lettuce. Full article
(This article belongs to the Special Issue Applied Microbiology of Foods, 3rd Edition)
Show Figures

Figure 1

23 pages, 4539 KiB  
Review
Interactions of Fe and Zn Nanoparticles at Physiochemical, Biochemical, and Molecular Level in Horticultural Crops Under Salt Stress: A Review
by Jinyang Weng, Lu Xu, Pengli Li, Wei Xing, Saeed ur Rahman, Naveed Ahmad, Muhammad Naeem, Jun Lu and Asad Rehman
Horticulturae 2025, 11(4), 442; https://doi.org/10.3390/horticulturae11040442 - 21 Apr 2025
Viewed by 723
Abstract
Salinity is a major abiotic stress that affects the growth and yield of horticultural crops. By raising the levels of sodium and chlorine ions in plant cells, salinity disrupts various morphological, physiological, epigenetic, and genetic traits, leading to excessive oxidative stress production. Through [...] Read more.
Salinity is a major abiotic stress that affects the growth and yield of horticultural crops. By raising the levels of sodium and chlorine ions in plant cells, salinity disrupts various morphological, physiological, epigenetic, and genetic traits, leading to excessive oxidative stress production. Through a variety of redox methods, the plants can partially alleviate this disorder and restore the cell to its initial state. At cell level, cellular redox adaptation plays a potential role coping with salinity stress in all plants; however, if the salt dose is excessive, the plants might not be able to respond appropriately and may even perish from salt stress. Scientists have proposed many solutions to this issue in recent years. One of the newest and most effective technologies to enter this field is nanotechnology, which has produced some extremely impressive outcomes. However, the molecular mechanism and interaction between nanoparticles in horticultural crops remains unclear. In order to take a step toward resolving the current doubts for researchers in this field, we have attempted to conclude the most recent articles regarding how iron oxide nanoparticles (FeO-NPs) and zinc oxide nanoparticles (ZnO–NPs) could aid salt-stressed plants in restoring cellular function under saline conditions in horticulture crops. Further, different inoculation modes of NPs mediated changes in physiological attributes; biochemical and genetic expressions of plants under salt stress have been discussed. This article also discussed the limitations, risk, and challenges of NPs in the food chain. Full article
(This article belongs to the Special Issue Horticulture Plants Stress Physiology—2nd Edition)
Show Figures

Graphical abstract

15 pages, 11727 KiB  
Article
Prepubertal Exposure to Tris(2-chloroethyl) Phosphate Disrupts Blood-Testis Barrier Integrity via Ferritinophagy-Mediated Ferroptosis
by Yonggang Zhao, Mo Peng, Honglei Liu, Xiaoyu Zhang and Dan Fu
Toxics 2025, 13(4), 285; https://doi.org/10.3390/toxics13040285 - 8 Apr 2025
Viewed by 502
Abstract
Tris(2-chloroethyl) phosphate (TCEP) is a representative chlorinated organophosphate flame retardant (OPFR) that demonstrates greater persistence than other non-halogenated alkyl or aryl OPFRs. Although TCEP has been shown to accumulate significantly in the environment and contribute to testicular toxicity and spermatogenic dysfunction, the precise [...] Read more.
Tris(2-chloroethyl) phosphate (TCEP) is a representative chlorinated organophosphate flame retardant (OPFR) that demonstrates greater persistence than other non-halogenated alkyl or aryl OPFRs. Although TCEP has been shown to accumulate significantly in the environment and contribute to testicular toxicity and spermatogenic dysfunction, the precise underlying factors and mechanisms of action remain unclear. Herein, male ICR mice were gavaged with corn oil, 50 mg/kg body weight (bw) TCEP, or 100 mg/kg bw TCEP from postnatal day (PND) 22 to PND 35. TCEP exposure resulted in the disruption of blood-testis barrier (BTB) integrity and in abnormal testicular development. Considering that Sertoli cells constitute the primary target of toxicants and that TCEP induces oxidative stress in the testis and other organs, we focused on ferroptosis in Sertoli cells. Our findings revealed a significant increase in ferroptosis in the testes and Sertoli cells following TCEP exposure, and we observed functional restoration of Sertoli cell junctions upon treatment with the ferroptosis inhibitor ferrostatin-1. Furthermore, ferritin heavy chain 1 (FTH1) was markedly reduced in TCEP-exposed testes and Sertoli cells. Since nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy is essential for the degradation of FTH1, we assessed ferritinophagic activity and found significant upregulation of NCOA4, ATG5, ATG7, and LC3B II/I in TCEP-exposed testes and Sertoli cells. These results strongly suggest that TCEP triggers Sertoli cell ferroptosis by activating ferritinophagy that leads to reduced expression of BTB-associated proteins, ultimately causing BTB disruption and testicular developmental toxicity. Full article
Show Figures

