Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,062)

Search Parameters:
Keywords = chitosan and derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1714 KiB  
Article
Physicochemical and Biological Properties of Quercetin-Loaded Low-Molecular-Weight Chitosan Nanoparticles Derived from Hermetia illucens Larvae and Crustacean Sources: A Comparative Study
by Anna Guarnieri, Rosanna Mallamaci, Giuseppe Trapani, Dolores Ianniciello, Carmen Scieuzo, Francesco Iannielli, Luigi Capasso, Maria Chiara Sportelli, Alessandra Barbanente, Michela Marsico, Angela De Bonis, Stefano Castellani, Patrizia Falabella and Adriana Trapani
Pharmaceutics 2025, 17(8), 1016; https://doi.org/10.3390/pharmaceutics17081016 - 5 Aug 2025
Abstract
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac [...] Read more.
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac were compared herein by investigating the in vitro features of nanoparticles (NPs) made from each polysaccharide and administered with the antioxidant quercetin (QUE). Methods. X-ray diffraction and FT-IR spectroscopy enabled the identification of each type of CS. Following the ionic gelation technique and using sulfobutylether-β-cyclodextrin as a cross-linking agent, NPs were easily obtained. Results. Physicochemical data, release studies in PBS, and the evaluation of antioxidant effects via the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test were studied for both CSlarvae and CScrustac. QUE-loaded NP sizes ranged from 180 to 547 nm, and zeta potential values were between +7.5 and +39.3 mV. In vitro QUE release in PBS was faster from QUE-CSlarvae NPs than from CScrustac, and high antioxidant activity—according to the DPPH test—was observed for all tested NP formulations. Discussion. The agar diffusion assay, referring to Escherichia coli and Micrococcus flavus, as well as the microdilution assay, showed the best performance as antimicrobial formulations in the case of QUE-CSlarvae NPs. QUE-CSlarvae NPs can represent a promising vehicle for QUE, releasing it in a sustained manner, and, relevantly, the synergism noticed between QUE and CSlarvae resulted in a final antimicrobial product. Conclusions. New perspectives for low-molecular-weight CS are disclosed by adopting renewable sources from insects instead of the commercial CScrustac. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

18 pages, 1807 KiB  
Article
Influence of Pyrolysis Temperature on the Properties and Electrochemical Performance of Cedar Wood-Derived Biochar for Supercapacitor Electrodes
by Layal Abdallah, Chantal Gondran, Virginie Monnier, Christian Vollaire and Naoufel Haddour
Bioengineering 2025, 12(8), 841; https://doi.org/10.3390/bioengineering12080841 (registering DOI) - 4 Aug 2025
Abstract
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 [...] Read more.
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 °C and fully characterized in terms of their structural, physicochemical and electrochemical properties, including specific surface area, hydrophobicity, electrical conductivity, and surface functional groups. The results indicated that the cedar wood biochar obtained through pyrolysis at 900 °C (BC900) provided optimal electrical conductivity, hydrophobicity, and porosity characteristics relative to the other cedar wood biochars produced by pyrolysis at 800 °C to 1100 °C. Specifically, when compared to commercial activated carbon (AC), BC900 provided half the specific capacitance at a current density of 1 A g−1 and indicated that there is more potential for improvement with further activation and doping. The influence of the binder (either polyvinylidene fluoride (PVDF) or chitosan) in combination with conductive carbon black (CB) was also examined. Electrodes fabricated with PVDF binder showed higher specific capacitance, while biochar electrodes made from CB and chitosan (BC900/CB/chitosan) showed better electrical conductivity, wettability, and good electrochemical stability with >95% capacity retention even after 10,000 cycles. Full article
Show Figures

Figure 1

20 pages, 4467 KiB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 90
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

20 pages, 9007 KiB  
Review
Marine-Derived Collagen and Chitosan: Perspectives on Applications Using the Lens of UN SDGs and Blue Bioeconomy Strategies
by Mariana Almeida and Helena Vieira
Mar. Drugs 2025, 23(8), 318; https://doi.org/10.3390/md23080318 - 1 Aug 2025
Viewed by 239
Abstract
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across [...] Read more.
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across health, food, wellness, and environmental fields. This review highlights recent advances in the uses of marine-derived collagen and chitin/chitosan. In alignment with the United Nations Sustainable Development Goals (SDGs), we analyze how these applications contribute to sustainability, particularly in SDGs related to responsible consumption and production, good health and well-being, and life below water. Furthermore, we contextualize the advancement of product development using marine collagen and chitin/chitosan within the European Union’s Blue bioeconomy strategies, highlighting trends in scientific research and technological innovation through bibliometric and patent data. Finally, the review addresses challenges facing the development of robust value chains for these marine biopolymers, including collaboration, regulatory hurdles, supply-chain constraints, policy and financial support, education and training, and the need for integrated marine resource management. The paper concludes with recommendations for fostering innovation and sustainability in the valorization of these marine resources. Full article
Show Figures

