Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,155)

Search Parameters:
Keywords = chlorides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6733 KB  
Article
Structural and Chemical Degradation of Archeological Wood: Synchrotron XRD and FTIR Analysis of a 26th Dynasty Egyptian Polychrome Wood Statuette
by Dina M. Atwa, Rageh K. Hussein, Ihab F. Mohamed, Shimaa Ibrahim, Emam Abdullah, G. Omar, Moez A. Ibrahim and Ahmed Refaat
Polymers 2026, 18(2), 258; https://doi.org/10.3390/polym18020258 (registering DOI) - 17 Jan 2026
Abstract
This study investigates a 26th Dynasty Ptah–Sokar–Osiris wooden statuette excavated from the Tari cemetery, Giza Pyramids area, to decode ancient Egyptian manufacturing techniques and establish evidence-based conservation strategies of such wooden objects. Using minimal sampling (1.0–2.0 mm2), integrated XRF, synchrotron-based X-ray [...] Read more.
This study investigates a 26th Dynasty Ptah–Sokar–Osiris wooden statuette excavated from the Tari cemetery, Giza Pyramids area, to decode ancient Egyptian manufacturing techniques and establish evidence-based conservation strategies of such wooden objects. Using minimal sampling (1.0–2.0 mm2), integrated XRF, synchrotron-based X-ray diffraction, FTIR, and confocal microscopy distinguished original technological choices from burial-induced alterations. The 85 cm Vachellia nilotica sculpture exhibits moderate structural preservation (cellulose crystallinity index 62.9%) with partial chemical deterioration (carbonyl index 2.22). Complete pigment characterization identified carbon black, Egyptian Blue (cuprorivaite, 55 ± 5 wt %), atacamite-dominated green (65 ± 5 wt %) with residual malachite (10 ± 2 wt %), orpiment (60 ± 5 wt %), red ochre (hematite, 60% ± 5 wt %), white pigments (93 ± 5 wt % calcite), and metallic gold (40 ± 5 wt %). Confocal microscopy revealed sophisticated multi-pigment mixing strategies, with black carbon systematically blended with chromophores for nuanced color effects. Atacamite predominance over malachite provides evidence for chloride-mediated diagenetic transformation over 2600 years of burial. Consistent calcite detection (~ 20–45%) across colored layers confirms systematic ground layer application, establishing technological baseline data for 26th Dynasty Lower Egyptian workshops. Near-complete organic binder loss, severe lignin oxidation, and ongoing salt-mediated mineral transformations indicate urgent conservation needs requiring specialized consolidants, paint layer stabilization, and controlled environmental storage. This investigation demonstrates synchrotron methods’ advantages while establishing a minimally invasive framework for studying polychrome wooden artifacts. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials, 4th Edition)
Show Figures

Figure 1

11 pages, 3400 KB  
Article
Use of Laser Speckle Contrast Imaging for Distribution of Animals by Severity of Brain Tissue Damage in a Neonatal Hypoxia-Ischemia Model in Mice
by Vladimir Pokrovskii, Konstantin Lapin, Viktoria Antonova, Mikhail Korokin, Oleg Gudyrev, Vladimir Gureev, Liliya Korokina, Olesya Scheblykina, Arkadii Nesterov, Maria Maslinikova, Ivan Chatsky, Denis Mukhamedov and Mikhail Pokrovskii
Brain Sci. 2026, 16(1), 102; https://doi.org/10.3390/brainsci16010102 (registering DOI) - 17 Jan 2026
Abstract
Background/Objectives: Inter-individual variability in injury severity represents a major barrier to reproducibility in neonatal hypoxia–ischemia (HI) models. Objective early postoperative stratification of animals is therefore essential for standardized group allocation and reliable assessment of experimental outcomes. This study aimed to evaluate whether [...] Read more.
Background/Objectives: Inter-individual variability in injury severity represents a major barrier to reproducibility in neonatal hypoxia–ischemia (HI) models. Objective early postoperative stratification of animals is therefore essential for standardized group allocation and reliable assessment of experimental outcomes. This study aimed to evaluate whether laser speckle contrast imaging (LSCI) can be used as a rapid, noninvasive tool for early post hoc stratification of ischemic brain damage severity in neonatal mice following HI. Methods: Neonatal CD-1 mice (postnatal day 9; n = 60) underwent hypoxia–ischemia using a modified Rice–Vannucci protocol. Cerebral perfusion was assessed by laser speckle contrast imaging at baseline, 3 h, and 7 days after HI. The difference in mean perfusion between ipsilateral and contralateral hemispheres at 3 h (Δ perfusion) was used to stratify animals into severity groups. Brain injury was quantified by 2,3,5-triphenyltetrazolium chloride (TTC) staining at 24 h and 7 days. Survival was monitored for 7 days and analyzed using Kaplan–Meier curves and the log-rank (Mantel–Cox) test. Results: LSCI-derived Δ perfusion at 3 h enabled the formation of distinct injury-severity groups (no visible damage, mild, moderate, and severe) with significant between-group differences (p < 0.0001). TTC-based lesion area increased stepwise across severity groups, and Δ perfusion correlated with lesion size when all animals were analyzed together (r = 0.688, p = 0.0011). No significant correlations were observed within individual severity groups, indicating that the overall association was driven primarily by between-group differences. Survival analysis revealed 75% mortality in the severe injury group (p < 0.0001). Conclusions: LSCI represents a robust and practical approach for early, objective, group-level stratification of neonatal mice by HI injury severity, thereby improving reproducibility and statistical validity in preclinical studies. However, its ability to predict outcomes within individual severity categories is limited, and repeated long-term measurements may pose technical challenges. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Graphical abstract

