Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,000)

Search Parameters:
Keywords = chicken production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1874 KB  
Article
Synergistic Effects of mTG-Induced Protein Crosslinking and Methyl Cellulose Polymer in Modulating the Quality Parameters of Hybrid Meat Patties
by Abdul Samad, Ayesha Muazzam, A. M. M. Nurul Alam, Young-Hwa Hwang and Seon-Tea Joo
Appl. Sci. 2026, 16(3), 1187; https://doi.org/10.3390/app16031187 - 23 Jan 2026
Abstract
The demand for healthier and more sustainable meat products is increasing, and hybrid meat products have garnered consumer interest due to their nutritional and environmental benefits. This study aimed to formulate hybrid patties using chicken boneless meat and isolated soy protein (ISP), with [...] Read more.
The demand for healthier and more sustainable meat products is increasing, and hybrid meat products have garnered consumer interest due to their nutritional and environmental benefits. This study aimed to formulate hybrid patties using chicken boneless meat and isolated soy protein (ISP), with varying concentrations of microbial transglutaminase (mTG) and methyl cellulose (CL), to improve physicochemical, textural, and sensory attributes. A secondary objective was to identify an effective mTG–CL combination as a bioadhesive for hybrid and plant-based meat analogs. A two-factor factorial design with mTG (0–3%) and CL (0–3%) was employed to evaluate their individual and combined effects on hybrid patties. The combination of 3% mTG and 2% CL produced the most desirable balance of textural and sensory properties, significantly increasing hardness, chewiness, cohesiveness, and springiness, while maintaining TBARS values within acceptable sensory limits (≈1.10 mg MDA/kg). Increasing CL levels slightly reduced pH and increased lightness and yellowness, whereas redness remained stable across treatments. Sensory evaluation revealed the highest preference for patties containing 3% mTG and 2% CL in terms of texture, surface moisture, and overall quality (p < 0.05). These results demonstrate that enzymatic–hydrocolloid synergy between mTG and CL effectively enhances textural integrity, while color attributes and oxidative stability are primarily governed by additive effects. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Approaches: 2nd Edition)
43 pages, 1026 KB  
Review
Insights into Non-Antibiotic Alternative and Emerging Control Strategies for Chicken Coccidiosis
by Rochelle A. Flores, Paula Leona C. Fletcher, Kyu-Yeol Son and Wongi Min
Animals 2026, 16(2), 348; https://doi.org/10.3390/ani16020348 - 22 Jan 2026
Abstract
Coccidiosis, caused by an obligate intracellular parasite of the genus Eimeria, is the most economically parasitic disease in poultry. Long-term reliance on synthetic anticoccidials and ionophores has accelerated the emergence of drug resistance and intensified the need for effective, residue-free alternatives. This [...] Read more.
Coccidiosis, caused by an obligate intracellular parasite of the genus Eimeria, is the most economically parasitic disease in poultry. Long-term reliance on synthetic anticoccidials and ionophores has accelerated the emergence of drug resistance and intensified the need for effective, residue-free alternatives. This narrative review synthesizes findings from peer-reviewed studies published between 1998 and 2025, summarizing advances in non-antibiotic control strategies encompassing five domains: (i) phytochemicals and botanicals, (ii) functional nutrition and mineral modulators, (iii) microbial and gut modulators, (iv) host-directed immunological and biotechnological approaches, and (v) precision and omics-guided biotherapeutic platforms. These approaches consistently reduce lesion severity, oocyst shedding, oxidative stress, and mortality while improving growth parameters in a variety of Eimeria models. However, translation to field settings remains constrained by variable bioactive composition, limited standardization, inadequate pharmacokinetic data, and the scarcity of large-scale, multi-farm validation studies. This review provides a concise summary of current evidence and delineates critical knowledge gaps to guide the development, optimization, and deployment of next-generation anticoccidial strategies. Together, natural products and emerging biotechnologies provide a promising foundation for sustainable, high-welfare, antibiotic-independent coccidiosis control. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

