The Public Health Importance and Management of Infectious Poultry Diseases in Smallholder Systems in Africa
Abstract
:1. Introduction
2. Context
3. The Importance of Infectious Disease
4. The Public Health Impacts of Poultry Disease in Smallholder Systems
5. The Prevalence and Impacts of Diseases on Smallholder Poultry Production
6. Priority Zoonotic Poultry Diseases of Smallholder Poultry of Public Health Significance
7. The Prevention of Disease in Poultry: Biosecurity, Good Agricultural Practices, Vaccination, and the Use of Disease-Resistant Breeds
7.1. Biosecurity
7.2. Good Husbandry or Good Agricultural Practices
7.3. Vaccination
7.4. The Selection of Disease-Resistant Breeds
8. The Treatment of Poultry Diseases
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wong, J.T.; de Bruyn, J.; Bagnol, B.; Grieve, H.; Li, M.; Pym, R.; Alders, R.G. Small-scale poultry and food security in resource-poor settings: A review. Glob. Food Secur. 2017, 15, 43–52. [Google Scholar] [CrossRef]
- De Bruyn, J.; Wong, J.; Bagnol, B.; Pengelly, B.; Alders, R. Family poultry production and food and nutrition security. CABI Rev. 2015, 10, 1–9. [Google Scholar] [CrossRef]
- Niyonzima, E.; Ongol, M.P.; Brostaux, Y.; Koulagenko, N.K.; Daube, G.; Kimonyo, A.; Sindic, M. Daily intake and bacteriological quality of meat consumed in the households of Kigali, Rwanda. Food Control 2016, 69, 108–114. [Google Scholar] [CrossRef]
- De Bruyn, J.; Bagnol, B.; Darnton-Hill, I.; Maulaga, W.; Thompson, P.C.; Alders, R. Characterising infant and young child feeding practices and the consumption of poultry products in rural Tanzania: A mixed methods approach. Matern. Child Nutr. 2018, 14, e12550. [Google Scholar] [CrossRef] [PubMed]
- Amenu, K.; Bedasa, M.; Wamile, M.; Worku, H.; Kasim, K.; Taha, M.; Mego, L.; Dinede, G.; Semanda, J.N.; Grace, D.; et al. Qualitative Assessment of Chicken and Vegetable Value Chains in Harar and Dire Dawa, Ethiopia: Food Safety Perspectives; ILRI Research Report 82; ILRI: Nairobi, Kenya, 2021. [Google Scholar]
- Gilbert, M.; Cinardi, G.; Da Re, D.; Wint, W.G.R.; Wisser, D.; Robinson, T.P. Global chicken distribution in 2015 (5 minutes of arc). Harv. Dataverse V1 2022. [CrossRef]
- Yalcin, S. Poultry eggs and child health—A review. Lohmann Inf. 2013, 48, 3–14. [Google Scholar]
- Pym, R.; Alders, R. Helping smallholders to improve poultry production. In Achieving Sustainable Production of Poultry Meat; Burleigh Dodds Science Publishing: Cambridge, UK, 2016; pp. 441–471. [Google Scholar]
- Sambo, E.; Bettridge, J.; Dessie, T.; Amare, A.; Habte, T.; Christley, R.M. Participatory evaluation of chicken health and production constraints in Ethiopia. Prev. Vet. Med. 2015, 118, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Kavle, J.A.; Flax, V.; Abdelmegeid, A.; Salah, F.; Hafez, S.; Ramzy, M.; Hamed, D.; Saleh, G.; Galloway, R. Factors associated with early growth in Egyptian infants: Implications for addressing the dual burden of malnutrition. Matern. Child Nutr. 2016, 12, 139–151. [Google Scholar] [CrossRef]
- Hedman, H.D.; Vasco, K.A.; Zhang, L.A. Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals 2020, 10, 1264. [Google Scholar] [CrossRef]
