Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = chicken colibacillosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5245 KiB  
Article
Histopathological Picture of Lung Organs Towards Combination of Java Cardamom Seed Extract and Turmeric Rhizome as Anti-Colibacillosis in Broiler Chickens
by Tyagita Hartady, Mohammad Ghozali and Charles Parsonodihardjo
Vet. Sci. 2025, 12(8), 726; https://doi.org/10.3390/vetsci12080726 - 31 Jul 2025
Viewed by 140
Abstract
Colibacillosis is a poultry disease caused by the pathogenic bacterium Escherichia coli (E. coli). This study is an experimental cross-sectional study using herbal-based test materials from Javanese cardamom and turmeric rhizome as treatments to replace the role of antibiotics that experience [...] Read more.
Colibacillosis is a poultry disease caused by the pathogenic bacterium Escherichia coli (E. coli). This study is an experimental cross-sectional study using herbal-based test materials from Javanese cardamom and turmeric rhizome as treatments to replace the role of antibiotics that experience drug resistance in several types of bacteria. A total of 32 samples were utilized in this study, separated into two control groups and six treatment groups. The analysis was carried out by an histopathological examination of the lung organs using H&E and ImageJ staining to calculate the area of the slide image. The data results were analyzed statistically with one-way ANOVA method and qualitatively. The outcome of the statistical test showed that the differences were not statistically significant p value = 0.922 [p > 0.05] in all groups, and findings from qualitative histopathology showed morphological differences in the alveoli, parabronchi, and vasculature in the lung organs. Full article
(This article belongs to the Special Issue Advancements in Livestock Histology and Morphology)
Show Figures

Figure 1

16 pages, 687 KiB  
Article
Serogroup Prevalence, Virulence Profile and Antibiotic Resistance of Avian Pathogenic Escherichia coli Isolated from Broiler Chicken
by Showkat A. Shah, Masood S. Mir, Shayaib A. Kamil, Majid Shafi, Mudasir A. Rather, Azmat A. Khan, Zahoor A. Wani, Sheikh Adil, Fatmah M. Alqahtani, Majid Alhomrani and Manzoor Wani
Vet. Sci. 2025, 12(6), 592; https://doi.org/10.3390/vetsci12060592 - 16 Jun 2025
Viewed by 690
Abstract
Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis, leading to significant economic losses and concerns for food safety in the poultry industry. This study focused on examining the virulence gene profile, antibiotic resistance prevalence, and resistance patterns of APEC isolates. A total of [...] Read more.
Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis, leading to significant economic losses and concerns for food safety in the poultry industry. This study focused on examining the virulence gene profile, antibiotic resistance prevalence, and resistance patterns of APEC isolates. A total of 250 bacterial strains were collected from birds affected by colibacillosis. Serogrouping revealed diverse serotypes, with O2 being the most common (16%), followed by O1, O8, and O76. All isolates tested positive for at minimum one virulence gene, with 7.2% carrying all five targeted genes, particularly in serogroups O1, O8, O45, and O88. The most detected gene was iss, present in 79.6% of isolates, followed by tsh, iucC, sitA, and papC. The antibiotic resistance analysis showed that all isolates exhibited multidrug resistance, although they remained susceptible to gentamicin, amikacin, ciprofloxacin, and chloramphenicol. Moreover, specific antibiotic resistance genes were known in the isolates, with tetA detected in 54.8%, tetB in 51.7%, sul1 in 50%, and aadA1 in 29.2%. These findings highlight the widespread antibiotic resistance in chicken carcasses, which poses a hazard to human health in terms of transfer of resistance to humans, reduced effectiveness of antibiotics and impaired ability to contain infectious diseases. Therefore, it is crucial to implement strict monitoring programs to regulate antibiotic usage in poultry production. Full article
Show Figures