Graphical abstract

43 pages, 1138 KiB  
Review
Emerging Trends in Active Packaging for Food: A Six-Year Review
by Mariana A. Andrade, Cássia H. Barbosa, Regiane Ribeiro-Santos, Sidney Tomé, Ana Luísa Fernando, Ana Sanches Silva and Fernanda Vilarinho
Foods 2025, 14(15), 2713; https://doi.org/10.3390/foods14152713 - 1 Aug 2025
Viewed by 116
Abstract
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, [...] Read more.
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, and phenolic compounds as active agents. Primarily plant-derived, these compounds exhibit significant antioxidant and antimicrobial activities, extending shelf life and enhancing food quality. Technological strategies such as encapsulation and polymer blending have been increasingly adopted to overcome challenges related to volatility, solubility, and sensory impact. Integrating bio-based polymers, including chitosan, starch, and polylactic acid, further supports the development of environmentally friendly packaging systems. This review also highlights trends in compound-specific research, release mechanisms, and commercial applications, including a detailed analysis of patents and case studies across various food matrices. These developments have already been translated into practical applications, such as antimicrobial sachets for meat and essential oil-based pads for fresh produce. Moreover, by promoting the valorization of agro-industrial by-products and the use of biodegradable materials, emission-type active packaging contributes to the principles of the circular economy. This comprehensive overview underscores the potential of natural bioactive compounds in advancing sustainable and functional food packaging technologies. Full article
Show Figures

Figure 1

58 pages, 1897 KiB  
Review
Fabrication and Application of Bio-Based Natural Polymer Coating/Film for Food Preservation: A Review
by Nosipho P. Mbonambi, Jerry O. Adeyemi, Faith Seke and Olaniyi A. Fawole
Processes 2025, 13(8), 2436; https://doi.org/10.3390/pr13082436 - 1 Aug 2025
Viewed by 453
Abstract
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to [...] Read more.
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to their synthetic counterparts, these polymers, such as chitosan, starch, cellulose, proteins, and alginate, are derived from renewable sources that are biodegradable, safe, and functional. Within this context, this review examines the various bio-based natural polymer coatings and films as biodegradable, edible alternatives to conventional packaging solutions. It examines the different fabrication methods, like solution casting, electrospinning, and spray coating, and incorporates antimicrobial agents to enhance performance. Emphasis is placed on their mechanical, barrier, and antimicrobial properties, their application in preserving fresh produce, how they promote food safety and environmental sustainability, and accompanying limitations. This review highlights the importance of bio-based natural polymer coatings and films as a promising, eco-friendly solution to enhancing food quality, safety, and shelf life while addressing global sustainability challenges. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

46 pages, 5039 KiB  
Review
Harnessing Insects as Novel Food Ingredients: Nutritional, Functional, and Processing Perspectives
by Hugo M. Lisboa, Rogério Andrade, Janaina Lima, Leonardo Batista, Maria Eduarda Costa, Ana Sarinho and Matheus Bittencourt Pasquali
Insects 2025, 16(8), 783; https://doi.org/10.3390/insects16080783 - 30 Jul 2025
Viewed by 537
Abstract
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, [...] Read more.
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, protein isolates, oils, and chitosan-rich fibers with targeted techno-functional roles. This survey maps how thermal pre-treatments, blanch–dry–mill routes, enzymatic hydrolysis, and isoelectric solubilization–precipitation preserve or enhance the water- and oil-holding capacity, emulsification, foaming, and gelation, while also mitigating off-flavors, allergenicity, and microbial risks. A meta-analysis shows insect flours can absorb up to 3.2 g of water g−1, stabilize oil-in-water emulsions for 14 days at 4 °C, and form gels with 180 kPa strength, outperforming or matching eggs, soy, or whey in specific applications. Case studies demonstrate a successful incorporation at 5–15% into bakery, meat analogs and dairy alternatives without sensory penalties, and chitin-derived chitosan films extend the bread shelf life by three days. Comparative life-cycle data indicate 45–80% lower greenhouse gas emissions and land use than equivalent animal-derived ingredients. Collectively, the evidence positions insect-based ingredients as versatile, safe, and climate-smart tools to enhance food quality and sustainability, while outlining research gaps in allergen mitigation, consumer acceptance, and regulatory harmonization. Full article
(This article belongs to the Special Issue Insects and Their Derivatives for Human Practical Uses 3rd Edition)
Show Figures