- Okon, E.M.; Okocha, R.C.; Adesina, B.T.; Ehigie, J.O.; Alabi, O.O.; Bolanle, A.M.; Matekwe, N.; Falana, B.M.; Tiamiyu, A.M.; Olatoye, I.O.; et al. Antimicrobial resistance in fish and poultry: Public health implications for animal source food production in Nigeria, Egypt, and South Africa. Front. Antibiot. 2022, 1, 1043302. [Google Scholar] [CrossRef]
- Dessie, T.; Ogle, B. Village Poultry Production Systems in the Central Highlands of Ethiopia. Trop. Anim. Health Prod. 2001, 33, 521–537. [Google Scholar] [CrossRef] [PubMed]
- Asfaw, Y.T.; Ameni, G.; Medhin, G.; Gumi, B.; Hagos, Y.; Wieland, B. Poultry disease occurrences and their impacts in Ethiopia. Trop. Anim. Health Prod. 2021, 53, 54. [Google Scholar] [CrossRef] [PubMed]
- Otiang, E.; Campbell, Z.A.; Thumbi, S.M.; Njagi, L.W.; Nyaga, P.N.; Palmer, G.H. Mortality as the primary constraint to enhancing nutritional and financial gains from poultry: A multi-year longitudinal study of smallholder farmers in western Kenya. PLoS ONE 2020, 15, e0233691. [Google Scholar] [CrossRef] [PubMed]
- Otte, J.; Rushton, J.; Rukambile, E.; Alders, R.G. Biosecurity in Village and Other Free-Range Poultry—Trying to Square the Circle? Front. Vet. Sci. 2021, 8, 678419. [Google Scholar] [CrossRef] [PubMed]
- CSA. Agricultural Sample Survey. Volume II. Report on Livestock and Livestock Characteristics (Private Peasant Holdings); Statistical Bulletin; Central Statistical Agency (CSA): Addis Ababa, Ethiopia, 2021; p. 589. [Google Scholar]
- Shapiro, B.; Gebru, G.; Desta, S.; Negassa, A.; Nigussie, K.; Aboset, G.; Mechale, H. Ethiopia Livestock Sector Analysis; ILRI Project; International Livestock Research Institute (ILRI): Nairobi, Kenya, 2017. [Google Scholar]
- Minga, U.M.; Msoffe, P.L.; Gwakisa, P.S. Biodiversity (variation) in disease resistance and in pathogens within rural chicken populations. In Proceedings of the International Health Network for Family Poultry (INFD), World Poultry Congress, Istanbul, Turkey, 8–13 June 2004. [Google Scholar]
- Udo, H.M.J.; Asgedom, A.H.; Viets, T.C. Modelling the impact of interventions in village poultry systems. Agric. Syst. 2002, 88, 255–269. [Google Scholar] [CrossRef]
- Asfaw, Y.T.; Ameni, G.; Medhin, G.; Gumi, B.; Wieland, B. Poultry health services in Ethiopia: Availability of diagnostic, clinical, and vaccination services. Poult. Sci. 2021, 100, 101023. [Google Scholar] [CrossRef] [PubMed]
- Rist, C.L.; Ngonghala, C.N.; Garchitorenax, A.; Brook, C.A.; Ramananjato, R.; Miller, A.C.; Randrianarivelojosia, M.; Patricia, C.; Wright, P.C.; Gillespie, T.R.; et al. Modeling the burden of poultry disease on the rural poor in Madagascar. One Health 2015, 1, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Dubale, S. Economic Impact of Poultry Disease on Village Chicken production in Ethiopia. Innovation 2021, 64, 1069–1084. [Google Scholar]
- Worobey, M.; Han, G.Z.; Rambaut, A. A synchronized global sweep of the internal genes of modern avian influenza virus. Nature 2014, 508, 254–257. [Google Scholar] [CrossRef]
- Quamme, S.H.; Iversen, P.O. Prevalence of child stunting in Sub-Saharan Africa and its risk factors. Clin. Nutr. Open Sci. 2022, 42, 49–61. [Google Scholar] [CrossRef]
- Giallourou, N.; Medlock, G.L.; Bolick, D.T.; Medeiros, P.H.; Ledwaba, S.E.; Kolling, G.L.; Tung, K.; Guerry, P.; Swann, J.R.; Guerrant, R.L. A novel mouse model of Campylobacter jejuni enteropathy and diarrhea. PLoS Pathog. 2018, 14, e1007083. [Google Scholar] [CrossRef] [PubMed]