Figure 1

22 pages, 7012 KiB  
Article
Multi-Omics Unveils Inflammatory Regulation of Fermented Sini Decoction Dregs in Broilers Infected with Avian Pathogenic Escherichia coli
by Shuanghao Mo, Xin Fang, Wenxi Xiao, Bowen Huang, Chunsheng Li, Hui Yang, Yilin Wu, Yiming Wang and Hongxia Ma
Vet. Sci. 2025, 12(5), 479; https://doi.org/10.3390/vetsci12050479 - 15 May 2025
Viewed by 542
Abstract
Avian colibacillosis causes significant economic losses and raises concerns for human health due to food safety risks, a problem exacerbated by the increase in antibiotic resistance. This study aimed to develop novel antibacterial strategies using fermented liquid of Sini decoction dregs to address [...] Read more.
Avian colibacillosis causes significant economic losses and raises concerns for human health due to food safety risks, a problem exacerbated by the increase in antibiotic resistance. This study aimed to develop novel antibacterial strategies using fermented liquid of Sini decoction dregs to address these challenges. We analyzed the transcriptome of the chicken thymus sample GSE69014 in the GEO database to identify immune-related genes, performed molecular docking to assess compound interactions, and experimental validation via Western blot and ELISA to evaluate anti-inflammatory effects. Results revealed 11 core genes, including TLR4, critical for immune responses against the infection, with TLR4 activating key inflammatory pathways. Fermented liquid with probiotics enhanced bioactivity, and natural compounds Dioscin and Celastrol from the fermented liquid inhibited inflammation by targeting the TLR4-MD2 complex. In animal models, fermented liquid outperformed individual compounds, likely due to synergistic effects, significantly reducing inflammatory markers. These findings demonstrate that fermented liquid of Sini decoction dregs offers a promising, sustainable approach to control avian colibacillosis, mitigate antibiotic resistance, and improve poultry health, providing a scientific foundation for its application in farming to reduce economic losses and enhance food safety. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
Show Figures

Figure 1

17 pages, 4462 KiB  
Article
Molecular Epidemiology and Antibiotic Resistance Associated with Avian Pathogenic Escherichia coli in Shanxi Province, China, from 2021 to 2023
by Fangfang Li, Mengya Li, Lianhua Nie, Jiakun Zuo, Wenyan Fan, Liyan Lian, Jiangang Hu, Shuming Chen, Wei Jiang, Xiangan Han and Haidong Wang
Microorganisms 2025, 13(3), 541; https://doi.org/10.3390/microorganisms13030541 - 27 Feb 2025
Cited by 2 | Viewed by 723
Abstract
Avian Pathogenic Escherichia coli (APEC) constitutes a major etiological agent of avian colibacillosis, which significantly hinders the development of the poultry industry. Conducting molecular epidemiological studies of APEC plays a crucial role in its prevention and control. This study aims to elucidate the [...] Read more.
Avian Pathogenic Escherichia coli (APEC) constitutes a major etiological agent of avian colibacillosis, which significantly hinders the development of the poultry industry. Conducting molecular epidemiological studies of APEC plays a crucial role in its prevention and control. This study aims to elucidate the molecular epidemiological characteristics of Avian Pathogenic Escherichia coli in Shanxi Province. In this study, 135 APEC strains were isolated and identified from 150 liver samples of diseased and deceased chickens exhibiting clinical symptoms, which were collected from farms in Shanxi Province between 2021 and 2023. The isolates were then analyzed for phylogenetic clustering, drug resistance, resistance genes, virulence genes, and biofilm formation capabilities. The results revealed that the proportions of the A, B1, B2, and D evolutionary subgroups were 26.67%, 32.59%, 17.78%, and 15.56%, respectively. The drug resistance testing results indicated that 92% of the isolates exhibited resistance to cotrimoxazole, kanamycin, chloramphenicol, amoxicillin, tetracycline, and other antibiotics. In contrast, 95% of the strains were sensitive to ofloxacin, amikacin, and ceftazidime. The most prevalent resistance genes included tetracycline-related (tetA) at 88.15%, followed by beta-lactam-related (bla-TEM) at 85.19%, and peptide-related (mcr1) at 12.59%. The virulence gene analysis revealed that ibeB, ompA, iucD, and mat were present in more than 90% of the isolates. The results revealed that 110 strains were biofilm-positive, corresponding to a detection rate of 81.48%. No significant correlation was found between the drug resistance genes, virulence genes, and the drug resistance phenotype. A moderate negative correlation was observed between the adhesion-related gene tsh and biofilm formation ability (r = −0.38). This study provides valuable insights into the prevention and control of avian colibacillosis in Shanxi Province. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases, 2nd Edition)
Show Figures