Graphical abstract

19 pages, 6433 KiB  
Article
Targeted Delivery of Chlorin-e6-Loaded Carbon Nanotube-Based Nanobiocomposite to Cancer Stem Cells for Enhanced Photodynamic Therapy
by Prabhavathi Sundaram, Sathish Sundar Dhilip Kumar and Heidi Abrahamse
Pharmaceutics 2025, 17(4), 469; https://doi.org/10.3390/pharmaceutics17040469 - 3 Apr 2025
Viewed by 647
Abstract
Background: Globally, colorectal cancer (CRC) is the third-most diagnosed cancer among males and the second-most diagnosed cancer among females. In cancer, stem cells are a subset of neoplastic cells capable of tumorigenesis and exhibit properties like normal stem cells. Moreover, they are resistant [...] Read more.
Background: Globally, colorectal cancer (CRC) is the third-most diagnosed cancer among males and the second-most diagnosed cancer among females. In cancer, stem cells are a subset of neoplastic cells capable of tumorigenesis and exhibit properties like normal stem cells. Moreover, they are resistant to conventional cancer treatments and can repopulate the tumor following treatment. Cancer cells are stimulated to undergo apoptosis by photodynamic therapy (PDT), which involves a light source, a photosensitizer, and reactive oxygen species. Methods: In this study, colon cancer stem cells were isolated from colon cancer cells and characterized using flow cytometry and immunofluorescence techniques. To treat colon cancer stem cells (CCSCs), single-walled carbon nanotubes (SWCNTs) were coupled with hyaluronic acid (HA) and loaded with chlorin-e6 (Ce6). Nanobiocomposite toxicity was assessed using CCSCs with two fluences of 5 J/cm2 and 10 J/cm2. The cellular changes were observed at 24 and 48 h using microscopy, Results: LDH cytotoxicity assay, and cell death induction by annexin propidium iodide assay. An intracellular analysis of reactive oxygen species (ROS) detected oxidative stress within CCSCs. Conclusions: Overall, the results showed that the newly synthesized nanobiocomposite enhanced the ability of PDT to act as a photosensitizer carrier and induced cell death in CCSCs. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Drug Delivery in Photodynamic Therapy)
Show Figures

Graphical abstract

13 pages, 2359 KiB  
Article
Transcriptomic Analysis of Campylobacter jejuni Following Exposure to Gaseous Chlorine Dioxide Reveals an Oxidative Stress Response
by Gretchen E. Dykes, Yiping He, Tony Jin, Xuetong Fan, Joe Lee, Sue Reed and Joseph Capobianco
Int. J. Mol. Sci. 2025, 26(7), 3254; https://doi.org/10.3390/ijms26073254 - 1 Apr 2025
Cited by 1 | Viewed by 574
Abstract
Gaseous chlorine dioxide (ClO2) is a potent antimicrobial agent used to control microbial contamination in food and water. This study evaluates the bactericidal activity of gaseous ClO2 released from a sodium chlorite (NaClO2) pad against Campylobacter jejuni. [...] Read more.
Gaseous chlorine dioxide (ClO2) is a potent antimicrobial agent used to control microbial contamination in food and water. This study evaluates the bactericidal activity of gaseous ClO2 released from a sodium chlorite (NaClO2) pad against Campylobacter jejuni. Exposure to a low concentration (0.4 mg/L) of dissolved ClO2 for 2 h resulted in a >93% reduction of C. jejuni, highlighting the bacterium’s extreme sensitivity to gaseous ClO2. To elucidate the molecular mechanism of ClO2-induced bactericidal action, transcriptomic analysis was conducted using RNA sequencing (RNA-seq). The results indicate that C. jejuni responds to ClO2-induced oxidative stress by upregulating genes involved in reactive oxygen species (ROS) detoxification (sodB, ahpC, katA, msrP, and trxB), iron transport (ceuBCD, cfbpABC, and chuBCD), phosphate transport (pstSCAB), and DNA repair (rdgB and mutY). Reverse transcription-quantitative PCR (RT-qPCR) validated the increased expression of oxidative stress response genes but not general stress response genes (spoT, dnaK, and groES). These findings provide insights into the antimicrobial mechanism of ClO2, demonstrating that oxidative damage to essential cellular components results in bacterial cell death. Full article
(This article belongs to the Special Issue Molecular Insights into Antimicrobial Activity)
Show Figures