21 pages, 5218 KB  
Article
Groundwater Pollution Transport in Plain-Type Landfills: Numerical Simulation of Coupled Impacts of Precipitation and Pumping
by Tengchao Li, Shengyan Zhang, Xiaoming Mao, Yuqin He, Ninghao Wang, Daoyuan Zheng, Henghua Gong and Tianye Wang
Hydrology 2026, 13(1), 36; https://doi.org/10.3390/hydrology13010036 (registering DOI) - 17 Jan 2026
Abstract
Landfills serve as a primary disposal method for municipal solid waste in China, with over 20,000 operational sites nationwide; however, long-term operations risk leachate leakage and groundwater contamination. Amid intensifying climate change and human activities, understanding contaminant evolution mechanisms in landfills has become [...] Read more.
Landfills serve as a primary disposal method for municipal solid waste in China, with over 20,000 operational sites nationwide; however, long-term operations risk leachate leakage and groundwater contamination. Amid intensifying climate change and human activities, understanding contaminant evolution mechanisms in landfills has become critically urgent. Focusing on a representative plain-based landfill in North China, this study integrated field investigations and groundwater monitoring to establish a monthly coupled groundwater flow–solute transport model (using MODFLOW and MT3DMS codes) based on site-specific hydrogeological boundaries and multi-year monitoring data, analyzing spatiotemporal plume evolution under the coupled impacts of precipitation variability (climate change) and intensive groundwater extraction (human activities), spanning the historical period (2021–2024) and future projections (2025–2040). Historical simulations demonstrated robust model performance with satisfactory calibration against observed water levels and chloride concentrations, revealing that the current contamination plume exhibits a distinct distribution beneath the site. Future projections indicate nonlinear concentration increases: in the plume core zone, concentrations rise with precipitation, whereas at the advancing front, concentrations escalate with extraction intensity. Spatially, high-risk zones (>200 mg/L) emerge earlier under wetter conditions—under the baseline scenario (S0), such zones form by 2033 and exceed site boundaries by 2037. Plume expansion scales positively with extraction intensity, reaching its maximum advancement and coverage under the high-extraction scenario. These findings demonstrate dual drivers—precipitation accelerates contaminant accumulation through enhanced leaching, while groundwater extraction promotes plume expansion via heightened hydraulic gradients. This work elucidates coupled climate–human activity impacts on landfill contamination mechanisms, proposing a transferable numerical modeling framework that provides a quantitative scientific basis for post-closure supervision, risk assessment, and regional groundwater protection strategies, thereby aligning with China’s Standard for Pollution Control on the Landfill Site of Municipal Solid Waste and the Zero-Waste City initiative. Full article
14 pages, 1856 KB  
Article
Autophagy Activation in Mesenchymal Stem Cells with Lithium Chloride and Trehalose: Implications for Regenerative Medicine
by Ali Fouad, Yasser ElSherbini, Elsayed Abdelhady and Mohamed Abdraboh
BioMed 2026, 6(1), 4; https://doi.org/10.3390/biomed6010004 - 16 Jan 2026
Abstract
Background/Objectives: Mesenchymal stem cells (MSCs) are deemed to be a highly safe model for autologous and allogeneic cellular therapy, owing to their inherent lack of HLA-DR expression, immunomodulatory properties, homing ability, and plasticity allowing differentiation into different cell types. The interest in [...] Read more.
Background/Objectives: Mesenchymal stem cells (MSCs) are deemed to be a highly safe model for autologous and allogeneic cellular therapy, owing to their inherent lack of HLA-DR expression, immunomodulatory properties, homing ability, and plasticity allowing differentiation into different cell types. The interest in activating autophagic signaling in MSCs has recently grown due to its significant potential in maintaining stemness, enhancing paracrine signaling, and providing therapeutic benefits for cancer and neurodegenerative diseases. This study aimed to explore the impact of autophagy induction on enhancing the therapeutic potential of MSCs by maintaining their