Figure 1

11 pages, 901 KiB  
Article
Virulence and Antimicrobial Resistance of Avian Pathogenic Escherichia coli (APEC) Isolates from Poultry in Brazil
by Caio Júnior Lúcio, Paulo Henrique Caminha Hansen, Josiane Griebeler, Diéssy Kipper and Vagner Ricardo Lunge
Poultry 2025, 4(1), 10; https://doi.org/10.3390/poultry4010010 - 24 Feb 2025
Cited by 1 | Viewed by 1099
Abstract
Colibacillosis is a chicken disease caused by avian pathogenic Escherichia coli (APEC). Pathogenicity in birds is determined by the occurrence of bacterial genes encoding virulence factors in APEC strains. Furthermore, APEC and other bacterial infections in commercial poultry farms have been treated with [...] Read more.
Colibacillosis is a chicken disease caused by avian pathogenic Escherichia coli (APEC). Pathogenicity in birds is determined by the occurrence of bacterial genes encoding virulence factors in APEC strains. Furthermore, APEC and other bacterial infections in commercial poultry farms have been treated with intensive use of antimicrobials for decades. Currently, many APEC strains are no longer susceptible to frequently used antibiotics due to increasing antimicrobial resistance (AMR) associated with the acquisition and mutation of other specific bacterial genes. The present study aimed to isolate and detect APEC isolates in broiler farms from different poultry-producing regions of Brazil and to determine their AMR profile. A total of 126 E. coli isolates were obtained from necropsied chickens with colibacillosis. All of these E. coli isolates were analyzed with one species-specific qPCR (targeting uspA gene) and five virulence factors genes qPCRs (targeting iroN, hlyF, iutA, iss, and ompT). AMR was determined by disk diffusion method using ten drugs frequently used to treat colibacillosis in Brazilian poultry farms. The results demonstrated that 109 (86.5%) isolates were classified as APEC. AMR was commonly observed in APEC and AFEC isolates, highlighting resistance for amoxicillin (85; 67.4%) and ceftiofur (72; 57.1%). A total of 41 (32.5%) E. coli isolates presented a multidrug resistance (MDR) profile. These results can contribute to implementing more effective colibacillosis prevention and control programs on Brazilian poultry farms. Full article
Show Figures

Figure 1

30 pages, 3799 KiB  
Article
Determinants of Antibiotic Resistance and Virulence Factors in the Genome of Escherichia coli APEC 36 Strain Isolated from a Broiler Chicken with Generalized Colibacillosis
by Dmitry S. Karpov, Elizaveta M. Kazakova, Maxim A. Kovalev, Mikhail S. Shumkov, Tomiris Kusainova, Irina A. Tarasova, Pamila J. Osipova, Svetlana V. Poddubko, Vladimir A. Mitkevich, Marina V. Kuznetsova and Anna V. Goncharenko
Antibiotics 2024, 13(10), 945; https://doi.org/10.3390/antibiotics13100945 - 9 Oct 2024
Cited by 2 | Viewed by 2502
Abstract
Objective: Multidrug-resistant, highly pathogenic Escherichia coli strains are the primary causative agents of intestinal and extraintestinal human diseases. The extensive utilization of antibiotics for farm animals has been identified as a contributing factor to the emergence and dissemination of E. coli strains that [...] Read more.
Objective: Multidrug-resistant, highly pathogenic Escherichia coli strains are the primary causative agents of intestinal and extraintestinal human diseases. The extensive utilization of antibiotics for farm animals has been identified as a contributing factor to the emergence and dissemination of E. coli strains that exhibit multidrug resistance and possess high pathogenic potential. Consequently, a significant research objective is to examine the genetic diversity of pathogenic E. coli strains and to identify those that may pose a threat to human health. Methods: In this study, we present the results of genome sequencing and analysis, as well as the physiological characterization of E. coli strain APEC 36, which was isolated from the liver of a broiler chicken with generalized colibacillosis. Results: We found that APEC 36 possess a number of mechanisms of antibiotic resistance, including antibiotic efflux, antibiotic inactivation, and antibiotic target alteration/replacement/protection. The most widely represented group among these mechanisms was that of antibiotic efflux. This finding is consistent with the strain’s documented resistance to multiple antibiotics. APEC 36 has an extremely rare variant of the beta-lactamase CTX-M-169. Notwithstanding the multitude of systems for interfering with foreign DNA present in the strain, seven plasmids have been identified, three of which may possess novel replication origins. Additionally, qnrS1, which confers resistance to fluoroquinolones, was found to be encoded in the genome rather than in the plasmid. This suggests that the determinants of antibiotic resistance may be captured in the genome and stably transmitted from generation to generation. Conclusions: The APEC 36 strain has genes for toxins, adhesins, protectins, and an iron uptake system. The obtained set of genetic and physiological characteristics allowed us to assume that this strain has a high pathogenic potential for humans. Full article
Show Figures