Figure 1

18 pages, 18531 KiB  
Article
Fatigue Life Analysis of Cyclone Separator Group Structure in a Reactor Device
by Yilian Shan, Jiye Sun, Xianglong Zhu, Yanhui Tian, Junyao Zhou, Yuzhe Ding, Benjie Ding, Jianke Du and Minghua Zhang
Materials 2025, 18(6), 1214; https://doi.org/10.3390/ma18061214 - 9 Mar 2025
Viewed by 892
Abstract
In the chlorination industry, the reactor is a crucial equipment in which the chlorination reaction takes place. However, when the reactor is subjected to complex conditions such as high temperatures (e.g., >200 °C) and high pressures (e.g., >10 MPa), its structural integrity is [...] Read more.
In the chlorination industry, the reactor is a crucial equipment in which the chlorination reaction takes place. However, when the reactor is subjected to complex conditions such as high temperatures (e.g., >200 °C) and high pressures (e.g., >10 MPa), its structural integrity is significantly compromised, leading to severe safety issues. In this study, the fatigue life of a reactor is analyzed, with particular focus on the fatigue behavior of the cyclone separator under varying working conditions, such as changes in the temperature, pressure, and chemical environment. Using finite element simulations under steady-state conditions and the S-N curve from fatigue testing, the fatigue life and potential weak points of the reactor under different amplitudes and vibration frequencies are analyzed and predicted. This analysis is conducted using a combined simulation approach with ABAQUS and Fe-Safe software, v 6.14. This work also considers the periodic vibrations at the base of the cyclone separator within the reactor. Fatigue simulations under different vibration conditions are performed to further assess the fatigue life of the reactor, providing a theoretical basis for the optimization of design and ensuring operational safety. In addition, the influence of welding zones on the fatigue life is discussed. The results indicate that the welding defects and stress concentration may cause the welded joint to become a critical weak point for fatigue failure. Therefore, the fatigue performance of the welding zone should be carefully considered during the design phase. Full article
Show Figures

Figure 1

21 pages, 3621 KiB  
Article
Water Distribution Network Resilience Management Using Global Resilience Analysis-Based Index
by Ahmed Ismail, Mohammod Hafizur Rahman, Md Mortula, Serter Atabay and Tarig Ali
Sustainability 2025, 17(6), 2353; https://doi.org/10.3390/su17062353 - 7 Mar 2025
Viewed by 1095
Abstract
Resilient water distribution system is crucial for sustainable urban water management. Evaluating the inherent resilience of the buried water infrastructure is key to ensuring reliable water distribution. The water distribution network maintains water quality and supplies sufficient water to users. Evaluating the system’s [...] Read more.
Resilient water distribution system is crucial for sustainable urban water management. Evaluating the inherent resilience of the buried water infrastructure is key to ensuring reliable water distribution. The water distribution network maintains water quality and supplies sufficient water to users. Evaluating the system’s resilience under varying failure conditions is crucial to guarantee continued service delivery. This study investigates the resilience of the water distribution network for the University City, Sharjah, United Arab Emirates subjected to failure conditions caused by pipe failure, water contamination, and water excess demand. This research quantifies the corresponding performance under these stressors and develops an innovative resilience index by using the global resilience analysis (GRA) approach. The corresponding strain is in the form of node failure, chlorine decay, and pressure failures among all the pipes throughout the network. A survey was conducted with the water company to identify recovery time for the designated water distribution network. Another survey was conducted among the experts to evaluate the relative significance of all the strains in contribution towards resilience. Based on the resilience index, four levels (high, moderate, low, and very low) of resilience were defined. The study revealed Sharjah water distribution network has up to 40% of its stress categorized as low resilience and 60% of its stress categorized as very low resilience. The study also presented a management plan for the improvement of the designated water distribution network. Full article
Show Figures