13 pages, 777 KB  
Article
Antimicrobial Effect of Postbiotics on Multidrug-Resistant Escherichia coli
by Çiğdem Sezer, Nebahat Bilge, Gönül Damla Büyük and Merve Ayyıldız Akın
Foods 2026, 15(2), 384; https://doi.org/10.3390/foods15020384 - 21 Jan 2026
Abstract
Pathogens that have developed resistance to antibiotics pose a threat to public health. The primary goal in preventing foodborne infections is to inhibit the growth of and, subsequently, eliminate antibiotic-resistant pathogens at every stage from production to consumption. Escherichia coli, which has acquired [...] Read more.
Pathogens that have developed resistance to antibiotics pose a threat to public health. The primary goal in preventing foodborne infections is to inhibit the growth of and, subsequently, eliminate antibiotic-resistant pathogens at every stage from production to consumption. Escherichia coli, which has acquired resistance to most known antibiotics, is frequently found in chicken meat. In many countries, due to unregulated antibiotic use in poultry farming, poor hygiene in slaughterhouses, or cross-contamination, extended-spectrum beta-lactamase (ESBL)-producing E. coli has been identified as the causative agent in poultry-associated food poisoning. The need for more effective antimicrobial agents against this pathogen, which is resistant to existing antibiotics, has led to increased attention being paid to postbiotics produced by lactic acid bacteria, particularly bacteriocins. This study aimed to determine the antimicrobial effects of postbiotics obtained from kefir-derived Lactiplantibacillus plantarum and Lactococcus lactis against ESBL-positive E. coli. To achieve this, E. coli strains were isolated from raw chicken meat samples collected from the market using culture-based methods, and their antimicrobial resistance profiles were determined using the disk diffusion method. The ESBL positivity of the isolates was assessed using the double-disk synergy test. The antimicrobial activities of the postbiotics against the identified ESBL-positive E. coli strains were tested using the macro-dilution method to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. ESBL-positive E. coli was detected in 48% of raw chicken meat samples. The antimicrobial effects of postbiotics were examined by disk diffusion, and postbiotics produced by 18 Lb. plantarum strains and 20 Lc. lactis strains showed strong antimicrobial activity. Significant differences in the antimicrobial effects of postbiotics were observed between the two species. Lb. plantarum postbiotics exhibited both bacteriostatic (concentration 60%) and bactericidal (concentration 80%) effects on ESBL-positive E. coli strains, whereas Lc. lactis postbiotics showed only bacteriostatic effects (80% concentration). Postbiotics derived from probiotic bacteria offer promising effects against multidrug-resistant E. coli due to their heat resistance, activity across different pH values, strong antimicrobial effects, affordability, and ease of production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

19 pages, 2268 KB  
Article
The Efficacy of Multicomponent Preparation for Detoxification of Mycotoxins in the Presence of AFB1 and OTA Added to Broiler Feed
by Jelena Nedeljković Trailović, Branko Petrujkić, Saša Trailović, Dragoljub Jovanović, Milutin Đorđević, Darko Stefanović, Nataša Tolimir, Darko Marinković and Stamen Radulović
Poultry 2026, 5(1), 9; https://doi.org/10.3390/poultry5010009 - 19 Jan 2026
Viewed by 42
Abstract
The experimental study was performed to determine the efficacy of a mycotoxin detoxification agent (MS) at a concentration of 0.2% in reducing the toxicity of aflatoxin B1 (AFB1) and ochratoxin A (OTA), alone or in combination, and to examine its effect on performance, [...] Read more.
The experimental study was performed to determine the efficacy of a mycotoxin detoxification agent (MS) at a concentration of 0.2% in reducing the toxicity of aflatoxin B1 (AFB1) and ochratoxin A (OTA), alone or in combination, and to examine its effect on performance, pathohistological (PH) changes, and residues of these toxins in the tissues of broiler chicks. A total of 88 broilers were divided into eight equal groups: group C, the control group (fed a commercial diet without any additives); group MS, which received the mycotoxin detoxification agent (MS) (supplemented with 0.2%); group E I (0.2 mg AFB1/kg of diet); group E II (0.2 mg AFB1/kg of diet + MS 0.2%); group E III (1.5 mg OTA/kg of diet); group E IV (1.5 mg OTA/kg of diet + 0.2% MS); group E V (combination of 0.2 mg AFB1/kg, 1.5 mg OTA/kg of diet); and group E VI (combination of 0.2 mg AFB1/kg, 1.5 mg OTA toxin + 0.2% MS). Results show that feed containing AFB1 and OTA, individually or in combination, negatively affects health, production results, and PH changes in tissues, as well as the presence of mycotoxin residues in the liver and breast muscles of poultry. The addition of a new multicomponent preparation for the detoxification of MS mycotoxins in feed with AFB1 and OTA individually and in combination had a positive effect on TM (BW), growth (BWG), consumption and FCR conversion coefficient, and microscopic lesions in organs. The concentration of OTA residues in the liver and chest muscles was significantly lower in chickens fed a diet with the addition of 0.2% MS of the mycotoxin detoxification preparation. Full article
Show Figures