Figure 1

14 pages, 2719 KiB  
Article
Effect of Solid-State Fermentation Products of Lactobacillus plantarum, Candida utilis, and Bacillus coagulans on Growth Performance of Broilers and Prevention of Avian Colibacillosis
by Fangfang Li, Bing Lv, Jiakun Zuo, Saqib Nawaz, Zhihao Wang, Liyan Lian, Huifang Yin, Shuming Chen, Xiangan Han and Haidong Wang
Vet. Sci. 2024, 11(10), 468; https://doi.org/10.3390/vetsci11100468 - 1 Oct 2024
Cited by 3 | Viewed by 2359
Abstract
This study investigates the impact of the solid-state fermentation products of Lactobacillus plantarum, Candida utilis, and Bacillus coagulans (LCBs) on the growth characteristics, immune function, intestinal morphology, cecum microbial community, and prevention of avian colibacillosis in broilers. One hundred and twenty [...] Read more.
This study investigates the impact of the solid-state fermentation products of Lactobacillus plantarum, Candida utilis, and Bacillus coagulans (LCBs) on the growth characteristics, immune function, intestinal morphology, cecum microbial community, and prevention of avian colibacillosis in broilers. One hundred and twenty Hyland Brown broilers (aged one day) were divided randomly into three groups (four replicates of ten broilers per group). (1) The CON group was fed a basal diet. (2) The MOD group was fed a basal diet. On day 40, APEC strain SX02 (1.1 × 105 CFU/g) was administered to the breasts of chickens in this group. (3) The LCBs group was fed a basal diet supplemented with fermentation products (98.5% basal diet + 0.5% Lactobacillus plantarum and Candida utilis solid-state fermentation products + 1.0% Bacillus coagulans solid-state fermentation products). On day 40, the LCBs group received the same treatment as the MOD group. The experiment lasted 43 days. This study found that the average daily gain (ADG) of the LCBs group was significantly higher than that of the MOD group (p < 0.05), indicating that LCBs can significantly increase the ADG of broilers and improve the feed conversion ratio. Furthermore, compared to the MOD group, the heart bacterial load was significantly reduced in the LCBs group (p < 0.05), and the lesions less severe in the heart, liver, and jejunum were observed (p < 0.05). Additionally, the detection of intestinal flora showed a significant increase in the abundance of beneficial bacteria in the cecum of the LCBs group, while the number of Escherichia coli and Shigella decreased significantly. In conclusion, the solid fermentation of Lactobacillus plantarum, Candida utilis, and Bacillus coagulans can improve the growth performance of broilers while also protecting against avian pathogenic Escherichia coli infection. This demonstrates the potential usefulness of these LCBs in feed production. Full article
Show Figures

Figure 1

12 pages, 745 KiB  
Review
Avian Pathogenic Escherichia coli: An Overview of Infection Biology, Antimicrobial Resistance and Vaccination
by Amyleigh Watts and Paul Wigley
Antibiotics 2024, 13(9), 809; https://doi.org/10.3390/antibiotics13090809 - 26 Aug 2024
Cited by 11 | Viewed by 4820
Abstract
Avian Pathogenic Escherichia coli (APEC) is an extraintestinal pathotype of E. coli that leads to a range of clinical manifestations, including respiratory, systemic and reproductive infections of chickens in both egg and meat production. Unlike most E. coli pathotypes, APEC is not defined [...] Read more.
Avian Pathogenic Escherichia coli (APEC) is an extraintestinal pathotype of E. coli that leads to a range of clinical manifestations, including respiratory, systemic and reproductive infections of chickens in both egg and meat production. Unlike most E. coli pathotypes, APEC is not defined by specific virulence genes but rather is a collection of several distinct genotypes that can act as both primary and secondary pathogens leading to colibacillosis. Recent measures to reduce antimicrobials both as growth promoters and as flock-level therapeutics are considered to have led to increased numbers of animals affected. Nevertheless, antimicrobial resistance is a considerable problem in APEC, with resistance to third and fourth-generation cephalosporins via extended-spectrum beta-lactamases (ESBLs), fluoroquinolones and colistin seen as a particular concern. The need to control APEC without antimicrobial use at the flock level has seen an increased focus on vaccination. Currently, a few commercial vaccines are already available, and a range of approaches are being applied to develop new vaccines, and other controls, such as bacteriophage or probiotics, are attracting interest. The lack of a single defined APEC genotype presents challenges to these approaches. Full article
Show Figures