Figure 1

13 pages, 1131 KiB  
Article
Use of Electrolyzed Water as Disinfection Technology in Aquaculture Systems: Effects on Vibrio harveyi, a Significant Marine Pathogen for Marine Fish and Invertebrates
by Adolfo Blasco, Pablo Ibányez-Payá, Belén Fouz, Carmen Amaro, Pedro Amorós and José V. Ros-Lis
Appl. Sci. 2025, 15(5), 2334; https://doi.org/10.3390/app15052334 - 21 Feb 2025
Viewed by 693
Abstract
Background: The aquaculture sector is vital for food supply and marine species conservation. However, vibriosis poses significant threats, affecting fish and invertebrates. Vibrio harveyi outbreaks are increasing due to global warming-driven expansion of virulent strains. Methods: This study investigates the bactericidal potential of [...] Read more.
Background: The aquaculture sector is vital for food supply and marine species conservation. However, vibriosis poses significant threats, affecting fish and invertebrates. Vibrio harveyi outbreaks are increasing due to global warming-driven expansion of virulent strains. Methods: This study investigates the bactericidal potential of in situ-generated electrolyzed water (EW) as a complementary strategy to antibiotic therapy. Strains of V. harveyi isolated from diseased fish were exposed to EW under varying conditions of salinity (1.5 and 3%), pH (5, 6.5, and 7.5), and free available chlorine (FAC) (5, 20, 25, and 125 ppm) to reduce bacterial concentrations. Results: EW demonstrated high bactericidal potential at 20–25 ppm FAC and non-acidic pH, reducing bacterial populations by over four logarithmic units within 15 min. Efficacy diminished when EW was stored for days. Conclusions: EW shows a promising disinfection method during vibriosis outbreaks and as a preventive measure during stress in aquaculture. Its advantages include on-site production and avoidance of concentrated chemicals, which minimize health risks. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Graphical abstract