plasticity and to assess different induction agents. Methods: In this study, MSCs were first extracted from the fat tissue of Sprague–Dawley (SD) rats and characterized phenotypically and molecularly by their positive expression of stemness markers CD29, CD106, and CD44, and their negative expression of hematopoietic surface markers CD14, CD34, and CD45, using a flow cytometry approach. Isolated MSCs were then treated separately with two FDA-approved autophagy inducers: Lithium Chloride and Trehalose, following assessment of autophagy activity. Results: Treated MSCs showed significant increases in autophagic activity at both the transcriptional and translational levels. The successful induction of autophagy in MSCs was confirmed through the elevated expression of autophagy-related genes such as ATG3, ATG13, ATG14, P62, and ULK1. These data were confirmed by the significant upregulation in LC3 protein expression and the formation of autophagosomes, which was detected using a transmission electron microscope. Furthermore, the expression of Oct4, Sox2, and Nanog genes was significantly enhanced after treatment with Trehalose and Lithium Chloride compared with untreated control MSCs which may indicate an upregulation of pluripotency. Meanwhile, Lithium Chloride and Trehalose did not significantly induce cellular apoptosis, indicated by the Bax/Bcl-2 expression ratio, and significantly decreased the expression of the antioxidant markers SOD and GPx. Conclusions: Treatment of MSCs with Trehalose and, in particular, Lithium Chloride significantly activated autophagic signaling, which showed a profound effect in enhancing cells’ pluripotency, reinforcing the usage of treated MSCs for autologous and/or allogenic cellular therapy. However, further in vivo studies for activating autophagy in cellular grafts should be conducted before their use in clinical trials. Full article
20 pages, 682 KB  
Review
Chloremia Disturbances in Critical Care: A Narrative Review of Pathophysiology, Clinical Impact and Management Strategies
by Nicola Sinatra, Giuseppe Cuttone, Tarek Senussi Testa, Luigi La Via, Francesca Maria Rubulotta, Maurizio Giuseppe Abrignani, Carmelo Zumbino, Giuseppe Mulè, Giulio Geraci and Caterina Carollo
Life 2026, 16(1), 151; https://doi.org/10.3390/life16010151 - 16 Jan 2026
Abstract
Chloride, the leading extracellular anion, plays a crucial role in acid-base balance, fluid homeostasis, and neuromuscular function. Despite historical underrecognition, emerging evidence demonstrates significant associations between chloremia disturbances and critical care outcomes. This paper aims to narratively review the pathophysiology, clinical features, and [...] Read more.
Chloride, the leading extracellular anion, plays a crucial role in acid-base balance, fluid homeostasis, and neuromuscular function. Despite historical underrecognition, emerging evidence demonstrates significant associations between chloremia disturbances and critical care outcomes. This paper aims to narratively review the pathophysiology, clinical features, and management strategies of chloremia disturbances in critically ill patients. Chloremia disturbances are common in ICU patients, with both hypochloremia (<96 mEq/L) and hyperchloremia (>106 mEq/L) independently associated with increased mortality, prolonged ICU length of stay, and organ dysfunction. In sepsis, chloride levels exhibit a prognostic value, with threshold effects around 105 mEq/L. Hyperchloremia particularly increases acute kidney injury risk, while hypochloremia correlates with prolonged mechanical ventilation. The choice of resuscitation fluids significantly influences clinical outcomes, with balanced crystalloids potentially reducing adverse events if compared to normal saline solutions. Recent large-scale trials demonstrate lower rates of major adverse kidney events with chloride-restrictive strategies. Optimal management requires careful patient monitoring along with acid-base assessment. Treatment approaches must identify underlying causes to avoid complications. Prevention strategies include protocol-based fluid therapy, medication selection consideration, and early intervention in high-risk patients. Emerging technologies, including continuous monitoring systems and machine learning algorithms, offer promising advances for predicting and managing chloride disturbances. Full article
Show Figures