Figure 1

11 pages, 3186 KB  
Article
Whole-Genome Sequencing Reveals Genetic Diversity and Structure of Taiwan Commercial Red-Feathered Country Chickens
by Ya-Wen Hsiao, Kang-Yi Su and Chi-Sheng Chang
Animals 2026, 16(2), 286; https://doi.org/10.3390/ani16020286 - 16 Jan 2026
Viewed by 113
Abstract
Whole-genome sequencing is a powerful approach for exploring genomic diversity in livestock species. Chickens (Gallus gallus) are an important food source worldwide, and in Taiwan, poultry production contributes substantially to the livestock industry. Taiwan’s commercial red- and black-feathered country chickens dominate [...] Read more.
Whole-genome sequencing is a powerful approach for exploring genomic diversity in livestock species. Chickens (Gallus gallus) are an important food source worldwide, and in Taiwan, poultry production contributes substantially to the livestock industry. Taiwan’s commercial red- and black-feathered country chickens dominate this category and play a crucial role in local poultry production. However, fundamental genomic information on their population structure remains limited. To address this gap, this study generated whole-genome sequencing data from red-feathered country chickens originating from four major breeding farms. Genetic diversity analyses revealed uniformly low genetic diversity across all farms. Runs of homozygosity (ROH) analyses indicated predominantly historical inbreeding, with farm-specific differences in recent inbreeding patterns. Population structure analyses revealed clear clustering of individuals according to farm origin, indicating distinct line structures among breeding farms. These results provide the first comprehensive genomic overview of Taiwan’s commercial red-feather country chickens and offer valuable reference information for future breeding strategies and the development of new lines. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