16 pages, 4952 KiB  
Article
Physiological Responses and Assessment of Salt Tolerance of Different Blueberry Cultivars Under Chloride Stress
by Wenwen Ma, Ying Wang, Ke Li, Chunze Lu, Dekang Hou, Yanan Li, Haiguang Liu, Lin Wu and Jinying Li
Agronomy 2025, 15(2), 494; https://doi.org/10.3390/agronomy15020494 - 18 Feb 2025
Viewed by 777
Abstract
The degree of soil salinization is still on the rise. In saline environments, NaCl is the main substance that causes plant salt damage, with the toxicity of ions under salt stress primarily involving sodium (Na+) or chloride (Cl). However, [...] Read more.
The degree of soil salinization is still on the rise. In saline environments, NaCl is the main substance that causes plant salt damage, with the toxicity of ions under salt stress primarily involving sodium (Na+) or chloride (Cl). However, fewer studies have focused on Cl stress. This study investigated the differences in the growth and physiology of five blueberry varieties under Cl stress, aiming to understand the mechanisms of Cl tolerance and the physiological responses to Cl stress in these varieties. Five blueberry varieties (‘Northland’, ‘PL19’, ‘Duke’, ‘Reka’, and ‘Bonnie’) were used as test materials. This study examined the changes in growth and physiological indices of blueberry plants under different concentrations of Cl (A1–A6: 50, 100, 150, 200, 250, and 300 mmol/L) treatments. A control treatment (CK) was included to serve as a baseline for comparison. We comprehensively evaluated the Cl tolerance of these five varieties to screen for chlorine-tolerant varieties. This study examined the concentration-dependent changes in growth and physiological indices of blueberry plants, including plant height, leaf area, chlorophyll content, electrical conductivity, levels of soluble sugar (SS), malondialdehyde (MDA), proline (Pro), and soluble protein (SP), as well as the activities of superoxide dismutase (SOD) and catalase (CAT). The results revealed that as the Cl concentration increased, the growth of all blueberry varieties was inhibited; plant height, leaf area, and chlorophyll content consistently declined, whereas electrical conductivity showed a steady increase. SS and MDA content exhibited a biphasic response, with an increase at lower Cl concentrations followed by a decrease at higher concentrations. The activities of SOD and CAT in ‘Duke’ consistently increased with rising Cl levels. In ‘PL19’ and ‘Reka’, chlorophyll content decreased with increasing Cl, while their proline content rose initially and then declined. In contrast, the other varieties generally showed an increasing trend in proline content. Similarly, the soluble protein content of ‘Northland’ and ‘PL19’ increased at lower Cl levels and decreased at higher concentrations, whereas ‘Bonnie’, ‘Duke’, and ‘Reka’ displayed an overall declining trend. Principal component analysis indicated that the Cl tolerance of the blueberry varieties ranked as follows: ‘Duke’ > ‘Bonnie’ > ‘Reka’ > ‘PL19’ > ‘Northland’. These findings lay a foundation for blueberry cultivation in saline–alkaline soils and support the selection and development of new, chlorine-tolerant varieties. Full article
(This article belongs to the Special Issue Integrated Water, Nutrient, and Pesticide Management of Fruit Crop)
Show Figures

Figure 1

13 pages, 1375 KiB  
Systematic Review
Erosive Potential of Sports, Energy Drinks, and Isotonic Solutions on Athletes’ Teeth: A Systematic Review
by Francisca Gálvez-Bravo, Francisca Edwards-Toro, Rafael Contador-Cotroneo, Catalina Opazo-García, Hans Contreras-Pulache, Eliane A. Goicochea-Palomino, Gloria Cruz-Gonzales and Jeel Moya-Salazar
Nutrients 2025, 17(3), 403; https://doi.org/10.3390/nu17030403 - 23 Jan 2025
Viewed by 2594
Abstract
Background/Objectives: Dental erosion occurs due to repeated contact between the teeth and acidic substances along with mechanical stress. Athletes are exposed to acids through the consumption of sports drinks, energy drinks, and isotonic solutions; they also undergo mechanical stress during training and competition, [...] Read more.
Background/Objectives: Dental erosion occurs due to repeated contact between the teeth and acidic substances along with mechanical stress. Athletes are exposed to acids through the consumption of sports drinks, energy drinks, and isotonic solutions; they also undergo mechanical stress during training and competition, making them prone to a higher prevalence of dental erosion. Therefore, our aim was to determine the erosive potential of beverages consumed by athletes. Methods: We conducted a systematic review of 1466 articles found on nine search engines between 1997 and 2021. We included observational studies and clinical trials in English, Portuguese, and Spanish on beverage consumption in athletes of both genders. Results: A total of four studies involving 567 athletes from four countries were identified. The prevalence of dental erosion ranged from 19.4% to 100%, and the severity assessments showed that between 52.4% and 75.2% of athletes had enamel affected, and 24% to 57.1% had both enamel and dentin affected. Only one study found that the consumption of sports drinks by swimmers practicing in chlorinated pools doubles the risk of developing dental erosion. Bias was low in half of the studies. Conclusions: The available evidence suggests that the consumption of sports drinks alone is not associated with dental erosion. However, to establish more conclusive evidence on the erosive potential of sports drinks, energy drinks, and isotonic solutions on the oral health of athletes, more prospective cohort studies are needed. These studies should include a standardization of indices and variables to which athletes are subjected, including dietary and healthcare habits, oral conditions, and protective factors. Furthermore, a larger number of athletes must be included to establish more conclusive evidence on the erosive potential of sports drinks, energy drinks, and isotonic solutions on athletes’ oral health. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Graphical abstract