Figure 1

22 pages, 5584 KB  
Article
Experimental Study on the Effect of Rubber Fibre Content on the Mechanical Properties and Failure Mode of Grouting Materials
by Yixiang Wang, Xianzhang Ling, Xipeng Qin, Zhongnian Yang, Mingyu Liu, Runqi Guo and Yingying Zhang
Appl. Sci. 2026, 16(2), 931; https://doi.org/10.3390/app16020931 - 16 Jan 2026
Abstract
To promote waste tyre resource utilisation and reduce environmental pressure, this study prepared five stone sample groups using waste tyre rubber fibre (RF) as a modifier, combined with blast furnace slag, fly ash, carbide slag, and calcium chloride, with RF contents of 0%, [...] Read more.
To promote waste tyre resource utilisation and reduce environmental pressure, this study prepared five stone sample groups using waste tyre rubber fibre (RF) as a modifier, combined with blast furnace slag, fly ash, carbide slag, and calcium chloride, with RF contents of 0%, 6%, 10%, 14%, and 18%. Working performance was analysed via density, fluidity, and water separation rate tests, while mechanical properties and failure mechanisms were explored through uniaxial compression tests, acoustic emission (AE) monitoring, and SEM microstructure observations. Results showed that as RF content increased, slurry density and fluidity decreased nonlinearly, water separation rate first rose then fell, and uniaxial compressive strength dropped significantly (64.97% lower at 18% RF than 0%). Failure mode shifted from shear to tensile–shear mixed failure, AE signal activity weakened, energy release gentled, and crack propagation was delayed. Microstructurally, 6–10% RF ensured uniform fibre dispersion, blocking microcracks and optimising interfacial zones, while 14–18% RF caused agglomeration and pore defects. The optimal grouting material ratio was determined as 10% RF, blast furnace slag: fly ash = 4:1, 40% carbide slag, 1% calcium chloride, and a 0.7 water–cement ratio (total solid component 100%). Full article
Show Figures

Figure 1

11 pages, 1626 KB  
Article
Effects and Mechanisms of Silicone Fertilizer on Salt Ion Activity in Saline–Alkaline Soils
by Furu Song, Dongxia Li, Liqiang Song, Ziku Cao, Zhipei Cao, Yafei Sang and Lianwei Kang
Polymers 2026, 18(2), 231; https://doi.org/10.3390/polym18020231 - 16 Jan 2026
Abstract
The high salt content in saline–alkali soil has a significant impact on plant nutrient absorption and water transport, severely inhibiting crop growth. Through esterification reactions, silicic acid is grafted onto humic acid to form an organic silicon fertilizer (OSiF). The unique Si-O-C bond [...] Read more.
The high salt content in saline–alkali soil has a significant impact on plant nutrient absorption and water transport, severely inhibiting crop growth. Through esterification reactions, silicic acid is grafted onto humic acid to form an organic silicon fertilizer (OSiF). The unique Si-O-C bond in the material endows this new type of organic silicon-based fertilizer with the ability to effectively alleviate the harm of high-salt soil to plants. In this study, a soil column experiment was designed to systematically evaluate and compare the effects of organic silicon fertilizers with different organic silicon contents (0%, 5%, and 10%) and traditional compound fertilizers on soil water characteristics, salt ion concentration, pH value, and electrical conductivity. The results showed that the addition of an appropriate amount of organic silicon fertilizer could significantly reduce the activity of salt ions in the soil solution. Experimental data indicated that the 5% and 10% organic silicon fertilizers had the most significant effect on the consumption of major salt ions such as sodium and chloride ions. X-ray photoelectron spectroscopy (XPS) analysis revealed that the reaction of Si-O-C bonds in the soil with Lewis bases led to a shift in the valence state of the 1S electrons of silicon atoms, providing a theoretical basis for the mechanism by which silicon fertilizers alleviate high-salt stress. Full article
(This article belongs to the Special Issue Advanced Polymer Composites and Foams)
Show Figures