Figure 1

18 pages, 1021 KiB  
Article
Isolation and Characterization of Escherichia coli from Brazilian Broilers
by Giulia Von Tönnemann Pilati, Gleidson Biasi Carvalho Salles, Beatriz Pereira Savi, Mariane Dahmer, Eduardo Correa Muniz, Vilmar Benetti Filho, Mariana Alves Elois, Doris Sobral Marques Souza and Gislaine Fongaro
Microorganisms 2024, 12(7), 1463; https://doi.org/10.3390/microorganisms12071463 - 18 Jul 2024
Cited by 3 | Viewed by 2599
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, one of the main diseases leading to economic losses in industrial poultry farming due to high morbidity and mortality and its role in the condemnation of chicken carcasses. This study aimed to isolate and characterize APEC [...] Read more.
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, one of the main diseases leading to economic losses in industrial poultry farming due to high morbidity and mortality and its role in the condemnation of chicken carcasses. This study aimed to isolate and characterize APEC obtained from necropsied chickens on Brazilian poultry farms. Samples from birds already necropsied by routine inspection were collected from 100 batches of broiler chickens from six Brazilian states between August and November 2021. Three femurs were collected per batch, and characteristic E. coli colonies were isolated on MacConkey agar and characterized by qualitative PCR for minimal predictive APEC genes, antimicrobial susceptibility testing, and whole genome sequencing to identify species, serogroups, virulence genes, and resistance genes. Phenotypic resistance indices revealed significant resistance to several antibiotics from different antimicrobial classes. The isolates harbored virulence genes linked to APEC pathogenicity, including adhesion, iron acquisition, serum resistance, and toxins. Aminoglycoside resistance genes were detected in 79.36% of isolates, 74.6% had sulfonamide resistance genes, 63.49% showed β-lactam resistance genes, and 49.2% possessed at least one tetracycline resistance gene. This study found a 58% prevalence of avian pathogenic E. coli in Brazilian poultry, with strains showing notable antimicrobial resistance to commonly used antibiotics. Full article
(This article belongs to the Special Issue Bacterial Infections and Antimicrobial Resistance in Animals)
Show Figures

Graphical abstract

19 pages, 549 KiB  
Review
The Public Health Importance and Management of Infectious Poultry Diseases in Smallholder Systems in Africa
by Delia Grace, Theodore J. D. Knight-Jones, Achenef Melaku, Robyn Alders and Wudu T. Jemberu
Foods 2024, 13(3), 411; https://doi.org/10.3390/foods13030411 - 26 Jan 2024
Cited by 17 | Viewed by 8971
Abstract
Poultry diseases pose major constraints on smallholder production in Africa, causing high flock mortality and economic hardship. Infectious diseases, especially viral diseases like Newcastle disease and highly pathogenic avian influenza (HPAI) and bacterial diseases, especially colibacillosis and salmonellosis, are responsible for most chicken [...] Read more.
Poultry diseases pose major constraints on smallholder production in Africa, causing high flock mortality and economic hardship. Infectious diseases, especially viral diseases like Newcastle disease and highly pathogenic avian influenza (HPAI) and bacterial diseases, especially colibacillosis and salmonellosis, are responsible for most chicken losses, with downstream effects on human nutrition and health. Beyond production impacts, poultry diseases directly harm public health if zoonotic, can give rise to epidemics and pandemics, and facilitate antimicrobial resistance through treatment attempts. HPAI, campylobacteriosis, and salmonellosis are the priority zoonoses. Sustainable solutions for poultry health remain elusive despite recognition of the problem. This review summarises current knowledge on major poultry diseases in smallholder systems, their impacts, and options for prevention and control. We find biosecurity, vaccination, good husbandry, and disease-resistant breeds can reduce disease burden, but practical limitations exist in implementing these measures across smallholder systems. Treatment is often inefficient for viral diseases, and treatment for bacterial diseases risks antimicrobial resistance. Ethnoveterinary practices offer accessible alternatives but require more rigorous evaluation. Multisectoral collaboration and policies that reach smallholder poultry keepers are essential to alleviate disease constraints. Successful control will improve livelihoods, nutrition, and gender equity for millions of rural families. This review concludes that sustainable, scalable solutions for smallholder poultry disease control remain a critical unmet need in Africa. Full article
(This article belongs to the Special Issue Public Health and Food Safety of Poultry Meat)
Show Figures