Figure 1

81 pages, 6368 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 347
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
Show Figures

Figure 1

34 pages, 924 KiB  
Review
Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction
by Viktoriia Kiseleva, Aida Bagdasarian, Polina Vishnyakova, Andrey Elchaninov, Victoria Karyagina, Valeriy Rodionov, Timur Fatkhudinov and Gennady Sukhikh
Polymers 2025, 17(15), 2036; https://doi.org/10.3390/polym17152036 - 25 Jul 2025
Viewed by 529
Abstract
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous [...] Read more.
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous tissues allows surgeons to recreate the appearance of the mammary gland and achieve tactile sensations similar to those of a healthy organ while minimizing the risks associated with implants; 3D disassemblable scaffolds are a promising solution that overcomes the limitations of traditional methods. These constructs offer the potential for patient-specific anatomical adaptation and can provide both temporary and long-term structural support for regenerating tissues. One of the most promising approaches in post-mastectomy breast reconstruction involves the use of autologous cellular and tissue components integrated into either synthetic scaffolds—such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL)—or naturally derived biopolymer-based matrices, including alginate, chitosan, hyaluronic acid derivatives, collagen, fibrin, gelatin, and silk fibroin. In this context, two complementary research directions are gaining increasing significance: (1) the development of novel hybrid biomaterials that combine the favorable characteristics of both synthetic and natural polymers while maintaining biocompatibility and biodegradability; and (2) the advancement of three-dimensional bioprinting technologies for the fabrication of patient-specific scaffolds capable of incorporating cellular therapies. Such therapies typically involve mesenchymal stromal cells (MSCs) and bioactive signaling molecules, such as growth factors, aimed at promoting angiogenesis, cellular proliferation, and lineage-specific differentiation. In our review, we analyze existing developments in this area and discuss the advantages and disadvantages of 3D disassemblable scaffolds for mammary gland reconstruction, as well as prospects for their further research and clinical use. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

80 pages, 962 KiB  
Review
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications
by Adina-Elena Segneanu, Ludovic Everard Bejenaru, Cornelia Bejenaru, Antonia Blendea, George Dan Mogoşanu, Andrei Biţă and Eugen Radu Boia
Polymers 2025, 17(15), 2026; https://doi.org/10.3390/polym17152026 - 24 Jul 2025
Viewed by 963
Abstract
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, [...] Read more.
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, examining their structural properties, fabrication methods, and broad biomedical applications, including drug delivery systems, tissue engineering, wound healing, and regenerative medicine. Natural hydrogels derived from sources such as alginate, gelatin, and chitosan are highlighted for their biodegradability and biocompatibility, though often limited by poor mechanical strength and batch variability. Conversely, synthetic hydrogels offer precise control over physical and chemical characteristics via advanced polymer chemistry, enabling customization for specific biomedical functions, yet may present challenges related to bioactivity and degradability. The review also explores intelligent hydrogel systems with stimuli-responsive and bioactive functionalities, emphasizing their role in next-generation healthcare solutions. In modern medicine, temperature-, pH-, enzyme-, light-, electric field-, magnetic field-, and glucose-responsive hydrogels are among the most promising “smart materials”. Their ability to respond to biological signals makes them uniquely suited for next-generation therapeutics, from responsive drug systems to adaptive tissue scaffolds. Key challenges such as scalability, clinical translation, and regulatory approval are discussed, underscoring the need for interdisciplinary collaboration and continued innovation. Overall, this review fosters a comprehensive understanding of hydrogel technologies and their transformative potential in enhancing patient care through advanced, adaptable, and responsive biomaterial systems. Full article
23 pages, 5262 KiB  
Article
Designing Gel-Inspired Food-Grade O/W Pickering Emulsions with Bacterial Nanocellulose–Chitosan Complexes
by Antiopi Vardaxi, Eftychios Apostolidis, Ioanna G. Mandala, Stergios Pispas, Aristeidis Papagiannopoulos and Erminta Tsouko
Gels 2025, 11(8), 577; https://doi.org/10.3390/gels11080577 - 24 Jul 2025
Viewed by 324
Abstract
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH [...] Read more.
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH combined with BNC derived via H2SO4 (BNC1) or H2SO4-HCl (BNC2) hydrolysis. Increasing BNC content improved stability by reducing phase separation and enhancing viscosity, while CH contributed interfacial activity and electrostatic stabilization. CH/BNC125:75 emulsions showed the highest stability, maintaining an emulsion stability index (ESI) of up to 100% after 3 days, with minimal change in droplet size (Rh ~8.5–8.8 μm) and a positive ζ-potential (15.1–29.8 mV), as confirmed by dynamic/electrophoretic light scattering. pH adjustment to 4 and 10 had little effect on their ESI, while ionic strength studies showed that 0.1 M NaCl caused only a slight increase in droplet size combined with the highest ζ-potential (−35.2 mV). Higher salt concentrations led to coalescence and disruption of their gel-like structure. Rheological analysis of CH/BNC125:75 emulsions revealed shear-thinning behavior and dominant elastic properties (G′ > G″), indicating a soft gel network. Incorporating sunflower-seed protein isolates into CH/BNC1 (25:75) emulsions led to coacervate formation (three-layer system), characterized by a decrease in droplet size and an increase in ζ-potential (up to 32.8 mV) over 7 days. These findings highlight CH/BNC complexes as sustainable stabilizers for food-grade Pickering emulsions, supporting the development of biopolymer-based emulsifiers aligned with bioeconomy principles. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