Figure 1

24 pages, 1714 KB  
Article
Assessment of Small-Settlement Wastewater Discharges on the Irtysh River Using Tracer-Based Mixing Diagnostics and Regularized Predictive Models
by Samal Anapyanova, Valentina Kolpakova, Monika Kulisz, Madina Nabiollina, Yuliya Yeremeyeva, Nailya Nurbayeva and Anvar Sherov
Water 2026, 18(2), 232; https://doi.org/10.3390/w18020232 - 15 Jan 2026
Abstract
An integrated field–analytical framework was applied to quantify the impact of two small-settlement treatment facilities (TF1 and TF2) on the Irtysh River (East Kazakhstan). The main objective of this study is to quantify effluent-driven dilution and non-conservative changes in key water-quality indicators downstream [...] Read more.
An integrated field–analytical framework was applied to quantify the impact of two small-settlement treatment facilities (TF1 and TF2) on the Irtysh River (East Kazakhstan). The main objective of this study is to quantify effluent-driven dilution and non-conservative changes in key water-quality indicators downstream of TF1 and TF2 and to evaluate parsimonious models for predicting effluent-outlet BOD and COD from upstream measurements. Paired upstream–downstream control sections are sampled in 2024–2025 for 22 indicators, and plant influent–effluent records are compiled for key wastewater variables. Chloride-based conservative mixing indicated very strong dilution (approximately D2.0×103 for TF1 and D4.2×102 for TF2). Deviations from the mixing line were summarized using a transformation diagnostic θ. At TF1, several constituents exceeded mixing expectations (θ13 for COD, θ42 for ammonium, and θ6 for phosphates), while nitrate shows net attenuation θ<0. At TF2, θ values cluster near unity, indicating modest deviations. Under a small-sample regime N=10 and leave-one-out validation, regularized regression provided accurate forecasts of effluent-outlet BOD and COD. Lasso under LOOCV performed best (BOD_after: RMSE = 0.626, MAE = 0.459, and R2=0.976; COD_after: RMSE = 0.795, MAE = 0.634, and R2=0.997). The results reconcile strong reach-scale dilution with constituent-specific local departures and support targeted modernization and operational forecasting for water-quality management in small facilities. Full article
(This article belongs to the Special Issue Eco-Engineered Solutions for Industrial Wastewater)
Show Figures

Figure 1

25 pages, 7696 KB  
Article
Thermoplastic Starch Composites with Highly Exfoliated Nano-Clay Fillers and Excellent Barrier Properties
by Veronika Gajdosova, Beata Strachota, Vaclav Pokorny, Libuse Brozova, Jan Kozisek, Ewa Pavlova, Zdenek Stary, Miroslav Slouf and Adam Strachota
Materials 2026, 19(2), 347; https://doi.org/10.3390/ma19020347 - 15 Jan 2026
Viewed by 28
Abstract
Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step [...] Read more.
Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step TPS preparation protocol. In both the TPS/LAP and TPS/MMT composites, we achieved perfect dispersion and extensive exfoliation of the nano-clays, resulting in pronounced improvements in mechanical performance (modulus increased up to one order of magnitude) and in excellent gas-barrier properties (extremely small permeabilities for O2, CO2, and even H2). MMT, owing to its larger platelet size and to the formation of partially exfoliated multi-layer structures, generated a percolating filler network that provided particularly strong reinforcement, especially at 15 wt.% loading. LAP, though more completely exfoliated, generated a somewhat smaller mechanical reinforcement, but it more strongly increased processing viscosity due to its high specific surface area, which generated highly stable physical crosslinking that persisted even at processing temperatures of T ≥ 120 °C. Efficient matrix–filler interactions were confirmed by thermogravimetric analysis, where the better-exfoliated LAP generated a higher stabilization. The combination of strong mechanical reinforcement with outstanding gas-barrier properties makes the TPS/MMT and TPS/LAP nanocomposites attractive for food-packaging applications, where their natural origin, non-toxicity, bio-degradability, and abundance of nanocomposite components are an additional bonus. Full article
Show Figures