Figure 1

15 pages, 1447 KiB  
Article
Characteristics, Whole-Genome Sequencing and Pathogenicity Analysis of Escherichia coli from a White Feather Broiler Farm
by Shaopeng Wu, Lulu Cui, Yu Han, Fang Lin, Jiaqi Huang, Mengze Song, Zouran Lan and Shuhong Sun
Microorganisms 2023, 11(12), 2939; https://doi.org/10.3390/microorganisms11122939 - 7 Dec 2023
Cited by 5 | Viewed by 2019
Abstract
Avian colibacillosis, caused by avian Escherichia coli (E. coli), has historically been one of the most prevalent infectious diseases in large-scale poultry production, causing growth delays and mortality in chickens, resulting in huge economic losses. In recent years, the widespread use [...] Read more.
Avian colibacillosis, caused by avian Escherichia coli (E. coli), has historically been one of the most prevalent infectious diseases in large-scale poultry production, causing growth delays and mortality in chickens, resulting in huge economic losses. In recent years, the widespread use of antibiotics has led to the emergence of multidrug resistance in E. coli as a significant global problem and long-term challenge. Resistant E. coli can be transmitted to humans through animal products or the environment, which presents significant public health concerns and food safety issues. In this study, we analyzed the features of 135 E. coli strains obtained from a white feather broiler farm in Shandong, China, including antimicrobial susceptibility tests, detection of class 1 integrons, drug resistance genes, virulence genes, and phylogenetic subgroups. It is particularly worrying that all 135 E. coli strains were resistant to at least five antibiotic agents, and 100% of them were multidrug-resistant (MDR). Notably, the resistance genes of blaTEM, blaCTX-M, qnrS, aaC4, tetA, and tetB exhibited a high prevalence of carriage among the tested resistance genes. However, mcr-2~mcr-9 were not detected, while the prevalence of mcr-1 was found to be 2.96%. The most common virulence genes detected were EAST1 (14.07%, encoding enterotoxins) and fyuA (14.81%, encoding biofilm formation). Phylogenetic subgroup analysis revealed that E. coli belonging to groups B2 and D, which are commonly associated with high virulence, constituted 2.22% and 11.11%, respectively. The positive rate of class 1 integrons was 31.1%. Whole-genome sequencing (WGS) and animal experiments were performed on a unique isolated strain called 21EC78 with an extremely strong membrane-forming capacity. The WGS results showed that 21EC78 carried 11 drug resistance genes and 16 virulence genes. Animal experiments showed that intraperitoneal injection with 2 × 105 CFU could cause the death of one-day-old SPF chickens in 3 days. However, the mortality of Luhua chickens was comparatively lower than that of SPF chickens. This study reports the isolation of multidrug-resistant E. coli strains in poultry, which may pose a potential threat to human health via the food chain. Furthermore, the findings of this study enhance our comprehension of the frequency and characteristics of multidrug-resistant E. coli in poultry farms, emphasizing the urgent need for improved and effective continuous surveillance to control its dissemination. Full article
(This article belongs to the Special Issue Bacterial Antibiotic Resistance)
Show Figures