14 pages, 1428 KiB  
Article
Extraction of Chitin, Chitosan, and Calcium Acetate from Mussel Shells for Sustainable Waste Management
by Chaowared Seangarun, Somkiat Seesanong, Banjong Boonchom, Nongnuch Laohavisuti, Pesak Rungrojchaipon, Wimonmat Boonmee, Sirichet Punthipayanon and Montree Thongkam
Int. J. Mol. Sci. 2025, 26(15), 7107; https://doi.org/10.3390/ijms26157107 - 23 Jul 2025
Viewed by 480
Abstract
In this paper, mussel shells were used to produce chitin, chitosan, and calcium acetate using chemical processes, searching for an alternative environmentally friendly biopolymer and calcium source. Mussel shells were treated with acetic acid as a demineralizing agent, resulting in separate solid fractions [...] Read more.
In this paper, mussel shells were used to produce chitin, chitosan, and calcium acetate using chemical processes, searching for an alternative environmentally friendly biopolymer and calcium source. Mussel shells were treated with acetic acid as a demineralizing agent, resulting in separate solid fractions and calcium solution. The solid was further purified to produce chitin by deproteinization and decolorization processes, and then the deacetylation process was used to obtain chitosan. The calcium solution was evaporated to produce calcium acetate powder. The yields of extracted chitin, chitosan, and calcium acetate from 100 g of mussel shells were 2.98, 2.70, and 165.23 g, respectively. The prepared chitin, chitosan, and calcium acetate were analyzed by Fourier transform infrared (FTIR) spectrophotometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) to confirm the chemical and physical properties. The analysis results of chitin and chitosan revealed the similarity to chitosan derived from crustaceans and insects in terms of functional group, structure and morphologies. The prepared calcium acetate shows FTIR and XRD data corresponding to calcium acetate monohydrate (Ca(CH3COO)2·H2O) similar to synthesized calcium acetate in previous research. In addition, the mineral contents of calcium acetate identified by X-ray fluorescence (XRF) analysis exhibit 97.8% CaO with non-toxic impurities. This work demonstrated the potential of the production process of chitin, chitosan, and calcium acetate for the development of a sustainable industrial process with competitive functional performance against the commercial chitin and chitosan production process using crustacean shells and supported the implementation of a circular economy. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

21 pages, 6746 KiB  
Article
Harnessing Wild Jackfruit Extract for Chitosan Production by Aspergillus versicolor AD07: Application in Antibacterial Biodegradable Sheets
by Adhithya Sankar Santhosh and Mridul Umesh
Appl. Microbiol. 2025, 5(3), 71; https://doi.org/10.3390/applmicrobiol5030071 - 20 Jul 2025
Viewed by 404
Abstract
A fungal strain with comparably high chitosan yield was isolated from the Shivaganga hills and identified as Aspergillus versicolor AD07 through molecular characterization. Later, the strain was cultivated on Sabouraud Dextrose Broth (SDB) and wild jackfruit-based media to evaluate its potential for chitosan [...] Read more.
A fungal strain with comparably high chitosan yield was isolated from the Shivaganga hills and identified as Aspergillus versicolor AD07 through molecular characterization. Later, the strain was cultivated on Sabouraud Dextrose Broth (SDB) and wild jackfruit-based media to evaluate its potential for chitosan production. Among the various media formulations, the highest chitosan yield (178.40 ± 1.76 mg/L) was obtained from the jackfruit extract medium with added peptone and dextrose. The extracted chitosan was characterized through FTIR, XRD (reported a crystallinity index of 55%), TGA/DTG, and DSC analysis, confirming the presence of key functional groups and high thermal resistance. The extracted chitosan was fabricated into a sheet incorporated with 1% lemongrass oil; the sheet exhibited strong antibacterial activity against Escherichia coli (30 mm) and Bacillus megaterium (48 mm). The biodegradation studies reported a weight loss of 38.93 ± 0.51% after 50 days of soil burial. Further, the chitosan film was tested as a packaging material for paneer, demonstrating better preservation by maintaining nutritional quality and reducing microbial load over a 14-day storage period. These findings highlight the potential of A. versicolor AD07-derived chitosan, cultivated on a waste substrate medium, as a sustainable biopolymer for food packaging applications. Full article
Show Figures