Graphical abstract

21 pages, 4628 KB  
Article
Effect of Popping and Steam Cooking on Total Ferulic Acid, Phenolic and Flavonoid Contents, and Antioxidant Properties of Sukhothai Fragrant Black Rice
by Thayada Phimphilai, Onsaya Kerdto, Kajorndaj Phimphilai, Phronpawee Srichomphoo, Wachiraporn Tipsuwan, Pornpailin Suwanpitak, Yanping Zhong and Somdet Srichairatanakool
Foods 2026, 15(2), 320; https://doi.org/10.3390/foods15020320 - 15 Jan 2026
Viewed by 73
Abstract
This study investigated the effects of thermal processing and extraction solvents on the phytochemical composition, antioxidant potential, and cytotoxic activity of Sukhothai fragrant rice (Oryza sativa L.). Rice subjected to three processing methods, unprocessed (raw), popped/puffed and steam-cooked, was extracted using hot [...] Read more.
This study investigated the effects of thermal processing and extraction solvents on the phytochemical composition, antioxidant potential, and cytotoxic activity of Sukhothai fragrant rice (Oryza sativa L.). Rice subjected to three processing methods, unprocessed (raw), popped/puffed and steam-cooked, was extracted using hot water or 70% (v/v) ethanol, yielding six extracts. Trans-ferulic acid, γ-oryzanol and anthocyanins were quantified using HPLC-DAD and HPLC-ESI-MS, while total phenolic and flavonoid contents, and antioxidant activities were evaluated using Folin–Ciocalteu, aluminium chloride, DPPH and ABTS assays. Cytotoxicity was assessed in Huh7 hepatocellular carcinoma cells. Water extracts consistently produced higher yields and contained greater total phenolic, flavonoid and anthocyanin contents, resulting in stronger antioxidant activity. Unprocessed rice water extract exhibited the highest trans-ferulic acid recovery and antioxidant capacity. Thermal processing, particularly steamed cooking, markedly reduced phytochemical contents, likely due to heat-induced degradation. In contrast, ethanolic extracts yielded lower quantities but higher concentrations of less polar bioactive compounds and exhibited greater cytotoxic effects. Overall, minimal thermal processing combined with aqueous extraction best preserved antioxidant compounds, while ethanolic extraction enhanced biological potency. These findings highlight the importance of processing intensity and solvent polarity in optimizing the nutraceutical and functional potential of black rice. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Figure 1

13 pages, 2180 KB  
Article
Functional, Cohort-Level Assessment of CFTR Modulator Responses Using Biobanked Nasal Epithelial Cells from Individuals with Cystic Fibrosis
by Bente L. Aalbers, Gimano D. Amatngalim, Ellen M. Aarts, Lisa W. Rodenburg, Loes A. den Hertog-Oosterhoff, Harry G. M. Heijerman and Jeffrey M. Beekman
J. Pers. Med. 2026, 16(1), 51; https://doi.org/10.3390/jpm16010051 - 15 Jan 2026
Viewed by 24
Abstract
Background/Objectives: Individual responses to CFTR modulators vary widely among people with cystic fibrosis (pwCF), underscoring the need for functional approaches that provide biological context alongside genotype-based therapy selection. Nasal epithelial cultures provide an individual-specific model for theratyping, but most studies rely on [...] Read more.
Background/Objectives: Individual responses to CFTR modulators vary widely among people with cystic fibrosis (pwCF), underscoring the need for functional approaches that provide biological context alongside genotype-based therapy selection. Nasal epithelial cultures provide an individual-specific model for theratyping, but most studies rely on freshly isolated cells, restricting repeated testing and long-term sample use. In this study, we tested whether CFTR modulator responses measured in biobanked nasal cells were associated with real-world clinical outcomes. Methods: Cryopreserved nasal epithelial cells from 23 pwCF were differentiated at the air–liquid interface and assessed for CFTR modulator-responsive ion transport using Ussing chambers. In vitro responses were correlated with 6-month changes in sweat chloride concentration (SCC), FEV1, and BMI. Results: Cryopreserved cultures retained donor-specific CFTR modulator responsiveness. Modulator-induced forskolin/IBMX-stimulated currents correlated with changes in SCC (R = −0.512). CFTR inhibitor-sensitive currents correlated with FEV1 (R = 0.564). Associations between forskolin/IBMX-stimulated currents and FEV1 were positive but did not reach statistical significance using two-tailed analysis. BMI changes showed no significant association. Conclusions: Biobanked nasal epithelial cultures preserve clinically relevant CFTR modulator responses at the cohort level, supporting their use as functional assays for population-level assessment in cystic fibrosis. This cryopreservation-based strategy enables repeated testing and may expand access to theratyping beyond freshly obtained samples. Full article
(This article belongs to the Section Diagnostics in Personalized Medicine)
Show Figures