10 pages, 255 KB  
Article
Genetic Parameters of Egg Quality Traits and Albumen Density in White Leghorn Chickens
by Anqi Chen, Haiyan Wang, Dengjing Zuo, Haiying Li, Huie Wang, Zhonghua Ning, Liping Ban, Changqing Qu, Xiaoyu Zhao and Lujiang Qu
Animals 2026, 16(2), 284; https://doi.org/10.3390/ani16020284 - 16 Jan 2026
Viewed by 98
Abstract
The conventional method for detecting protein content in egg albumen is the Kjeldahl method, but this method cannot be applied in practical production due to cost limitations. Therefore, we developed albumen density (AD), which had certain potential application value in low-cost and efficient [...] Read more.
The conventional method for detecting protein content in egg albumen is the Kjeldahl method, but this method cannot be applied in practical production due to cost limitations. Therefore, we developed albumen density (AD), which had certain potential application value in low-cost and efficient evaluation of albumen protein content. We calculated the heritability of AD in White Leghorn (WL) chickens and its correlation with average albumen protein quantity (AAP), total albumen protein quantity (TAP), albumen weight (AW), albumen volume (AV), egg weight (EW), albumen height (AH), haugh unit (HU), and yolk color (YC). It is worth noting that albumen protein content was measured in a small subset of samples. The average value of AD in eggs was 0.97 and its heritability was less than 0.1. The average value of AAP in eggs was 10.1%, and the average value of TAP in eggs was 2.95 g. There were significant positive correlations between AAP, TAP, AW, AV, AD, and EW, and there were strong positive genetic and phenotypic correlations between EW, AW, AV, and AD. The results of this study indicated that AD might have potential value as a supplementary tool for albumen protein trait selection in breeding. Full article
(This article belongs to the Section Poultry)
13 pages, 1048 KB  
Article
Supplemented Feed for Broiler Chickens: The Influence of Red Grape Pomace and Grape Seed Flours on Meat Characteristics
by Manuela Mauro, Alessandro Attanzio, Carla Buzzanca, Marialetizia Ponte, Vita Di Stefano, Ignazio Restivo, Giuseppe Maniaci, Angela D’Amico, Antonino Di Grigoli, Emiliano Gurrieri, Antonio Fabbrizio, Sabrina Sallemi, Luisa Tesoriere, Francesco Longo, Rosario Badalamenti, Aiti Vizzini, Maria Grazia Cappai, Mirella Vazzana and Vincenzo Arizza
Animals 2026, 16(2), 280; https://doi.org/10.3390/ani16020280 - 16 Jan 2026
Viewed by 124
Abstract
Intensive broiler chicken farming is one of the most important livestock sectors globally. However, intensive production systems raise concerns about farm sustainability, as well as ensuring animal welfare and product quality. For this reason, identifying novel, high-value-added feed ingredients is crucial. Winery by-products [...] Read more.
Intensive broiler chicken farming is one of the most important livestock sectors globally. However, intensive production systems raise concerns about farm sustainability, as well as ensuring animal welfare and product quality. For this reason, identifying novel, high-value-added feed ingredients is crucial. Winery by-products (WBPs) are a valuable source of bioactive compounds and can be utilized as functional feed ingredients. This study evaluated the effects of dietary supplementation with grape seed meal and grape pomace meal in diets for broilers up to 42 days of age. Three dietary treatments were formulated—grape seed meal (3% and 6%), grape pomace meal (3% and 6%), and a combination (3% seed meal + 3% pomace meal)—along with a standard diet (control). The proximal composition (moisture, protein, fatty acid profile, fats, ash), antioxidant parameters (ROS, GSH, NO, POV), free radical scavenging activity (DPPH and ABTS•+), and total phenolic content of the meat and physical characteristics (color) were assessed. While proximal composition of meat was not significantly influenced by the dietary treatment, some parameters, such as total phenolic content, PUFA levels, and antioxidant and free radical scavenging activity, were improved. These results demonstrate enhanced favorable traits improving chicken meat quality and confirm the potential of WBPs as functional feed ingredients, promoting a more sustainable production model aligned with the principles of the circular economy. Full article
(This article belongs to the Section Animal Products)
Show Figures