Figure 1

16 pages, 6023 KiB  
Article
Innovative Multilayer Biodegradable Films of Chitosan and PCL Fibers for Food Packaging
by Justyna Jakubska, Andrzej Hudecki, Dominika Kluska, Paweł Grzybek, Klaudiusz Gołombek, Wojciech Pakieła, Hanna Spałek, Patryk Włodarczyk, Aleksandra Kolano-Burian and Gabriela Dudek
Foods 2025, 14(14), 2470; https://doi.org/10.3390/foods14142470 - 14 Jul 2025
Viewed by 412
Abstract
The growing accumulation of plastic packaging waste poses severe environmental and health challenges. To address these issues, significant research has been devoted to developing biodegradable films; however, their weak mechanical and barrier properties limit their practical utility. This study introduces an innovative multilayer [...] Read more.
The growing accumulation of plastic packaging waste poses severe environmental and health challenges. To address these issues, significant research has been devoted to developing biodegradable films; however, their weak mechanical and barrier properties limit their practical utility. This study introduces an innovative multilayer film production method, combining electrospun polycaprolactone (PCL) fibers with a chitosan matrix. Two configurations were investigated: (1) nonwoven PCL layers placed between chitosan sheets and (2) a chitosan sheet sandwiched between two nonwoven PCL layers. Both systems were evaluated using PCL fibers derived from medical-grade and technical-grade polymers. The chitosan/polycaprolactone/chitosan (CH/PCL/CH) configuration demonstrated superior performance, achieving enhanced interlayer cohesion and significantly improved mechanical strength, durability, and barrier properties. Notably, this configuration achieved tensile strength and elongation at break values of 57.1 MPa and 36.3%, respectively—more than double those of pure chitosan films. This breakthrough underscores the potential of multilayered biopolymer films as eco-friendly packaging solutions, offering exceptional promise for sustainable applications in the food packaging industry. Full article
Show Figures

Graphical abstract

44 pages, 7563 KiB  
Review
Green Batteries: A Sustainable Approach Towards Next-Generation Batteries
by Annu, Bairi Sri Harisha, Manesh Yewale, Bhargav Akkinepally and Dong Kil Shin
Batteries 2025, 11(7), 258; https://doi.org/10.3390/batteries11070258 - 10 Jul 2025
Viewed by 1017
Abstract
The rising demand for sustainable energy storage has fueled the development of green batteries as alternatives to conventional systems. However, a major research gap lies in the unified integration of environmentally friendly materials and processes across all battery components—electrodes, electrolytes, and separators—without compromising [...] Read more.
The rising demand for sustainable energy storage has fueled the development of green batteries as alternatives to conventional systems. However, a major research gap lies in the unified integration of environmentally friendly materials and processes across all battery components—electrodes, electrolytes, and separators—without compromising performance or scalability. This review addresses this gap by highlighting recent advances in eco-conscious battery technologies, focusing on green electrode fabrication using water-based methods, electrophoretic deposition, solvent-free dry-press coating, 3D printing, and biomass-derived materials. It also examines the shift toward safer electrolytes, including ionic liquids, deep eutectic solvents, water-based systems, and solid biopolymer matrices, which improve both environmental compatibility and safety. Additionally, biodegradable separators made from natural polymers such as cellulose and chitosan offer enhanced thermal stability and ecological benefits. The review emphasizes the importance of lifecycle considerations like recyclability and biodegradability, aligning battery design with circular economy principles. While significant progress has been made, challenges such as standardization, long-term stability, and industrial scalability remain. By identifying key strategies and future directions, this article contributes to the foundation for next-generation green batteries, promoting their adoption in environmentally sensitive applications ranging from wearable electronics to grid storage. Full article
Show Figures

Figure 1

Back to TopTop