Figure 1

15 pages, 7343 KB  
Article
Preparation and High-Sensitivity Thermochromic Performance of MXene-Enhanced Cholesteric Liquid Crystal Microcapsule Textiles
by Xuzhi Sun, Yi Yang, Xiangwu Zhang, Maoli Yin and Mingfei Sheng
Polymers 2026, 18(2), 223; https://doi.org/10.3390/polym18020223 - 15 Jan 2026
Viewed by 114
Abstract
To mitigate the attenuation of color-change sensitivity in cholesteric liquid crystals (CLCs) post-microencapsulation, this study developed MXene-reinforced thermochromic textiles. Monolayer/few-layer MXene nanosheets were fabricated via an etching-intercalation-dispersion approach, while cholesteric liquid crystal microcapsules (CLCMs) were synthesized through a solvent evaporation method. Cotton fabrics [...] Read more.
To mitigate the attenuation of color-change sensitivity in cholesteric liquid crystals (CLCs) post-microencapsulation, this study developed MXene-reinforced thermochromic textiles. Monolayer/few-layer MXene nanosheets were fabricated via an etching-intercalation-dispersion approach, while cholesteric liquid crystal microcapsules (CLCMs) were synthesized through a solvent evaporation method. Cotton fabrics were pretreated with polydopamine (PDA), followed by the fabrication of poly(diallyldimethylammonium chloride) (PDAC)/MXene composite coatings via layer-by-layer (LbL) self-assembly and subsequent hydrophobic modification. Systematic characterizations (scanning electron microscopy, SEM; atomic force microscopy, AFM) and performance evaluations revealed that MXene nanosheets have an average thickness of 1.54 nm, while CLCMs display a uniform spherical morphology. The resultant textiles exhibit a reversible red-green-blue color transition over the temperature range of 26.5–29.5 °C, with sensitivity comparable to pristine CLCs and excellent hydrophobicity. This work overcomes the long-standing bottleneck of inadequate color-change sensitivity in conventional liquid crystal microcapsule textiles, offering a novel strategy for the advancement of smart wearable color-changing materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 5228 KB  
Article
Hydrophobic Modification of Alginate Nanofibrous Membrane by Group IV Elements Ion Crosslinking
by Takuma Yamashita and Toshihisa Tanaka
Polymers 2026, 18(2), 221; https://doi.org/10.3390/polym18020221 - 14 Jan 2026
Viewed by 203
Abstract
Hydrophobic nanofiber membranes derived from the biopolymer alginate were fabricated by electrospinning followed by metal ion crosslinking, and their potential as oil-water separation membranes was primarily investigated. Sodium alginate (SA) was co-electrospun with polyethylene glycol and subsequently crosslinked using calcium chloride and group [...] Read more.
Hydrophobic nanofiber membranes derived from the biopolymer alginate were fabricated by electrospinning followed by metal ion crosslinking, and their potential as oil-water separation membranes was primarily investigated. Sodium alginate (SA) was co-electrospun with polyethylene glycol and subsequently crosslinked using calcium chloride and group IV metal ions (zirconium or titanium). Metal ion crosslinking changed the surface wettability of the nanofiber membranes, as confirmed by water contact angle measurements. Both zirconium- and titanium-crosslinked SA nanofiber membranes exhibited effective gravity-driven oil–water separation with complete water blocking. Although hydrophobic modification reduced direct water affinity, the resulting membranes retained residual adsorption capability toward methylene blue, indicating the presence of accessible internal polar sites. The adsorption behavior varied depending on the crosslinking ion. In addition, titanium-crosslinked membranes showed an auxiliary UV-assisted dye removal contribution under irradiation, arising from photoactive Ti species. These findings demonstrate that metal ion crosslinking provides a practical route for tuning the functional properties of alginate nanofiber membranes, with oil-water separation as the primary application and dye adsorption/photocatalysis as secondary functionalities. Full article
Show Figures