29 pages, 28581 KiB  
Review
Peening Techniques for Mitigating Chlorine-Induced Stress Corrosion Cracking of Dry Storage Canisters for Nuclear Applications
by Subin Antony Jose, Merbin John, Manoranjan Misra and Pradeep L. Menezes
Materials 2025, 18(2), 438; https://doi.org/10.3390/ma18020438 - 18 Jan 2025
Cited by 3 | Viewed by 904
Abstract
Fusion-welded austenitic stainless steel (ASS) was predominantly employed to manufacture dry storage canisters (DSCs) for the storage applications of spent nuclear fuel (SNF). However, the ASS weld joints are prone to chloride-induced stress corrosion cracking (CISCC), a critical safety issue in the nuclear [...] Read more.
Fusion-welded austenitic stainless steel (ASS) was predominantly employed to manufacture dry storage canisters (DSCs) for the storage applications of spent nuclear fuel (SNF). However, the ASS weld joints are prone to chloride-induced stress corrosion cracking (CISCC), a critical safety issue in the nuclear industry. DSCs were exposed to a chloride-rich environment during storage, creating CISCC precursors. The CISCC failure leads to nuclear radiation leakage. Therefore, there is a critical need to enhance the CISCC resistance of DSC weld joints using promising repair techniques. This review article encapsulates the current state-of-the-art of peening techniques for mitigating the CISCC in DSCs. More specifically, conventional shot peening (CSP), ultrasonic impact peening (UIP), and laser shock peening (LSP) were elucidated with a focus on CISCC mitigation. The underlying mechanism of CISCC mitigation in each process was summarized. Finally, this review provides recent advances in surface modification techniques, repair techniques, and developments in welding techniques for CISCC mitigation in DSCs. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

17 pages, 760 KiB  
Review
Equine Asthma Diagnostics: Review of Influencing Factors and Difficulties in Diagnosing Subclinical Disease
by Lioba Lendl and Ann Kristin Barton
Animals 2024, 14(23), 3504; https://doi.org/10.3390/ani14233504 - 4 Dec 2024
Cited by 1 | Viewed by 1890
Abstract
This literature review focuses on diagnostics of equine asthma (EA), possible influencing factors on diagnostic techniques and latest developments in diagnosing horses during EA remission or with subclinical disease. Routine EA diagnostics include a clinical examination of the respiratory system with percussion and [...] Read more.
This literature review focuses on diagnostics of equine asthma (EA), possible influencing factors on diagnostic techniques and latest developments in diagnosing horses during EA remission or with subclinical disease. Routine EA diagnostics include a clinical examination of the respiratory system with percussion and auscultation including a rebreathing examination, and clinical pathology including white blood cells and arterial blood gas analysis. Subsequent diagnostics include bronchoscopy to evaluate the amount and viscosity of respiratory secretion, bronchoalveolar lavage, and the cytology of tracheal aspirates (TAs) and bronchoalveolar lavage fluid (BALF). The grading of EA severity is built on respiratory effort at rest, which is increased in severe equine asthma. The inflammatory subtype is based on BALF cytology, while TA cytology helps to rule out previous bacterial infections. Different factors have an impact on the airways regarding the structure of the epithelium, cytology, and inflammatory markers possibly influencing the diagnosis of EA. Short-term exercise increases the total cell count and inflammatory mediators identified in the BALF of human patients, asymptomatic horses, and other species. Other factors involve cold or chlorinated air, long-term training effects, and concurrent additional respiratory disease, in particular exercise-induced pulmonary hemorrhage. As BALF cytology may be unremarkable during EA remission and low-grade disease, exercise tests and other factors stressing the bronchial epithelium may help to diagnose these patients. Full article
(This article belongs to the Special Issue Advances in Equine Sports Medicine, Therapy and Rehabilitation)
Show Figures

Figure 1

Back to TopTop