Figure 1

15 pages, 270 KB  
Article
Assessment of Fast-Growing and Dual-Purpose Chicken Meat Quality Characteristics in Different Production Systems
by Ioannis-Emmanouil Stavropoulos, Georgios Manessis, Zoitsa Basdagianni, Aikaterini Tsiftsi, Anne-Jo Smits, Peter van de Beek, Vasilios Tsiouris, Georgios Arsenos and Ioannis Bossis
Animals 2026, 16(2), 272; https://doi.org/10.3390/ani16020272 - 16 Jan 2026
Viewed by 109
Abstract
This study focused on comparing broiler meat quality across different production systems and seasons. Chicken carcasses from intensive, free-range, and dual-purpose poultry systems were analyzed for intrinsic and extrinsic quality traits. The results revealed significant effects of the production system and season. Carcasses [...] Read more.
This study focused on comparing broiler meat quality across different production systems and seasons. Chicken carcasses from intensive, free-range, and dual-purpose poultry systems were analyzed for intrinsic and extrinsic quality traits. The results revealed significant effects of the production system and season. Carcasses from dual-purpose and intensive systems were heavier. Greater carcass weight was recorded in autumn and winter. The mean post-mortem pH of breast and thigh was lower in extensive and dual-purpose systems and significantly lower in winter and spring. Colorimetric parameters varied by system, as higher means of redness (intensive), yellowness (free-range), and lightness (dual-purpose) were observed. Meat from intensive systems was less firm, showed higher levels of unsaturated fatty acids and better oxidation stability. Dual-purpose displayed higher levels of polyunsaturated fatty acids. The interaction effect was significant for most quality parameters. Full article
(This article belongs to the Special Issue Featured Papers in the 'Animal Products' Section)
12 pages, 1426 KB  
Article
Protection Against Salmonella by Vaccination with Toxin–Antitoxin Self-Destructive Bacteria
by Nady Gruzdev, Jacob Pitcovski, Chen Katz, Nili Ruimi, Dalia Eliahu, Caroline Noach, Ella Rosenzweig, Avner Finger and Ehud Shahar
Vaccines 2026, 14(1), 89; https://doi.org/10.3390/vaccines14010089 - 15 Jan 2026
Viewed by 199
Abstract
Background: Salmonella is a major zoonotic foodborne pathogen. Conventional poultry vaccines may present limitations in terms of efficacy, safety, and practicality. Objectives: This study focuses on enhancing the immunogenicity and improving the safety of a novel oral vaccination employing inducible toxin–antitoxin [...] Read more.
Background: Salmonella is a major zoonotic foodborne pathogen. Conventional poultry vaccines may present limitations in terms of efficacy, safety, and practicality. Objectives: This study focuses on enhancing the immunogenicity and improving the safety of a novel oral vaccination employing inducible toxin–antitoxin (TA) systems, which lead to self-destruction of virulent Salmonella Enteritidis. Methods: A Hok/Sok (HS) TA system was designed to induce cell death upon absence of arabinose. Point mutations were introduced to the Hok toxin promoter to moderate toxin production. A combination of HS and CeaB/CeiB (CC) TA systems was designed to induce cell death both in low di-cation levels or anaerobic conditions. Survival of Salmonella-carrying TA systems was tested in culture and in the Raw264.7 macrophage cell line. One-day old chicks were inoculated with Salmonella carrying the TA system to evaluate bacterial persistence and induction of a protective immune response. Results: Attenuation of the Hok toxin promoter prolonged bacterial survival in vitro. Salmonella carrying the combined TA systems was eliminated completely both in vitro and in inoculated chickens, eliciting high levels of antibodies and conferring protection against challenge with wild-type Salmonella. Conclusions: These findings highlight the potential of the adaptable TA-based vaccination platform to generate safe and efficacious Salmonella vaccines for poultry, contributing to reduced transmission in the food chain. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery)
Show Figures