Figure 1

22 pages, 17782 KiB  
Article
The Isolation and Characterization of Bacteriophages Infecting Avian Pathogenic Escherichia coli O1, O2 and O78 Strains
by Kat R. Smith, Emmanuel W. Bumunang, Jared Schlechte, Matthew Waldner, Hany Anany, Matthew Walker, Kellie MacLean, Kim Stanford, John M. Fairbrother, Trevor W. Alexander, Tim A. McAllister, Mohamed Faizal Abdul-Careem and Yan D. Niu
Viruses 2023, 15(10), 2095; https://doi.org/10.3390/v15102095 - 16 Oct 2023
Cited by 3 | Viewed by 2625
Abstract
Avian pathogenic Escherichia coli (APEC), such as O1, O2 and O78, are important serogroups relating to chicken health, being responsible for colibacillosis. In this study, we isolated and characterized bacteriophages (phages) from hen feces and human sewage in Alberta with the potential for controlling [...] Read more.
Avian pathogenic Escherichia coli (APEC), such as O1, O2 and O78, are important serogroups relating to chicken health, being responsible for colibacillosis. In this study, we isolated and characterized bacteriophages (phages) from hen feces and human sewage in Alberta with the potential for controlling colibacillosis in laying hens. The lytic profile, host range, pH tolerance and morphology of seven APEC-infecting phages (ASO1A, ASO1B, ASO2A, ASO78A, ASO2B, AVIO78A and ASO78B) were assessed using a microplate phage virulence assay and transmission electron microscopy (TEM). The potential safety of phages at the genome level was predicted using AMRFinderPlus and the Virulence Factor Database. Finally, phage genera and genetic relatedness with other known phages from the NCBI GenBank database were inferred using the virus intergenomic distance calculator and single gene-based phylogenetic trees. The seven APEC-infecting phages preferentially lysed APEC strains in this study, with ECL21443 (O2) being the most susceptible to phages (n = 5). ASO78A had the broadest host range, lysing all tested strains (n = 5) except ECL20885 (O1). Phages were viable at a pH of 2.5 or 3.5–9.0 after 4 h of incubation. Based on TEM, phages were classed as myovirus, siphovirus and podovirus. No genes associated with virulence, antimicrobial resistance or lysogeny were detected in phage genomes. Comparative genomic analysis placed six of the seven phages in five genera: Felixounavirus (ASO1A and ASO1B), Phapecoctavirus (ASO2A), Tequatrovirus (ASO78A), Kayfunavirus (ASO2B) and Sashavirus (AVIO78A). Based on the nucleotide intergenomic similarity (<70%), phage ASO78B was not assigned a genus in the siphovirus and could represent a new genus in class Caudoviricetes. The tail fiber protein phylogeny revealed variations within APEC-infecting phages and closely related phages. Diverse APEC-infecting phages harbored in the environment demonstrate the potential to control colibacillosis in poultry. Full article
(This article belongs to the Special Issue Bacteriophage Applications in Animals)
Show Figures

Figure 1

9 pages, 1666 KiB  
Article
Assessment of an Enterobactin Conjugate Vaccine in Layers to Protect Their Offspring from Colibacillosis
by Huiwen Wang, Catherine M. Logue, Lisa K. Nolan and Jun Lin
Pathogens 2023, 12(8), 1002; https://doi.org/10.3390/pathogens12081002 - 31 Jul 2023
Cited by 3 | Viewed by 1648
Abstract
Colibacillosis, caused by avian pathogenic Escherichia coli (APEC), is an important infectious disease in chickens and a major cause of mortality in young chicks. Therefore, protecting young chickens from colibacillosis is important for improving welfare and productivity in the poultry industry. Recently, we [...] Read more.
Colibacillosis, caused by avian pathogenic Escherichia coli (APEC), is an important infectious disease in chickens and a major cause of mortality in young chicks. Therefore, protecting young chickens from colibacillosis is important for improving welfare and productivity in the poultry industry. Recently, we developed a novel enterobactin (Ent) conjugate vaccine that could induce high titers of anti-Ent immunoglobulin Y (IgY) in chicken serum and consequently mitigate the organ lesions caused by APEC infection. Considering that maternal immunization is a practical approach to confer instant immune protection to the hatchlings, in this study, we immunized breeder hens with the Ent conjugate vaccine and evaluated the maternal immune protection on the progenies challenged with APEC. Three doses of the vaccine induced high titers of anti-Ent IgY in the hens (about 16- and 64-fold higher than the control group in the sera and egg yolks, respectively), resulting in an eight-fold of increase in anti-Ent IgY in the sera of progenies. However, the anti-Ent maternal immunity did not display significant protection against APEC challenge in the young chicks as there was no significant difference in APEC load (in liver, lung, and spleen) or organ lesions (in heart, liver, spleen, lung, and air sac) between the vaccinated and control groups. In future studies, the APEC infection model needs to be optimized to exhibit proper pathogenicity of APEC, and the maternal immunization regimen can be further improved to boost the maternally derived anti-Ent IgY in the hatchlings. Full article
Show Figures