Figure 1

29 pages, 8386 KB  
Article
Multifractal Characteristics of the Pore Structure and Resistance to Chloride Ion Penetration of Cement Mortar Modified with a Waterborne Nanosilicate-Based Densifier
by Xin Wang, Rongxin Guo, Haiting Xia, Dian Guan and Zhuo Liu
Fractal Fract. 2026, 10(1), 58; https://doi.org/10.3390/fractalfract10010058 - 14 Jan 2026
Viewed by 157
Abstract
Cementitious composites are heterogeneous porous materials whose pore structure plays a critical role in resistance to chloride-ion penetration. A waterborne nano-silicate-based densifier (CF-S5) was used to examine its influence on the pore structure and resistance to the chloride ion penetration of mortar. We [...] Read more.
Cementitious composites are heterogeneous porous materials whose pore structure plays a critical role in resistance to chloride-ion penetration. A waterborne nano-silicate-based densifier (CF-S5) was used to examine its influence on the pore structure and resistance to the chloride ion penetration of mortar. We investigated the resistance to the chloride ion penetration of mortar with added CF-S5 admixture through the Rapid Chloride Permeability Test (RCPT). We investigated the pore structure characteristics of mortar by mercury intrusion porosimetry (MIP) coupled with fractal theory and investigated the degree of hydration of the cement paste by thermogravimetric analysis (TG). Ultimately, the degree of correlation between multifractal parameters and the chloride ion migration coefficient of mortar was examined using gray relational analysis (GRA). Results indicate that the CF-S5 admixture reduces mortar porosity and the content of harmful pores while increasing pore tortuosity, thus improving the resistance to the chloride ion penetration of mortar. Multifractal analysis indicated that the CF-S5 admixture decreased the connectivity and increased the complexity of the mortar pore structure. The CF-S5 admixture did not reduce the hydration degree of cement paste at 28 d. Additionally, the multifractal parameters show a high gray relational degree with the chloride migration coefficient; therefore, they may serve as potential indicators to reflect the resistance to the chloride ion penetration of mortar. Full article
(This article belongs to the Special Issue Fractal Analysis and Its Applications in Materials Science)
Show Figures

Figure 1

24 pages, 4562 KB  
Article
Hydrochemical Appraisal of Groundwater Quality for Managed Aquifer Recharge (MAR) in Southern Punjab, Pakistan
by Ghulam Zakir-Hassan, Lee Baumgartner, Catherine Allan and Jehangir F. Punthakey
Geosciences 2026, 16(1), 43; https://doi.org/10.3390/geosciences16010043 - 14 Jan 2026
Viewed by 74
Abstract
Water quality assessment is crucial for the sustainable use and management of groundwater resources. This study was carried out in the irrigated plains of Vehari District, Punjab, Pakistan, to evaluate groundwater suitability for a managed aquifer recharge (MAR) project. Twenty groundwater samples were [...] Read more.
Water quality assessment is crucial for the sustainable use and management of groundwater resources. This study was carried out in the irrigated plains of Vehari District, Punjab, Pakistan, to evaluate groundwater suitability for a managed aquifer recharge (MAR) project. Twenty groundwater samples were collected in June 2021 from an area of 1522 km2 and analysed for major physicochemical parameters including electrical conductivity (EC), total dissolved solids (TDS), pH, turbidity, calcium (Ca), magnesium (Mg), chloride (Cl), alkalinity (Alk), bicarbonate (HCO3), hardness, potassium (K), sulphate (SO42−), sodium (Na), and nitrate (NO3). Water quality was assessed using WHO and PID standards, alongside derived hydrochemical indices such as sodium percentage (%Na), Kelly’s ratio (KR), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), and the water quality index (WQI). The dataset was interpreted using geo-statistical, geospatial, multivariate, and correlation analyses. Cations and anion dominance followed the order Na+ > Ca2+ > Mg2+ > K+ and HCO3 > SO42− > Cl > NO3. According to the WQI analysis, 35% of the water samples are classified as “poor,” half (50%) as “very poor,” and the remaining 15% as “unsuitable” for drinking purposes. However, irrigation suitability indices confirmed that groundwater is generally acceptable for agricultural use, though unfit for drinking. The outcomes of this study provide essential insights for groundwater management in the region, where the Punjab Irrigation Department (PID) has initiated a MAR project. Considering that the irrigation sector is the major groundwater consumer in the area, the compatibility of groundwater and surface water quality supports the implementation of MAR to enhance agricultural sustainability. Full article
Show Figures

Figure 1

Back to TopTop