Figure 1

25 pages, 371 KB  
Article
Linseed Cake Supplementation Increases Tissue n-3 PUFA Levels but Reduces Growth Performance in Broiler Chickens at Higher Inclusion Levels
by Giedrius Šarauskas, Rasa Nainienė, Robertas Juodka, Artūras Šiukščius, Algirdas Urbšys, Monika Tiškutė and Raimondas Leikus
Life 2026, 16(1), 138; https://doi.org/10.3390/life16010138 - 15 Jan 2026
Viewed by 207
Abstract
This study evaluated the effects of dietary linseed cake on the fatty acid profile of meat and abdominal fat, and on growth performance in broiler chickens. A total of 198 birds were randomly allocated to three groups (66 birds/group). The control group (C) [...] Read more.
This study evaluated the effects of dietary linseed cake on the fatty acid profile of meat and abdominal fat, and on growth performance in broiler chickens. A total of 198 birds were randomly allocated to three groups (66 birds/group). The control group (C) received a standard soybean meal-based feed, while the LIN6 and LIN12 groups were fed diets that were supplemented with 6% and 12% linseed cake, respectively. Linseed cake supplementation reduced saturated and monounsaturated fatty acids, increased n-3 polyunsaturated fatty acids (PUFAs) in meat and abdominal fat, and lowered the n-6/n-3 PUFA ratio (FDR-adjusted p < 0.05). The 12% inclusion resulted in a more pronounced accumulation of n-3 PUFAs—4.3–5.0 times higher than the control—while 6% inclusion increased n-3 PUFAs by 2.8–3.3 times (FDR-adjusted p < 0.05). However, 12% inclusion negatively affected growth performance, reducing body weight by 9.9% and feed intake by 10.4% at 42 days (p < 0.05), whereas the 6% inclusion had no adverse impact (p < 0.05). These results indicate that 6% linseed cake represents the optimal practical inclusion level, effectively enhancing the n-3 PUFA profile of broiler meat and abdominal fat without compromising growth, while higher inclusion levels may impair production performance. Full article
29 pages, 2399 KB  
Systematic Review
Genomic Insights into Abdominal and Intramuscular Fat Deposition in Chickens and Their Implications for Productivity Traits: A Systematic Review
by Olga Kochetova, Gulnaz Korytina, Yanina Timasheva, Irina Gilyazova, Askar Akhmetshin, Gulshat Abdeeva, Alexandra Karunas, Elza Khusnutdinova and Oleg Gusev
Animals 2026, 16(2), 260; https://doi.org/10.3390/ani16020260 - 15 Jan 2026
Viewed by 245
Abstract
Abdominal fat deposition in chickens significantly impacts production efficiency and is influenced by complex genetic and molecular mechanisms. This review summarizes current genomic and transcriptomic research on the regulation of adipogenesis and fat accumulation in chickens, highlighting key genes and loci identified through [...] Read more.
Abdominal fat deposition in chickens significantly impacts production efficiency and is influenced by complex genetic and molecular mechanisms. This review summarizes current genomic and transcriptomic research on the regulation of adipogenesis and fat accumulation in chickens, highlighting key genes and loci identified through genome-wide association studies as well as other candidates involved in lipogenesis, lipolysis, and transcriptional regulation. Major metabolic pathways, including MAPK, AMPK, PI3K/AKT/mTOR, TGFβ1/Smad3, FoxO, JAK–STAT, Wnt/β-catenin, and Sonic Hedgehog signaling, are examined for their roles in fat deposition. The regulatory functions of non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, are discussed, focusing on their interactions with target mRNAs and signaling networks that control lipid metabolism, adipocyte differentiation, and energy balance. Integrating insights from both avian and human studies, this review emphasizes the molecular mechanisms underlying adipogenesis and highlights potential strategies for genetic selection aimed at reducing excessive abdominal fat and improving poultry productivity. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

37 pages, 2307 KB  
Systematic Review
Effectiveness of Interventions and Control Measures in the Reduction of Campylobacter in Poultry Farms: A Comprehensive Meta-Analysis
by Odete Zefanias, Ursula Gonzales-Barron and Vasco Cadavez
Foods 2026, 15(2), 307; https://doi.org/10.3390/foods15020307 - 14 Jan 2026
Viewed by 296
Abstract
Campylobacter is a leading foodborne bacterial pathogen, and poultry production is a major reservoir contributing to human exposure. Reducing Campylobacter at farm level is therefore critical to limit downstream contamination. This systematic review and meta-analysis aimed to identify and quantitively summarise the current [...] Read more.
Campylobacter is a leading foodborne bacterial pathogen, and poultry production is a major reservoir contributing to human exposure. Reducing Campylobacter at farm level is therefore critical to limit downstream contamination. This systematic review and meta-analysis aimed to identify and quantitively summarise the current interventions and control measures applied in poultry farms to control the contamination and bird colonisation by Campylobacter. The Scopus electronic database was accessed to collect primary research articles that focused on observational studies and in vivo experiments, reporting results on Campylobacter concentrations or prevalence in both non-intervened and intervened groups. A total of 4080 studies were reviewed, from which 112 were selected and included in the meta-analysis according to predefined criteria, yielding 1467 observations. Meta-regression models were adjusted to the full data set and by intervention strategy based on the type of outcome measure (i.e., concentration and prevalence). In general terms, the results reveal that the effectiveness to reduce Campylobacter colonisation vary among interventions. A highly significant effect (p < 0.001) was observed in interventions such as organic acids, bacteriophages, plant extracts, probiotics, and organic iron complexes added to feed or drinking water; although drinking water was proven to be a more effective means of administration than feed for extracts and organic acids. In contrast, interventions such as chemical treatments, routine cleaning and disinfection, and vaccination showed both lower and more heterogeneous effects on Campylobacter loads. Vaccination effects were demonstrated to be driven by route and schedule, with intramuscular administration, longer vaccination periods and sufficient time before slaughter linked to greater reduction in Campylobacter colonisation. Probiotics, plant extracts and routine cleaning and disinfection were associated with lower Campylobacter prevalence in flocks. Meta-regression models consistently showed that the interventions were proven more effective when the sample analysed was caecal contents in comparison to faeces (p < 0.001). Overall, the findings of this meta-analysis study emphasise the application of a multi-barrier approach that combines targeted interventions with robust biosecurity and hygiene measures in order to reduce Campylobacter levels in poultry farms. Full article
(This article belongs to the Special Issue Quality and Safety of Poultry Meat)
Show Figures