Figure 1

10 pages, 1088 KiB  
Communication
Bacteriophage-Associated Antimicrobial Resistance Genes in Avian Pathogenic Escherichia coli Isolated from Brazilian Poultry
by Giulia Von Tönnemann Pilati, Rafael Dorighello Cadamuro, Vilmar Benetti Filho, Mariane Dahmer, Mariana Alves Elois, Beatriz Pereira Savi, Gleidson Biasi Carvalho Salles, Eduardo Correa Muniz and Gislaine Fongaro
Viruses 2023, 15(7), 1485; https://doi.org/10.3390/v15071485 - 30 Jun 2023
Cited by 10 | Viewed by 3006
Abstract
Colibacillosis is a disease caused by Escherichia coli and remains a major concern in poultry production, as it leads to significant economic losses due to carcass condemnation and clinical symptoms. The development of antimicrobial resistance is a growing problem of worldwide concern. Lysogenic [...] Read more.
Colibacillosis is a disease caused by Escherichia coli and remains a major concern in poultry production, as it leads to significant economic losses due to carcass condemnation and clinical symptoms. The development of antimicrobial resistance is a growing problem of worldwide concern. Lysogenic bacteriophages are effective vectors for acquiring and disseminating antibiotic resistance genes (ARGs). The aim of this study was to investigate the complete genome of Escherichia coli isolates from the femurs of Brazilian broiler chickens in order to investigate the presence of antimicrobial resistance genes associated with bacteriophages. Samples were collected between August and November 2021 from broiler batches from six Brazilian states. Through whole genome sequencing (WGS), data obtained were analyzed for the presence of antimicrobial resistance genes. Antimicrobial resistance genes against the aminoglycosides class were detected in 79.36% of the isolates; 74.6% had predicted sulfonamides resistance genes, 63.49% had predicted resistance genes against β-lactams, and 49.2% of the isolates had at least one of the tetracycline resistance genes. Among the detected genes, 27 have been described in previous studies and associated with bacteriophages. The findings of this study highlight the role of bacteriophages in the dissemination of ARGs in the poultry industry. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

18 pages, 9305 KiB  
Article
Isolation and Characterization of Jumbo Coliphage vB_EcoM_Lh1B as a Promising Therapeutic Agent against Chicken Colibacillosis
by Pavel Alexyuk, Andrey Bogoyavlenskiy, Madina Alexyuk, Kuralay Akanova, Yergali Moldakhanov and Vladimir Berezin
Microorganisms 2023, 11(6), 1524; https://doi.org/10.3390/microorganisms11061524 - 8 Jun 2023
Cited by 6 | Viewed by 3147
Abstract
Colibacillosis in chickens can cause the death of young stock, decrease weight gain and lead to significant economic losses. Currently, antibiotic therapy is the main method of treatment of infected animals, but unchecked use of antibiotics has led to widespread antibiotic resistance among [...] Read more.
Colibacillosis in chickens can cause the death of young stock, decrease weight gain and lead to significant economic losses. Currently, antibiotic therapy is the main method of treatment of infected animals, but unchecked use of antibiotics has led to widespread antibiotic resistance among microorganisms. Therefore, it is necessary to develop alternative methods of treating bacterial infections that are fully consistent with the One Health concept and introduce them into practice. Phage therapy meets the specified requirements perfectly. This study describes the isolation and characterization of the lytic jumbo phage vB_EcoM_Lh1B and evaluates its potential use in controlling antibiotic-resistant E. coli infection in poultry. The complete phage genome is 240,200 bp long. Open reading frame (ORF) prediction shows that the phage genome does not contain genes encoding antibiotic resistance and lysogeny factors. Based on phylogenetic and electron microscopic analysis, vB_EcoM_Lh1B belongs to the group of myoviruses of the Seoulvirus genus of the Caudoviricetes class. The bacteriophage has good resistance to a wide range of pH and temperatures and has the ability to suppress 19 out of 30 studied pathogenic E. coli strains. The biological and lytic properties of the isolated vB_EcoM_Lh1B phage make it a promising target of further study as a therapeutic agent against E. coli infections in poultry. Full article
(This article belongs to the Special Issue Biotechnological Applications of Bacteriophages and Enteric Viruses)
Show Figures

Figure 1

Back to TopTop