- Budge, S.; Barnett, M.; Hutchings, P.; Parker, A.; Tyrrel, S.; Hassard, F.; Garbutt, C.; Moges, M.; Woldemedhin, F.; Jemal, M. Risk factors and transmission pathways associated with infant Campylobacter spp. prevalence and malnutrition: A formative study in rural Ethiopia. PLoS ONE 2020, 15, e023254. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2020, 399, 629–655. [Google Scholar]
- Nuvey, F.S.; Kreppel, K.; Nortey, P.A.; Addo-Lartey, A.; Sarfo, B.; Fokou, G.; Ameme, D.K.; Kenu, E.; Sackey, S.; Addo, K.K.; et al. Poor mental health of livestock farmers in Africa: A mixed methods case study from Ghana. BMC Public Health 2020, 20, 825. [Google Scholar] [CrossRef] [PubMed]
- Oluwayelu, D.O.; Todd, D.; Olaleye, O.D. Sequence and phylogenetic analysis of chicken anaemia virus obtained from backyard and commercial chickens in Nigeria. Onderstepoort J. Vet. Res. 2008, 75, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Effendi, M.H.; Witaningruma, A.M.; Nnabuikeb, U.E.; Bilal, M.; Abbas, A.; Abbas, R.Z.; Hussain, K. Avian influenza (H5N1) virus, epidemiology and its effects on backyard poultry in Indonesia: A review. F1000Research 2022, 11, 1321. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.N.; Shittu, I.; Abolnik, C.; Solomon, P.; Dimitrov, K.M.; Taylor, T.L.; Williams-Coplin, D.; Goraichuk, I.V.; Meseko, C.A.; Ibu, J.O.; et al. Genomic comparison of Newcastle disease viruses isolated in Nigeria between 2002 and 2015 reveals circulation of highly diverse genotypes and spillover into wild birds. Arch Virol. 2019, 164, 1–17. [Google Scholar] [CrossRef]
- Langley, J.; Brenner, R. What is an injury? Inj. Prev. 2004, 10, 69–71. [Google Scholar] [CrossRef]
- Bolon, I.; Finat, M.; Herrera, M.; Nickerson, A.; Grace, D.; Schütte, S.; Babo Martins, S.; Ruiz de Castañeda, R. Snakebite in domestic animals: First global scoping review. Prev. Vet. Med. 2019, 170, 104729. [Google Scholar] [CrossRef]
- Kalonda, A.; Saasa, N.; Nkhoma, P.; Kajihara, M.; Sawa, H.; Takada, A.; Simulundu, E. Avian Influenza Viruses Detected in Birds in Sub-Saharan Africa: A Systematic Review. Viruses 2020, 12, 993. [Google Scholar] [CrossRef]
- Mngumi, F.B.; Mpenda, F.N.; Buza, J. Epidemiology of Newcastle disease in poultry in Africa: Systematic review and meta-analysis. Trop. Anim. Health Prod. Vol. 2022, 54, 214. [Google Scholar] [CrossRef] [PubMed]
- Rukambile, E.J.; Chengula, A.; Swai, E.S.; Jongejan, F. Poultry Ecto-, Endo- and Haemoparasites in Tanzania: A Review. Austin J. Vet. Sci. Anim. Husb. 2020, 7, 1066. [Google Scholar]
- Shifaw, A.; Feyera, T.; Stephen, W.; Brown, W.B.; Sharpe, B.; Elliott, T.; Ruhnke, I. Global and regional prevalence of helminth infection in chickens over time: A systematic review and meta-analysis. Poult. Sci. 2021, 100, 101082. [Google Scholar] [CrossRef] [PubMed]
- Asfaw, Y.; Ameni, G.; Medhin, G.; Alemayehu, G.; Wieland, B. Infectious and parasitic diseases of poultry in Ethiopia: A systematic review and meta-analysis. Poult. Sci. 2019, 98, 6452–6462. [Google Scholar] [CrossRef]
- Mujyambere, V.; Adomako, K.; Olympio, S.O.; Ntawubizi, M.; Nyinawamwiza, L.; Mahoro, J.S.; Conroy, A. Local chickens in East African region: Their production and potential. Poult. Sci. 2022, 101, 1. [Google Scholar] [CrossRef] [PubMed]