Figure 1

15 pages, 16035 KB  
Article
Preliminary Study of Real-Time Detection of Chicken Embryo Viability Using Photoplethysmography
by Zeyu Liu, Zhuwen Xu, Yin Zhang, Hui Shi and Shengzhao Zhang
Sensors 2026, 26(2), 472; https://doi.org/10.3390/s26020472 - 10 Jan 2026
Viewed by 212
Abstract
Currently, in influenza vaccine production via the chicken embryo splitting method, embryo viability detection is a pivotal quality control step—non-viable embryos are prone to microbial contamination, directly endangering the vaccine batch quality. However, the predominant manual candling method suffers from unstable accuracy and [...] Read more.
Currently, in influenza vaccine production via the chicken embryo splitting method, embryo viability detection is a pivotal quality control step—non-viable embryos are prone to microbial contamination, directly endangering the vaccine batch quality. However, the predominant manual candling method suffers from unstable accuracy and occupational visual health risks. To address this challenge, we developed a novel real-time embryo viability detection system based on photoplethysmography (PPG) technology, comprising a hardware circuit for chicken embryo PPG signal collection and customized software for real-time signal filtering and time–frequency-domain analysis. Based on this system, we conducted three pivotal experiments: (1) impact of the source–detector spatial arrangement on PPG signal acquisition, (2) viable/non-viable embryo discrimination, and (3) embryo PPG signal detection performance for days 10–14. The experimental results show that within the sample size (15 viable, 5 non-viable embryos), the system achieved a 100% discrimination accuracy; meanwhile, it realized 100% successful multi-day (days 10–14) PPG signal capture for the 15 viable embryos, with consistent performance across the developmental stages. This PPG-based system overcomes limitations of traditional and existing automated methods, provides a non-invasive alternative for embryo viability detection, and presents significant implications for standardizing vaccine production quality control and advancing optical biosensing for biological viability detection. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 5692 KB  
Article
Sustainable Anisaldehyde-Based Natural Deep Eutectic Solvent Dispersive Liquid–Liquid Microextraction for Monitoring Antibiotic Residues in Commercial Milk and Eggs: A Comprehensive Evaluation of Greenness, Practicality, Analytical Performance and Innovation
by Heba Shaaban, Ahmed Mostafa, Abdulmalik M. Alqarni, Marwah Alsalman, Makarem A. Alkhalaf, Mohammad A. Alrofaidi, Abdulaziz H. Al Khzem and Mansour S. Alturki
Foods 2026, 15(2), 258; https://doi.org/10.3390/foods15020258 - 10 Jan 2026
Viewed by 318
Abstract
The widespread use of antibiotics in human medicine, veterinary care, and livestock production has resulted in their frequent detection in diverse environmental and food matrices, making continuous surveillance of antibiotic residues in food products essential for consumer protection. In this study, a sustainable [...] Read more.
The widespread use of antibiotics in human medicine, veterinary care, and livestock production has resulted in their frequent detection in diverse environmental and food matrices, making continuous surveillance of antibiotic residues in food products essential for consumer protection. In this study, a sustainable analytical method based on dispersive liquid–liquid microextraction (DLLME) coupled with UHPLC–MS/MS was developed for the trace determination of sulfamethoxazole, sulfadimethoxine, and enrofloxacin in commercial cow milk and chicken eggs. A natural deep eutectic solvent (NADES) composed of anisaldehyde and octanoic acid (2:1, molar ratio) was employed as a biodegradable extraction solvent, and key extraction parameters were systematically optimized. Under optimized conditions, the method demonstrated excellent linearity (R2 ≥ 0.9982), recoveries of 89.5–98.7%, and RSDs ≤ 6.04%. Application to 44 commercial samples from the Saudi market revealed sulfamethoxazole as the most frequently detected antibiotic, occurring in 90% of egg samples (2.17–13.76 µg kg−1) and 70.8% of milk samples (0.26–26.67 µg L−1). A comprehensive evaluation using ten metrics confirmed the method’s greenness, practicality, analytical performance, and innovation. Overall, the proposed NADES–DLLME–UHPLC–MS/MS approach offers a rapid, cost-effective, and environmentally friendly alternative for routine monitoring of antibiotic residues in food matrices. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

15 pages, 3432 KB  
Article
Clonal and Plasmid-Mediated Dissemination of Multidrug-Resistant Salmonella Enteritidis in Chicken Production, Northeastern Thailand
by Zhihui Zhang, Fanan Suksawat, Xue Zhang, Xianghua Shu and Sunpetch Angkititrakul
Pathogens 2026, 15(1), 75; https://doi.org/10.3390/pathogens15010075 - 10 Jan 2026
Viewed by 283
Abstract
Background: The global dissemination of multidrug-resistant (MDR) Salmonella poses a persistent and serious threat to food safety systems. As a leading poultry-exporting country, Thailand requires a comprehensive understanding of how resistance plasmids spread among Salmonella populations within its chicken production chain. Methods: Between [...] Read more.
Background: The global dissemination of multidrug-resistant (MDR) Salmonella poses a persistent and serious threat to food safety systems. As a leading poultry-exporting country, Thailand requires a comprehensive understanding of how resistance plasmids spread among Salmonella populations within its chicken production chain. Methods: Between March 2023 and February 2024, 223 Salmonella isolates were collected from chicken slaughterhouses and markets in northeastern Thailand. From these, 19 representative MDR Salmonella enterica isolates, selected based on distinct spatiotemporal distributions, underwent whole-genome sequencing. Genomic analyses included sequence typing, core-genome phylogenetics, and screening for antimicrobial resistance genes. Plasmid replicons were identified, and functional annotation was performed using the COG database. Results: Phylogenetic analysis revealed 11 distinct sequence types within the population. Among these, ST1541 and ST50 showed clear evidence of clonal transmission across different production stages, with a notable clustering pattern observed during the winter season. All sequenced isolates exhibited an MDR phenotype. Plasmids were detected in 78.9% of isolates, with conjugative plasmids being the most frequent type (57.9%). The β-lactamase gene blaTEM-60 was the most prevalent (78.9%) and showed a strong correlation (r ≥ 0.7) with resistance to both ampicillin and cefotaxime. Functional annotation further revealed an abundance of genes involved in carbohydrate and amino acid metabolism across all isolates. Conclusions: These findings indicate that MDR Salmonella dissemination is driven by two synergistic mechanisms: the clonal expansion of fit lineages and the horizontal transfer of conjugative plasmids harboring β-lactamase genes. We identified IncI-gamma-K1 and Col-related plasmids as key vectors in this process. This study advocates for targeted interventions, guided by a One Health approach, that specifically aim to disrupt plasmid transmission at critical control points, such as slaughterhouses, to curb the spread of antimicrobial resistance. Full article
(This article belongs to the Special Issue Salmonella: A Global Health Threat and Food Safety Challenge)
Show Figures

Figure 1

Back to TopTop