- Gardner, E.; Alders, R. Livestock Risks and Opportunities: Newcastle Disease and Avian Influenza in Africa. Planet@Risk 2014, 2, 4. [Google Scholar]
- Thomas, K.M.; de Glanville, W.A.; Barker, G.C.; Benschop, J.; Buza, J.J.; Cleaveland, S.; Davis, M.A.; French, N.P.; Mmbaga, B.T.; Prinsen, G.; et al. Prevalence of Campylobacter and Salmonella in African food animals and meat: A systematic review and meta-analysis. Int. J. Food Microbiol. 2020, 315, 108382. [Google Scholar] [CrossRef]
- Fusaro, A.; Zecchin, B.; Vrancken, B.; Abolnik, C.; Ademun, R.; Alassane, A.; Arafa, A.; Awuni, J.A.; Couacy-Hymann, E.; Coulibaly, M.B.; et al. Disentangling the role of Africa in the global spread of H5 highly pathogenic avian influenza. Nat. Commun. 2019, 10, 5310. [Google Scholar] [CrossRef]
- Molia, S.; Grosbois, V.; Kamissoko, B.; Sidibe, M.S.; Sissoko, K.D.; Traore, I.T.; Diakite, A.; Pfeiffer, D.U. Longitudinal Study of Avian Influenza and Newcastle Disease in Village Poultry, Mali, 2009–2011. Avian Dis. 2017, 61, 165–177. [Google Scholar] [CrossRef]
- Caliendo, V.; Lewis, N.S.; Pohlmann, A.; Baillie, S.R.; Banyard, A.C.; Beer, M.; Brown, I.H.; Fouchier, R.A.; Hansen, R.D.; Lameris, T.K.; et al. Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021. Nature 2022, 12, 11729. [Google Scholar] [CrossRef]
- Hill, N.J.; Bishop, M.A.; Trovão, N.S.; Ineson, K.M.; Schaefer, A.L.; Puryear, W.B.; Zhou, K.; Foss, A.D.; Clark, D.E.; MacKenzie, K.G.; et al. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog. 2022, 18, e1010062. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.P.; Thornton, P.K.; Francesconi, G.N.; Kruska, R.L.; Chiozza, F.; Notenbaert, A.M.; Cecchi, G.; Herrero, M.T.; Epprecht, M.; Fritz, S.; et al. Global Livestock Production Systems; Food and Agriculture Organization of the United Nations (FAO) and International Livestock Research Institute (ILRI): Rome, Italy, 2011; p. 152. [Google Scholar]
- UNDP (United Nations Development Program). Socio-Economic Impact of Avian Influenza in Nigeria; UNDP (United Nations Development Program): Abuja, Nigeria, 2006. [Google Scholar]
- WHO. Avian Influenza Weekly Update Number 928. 2024. Available online: https://www.who.int/docs/default-source/wpro---documents/emergency/surveillance/avian-influenza/ai_20221104.pdf (accessed on 19 December 2023).
- Lycett, S.J.; Florian, D.; Paul, D. A brief history of bird flu. Philos. Trans. R. Soc. 2019, 374, 20180257. [Google Scholar] [CrossRef] [PubMed]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [PubMed]
- Havelaar, A.H.; Sapp, A.C.; Amaya, M.P.; Nane, G.F.; Morgan, K.M.; Devleesschauwer, B.; Grace, D.; Knight-Jones, T.; Kowalcyk, B.B. Burden of foodborne disease due to bacterial hazards associated with beef, dairy, poultry meat, and vegetables in Ethiopia and Burkina Faso. Front. Sustain. Food Syst. 2022, 6, 1024560. [Google Scholar] [CrossRef]
- Cole, D.; Grace, D.; Diamond, M. Researcher approaches to evidence on urban agriculture and human health. In Healthy City harvests: Generating Evidence to Guide Policy on Urban Agriculture; Cole, D., Lee-Smith, D., Nasinyama, G., Eds.; International Potato Center (CIP)-Urban Harvest and Makerere University Press: Lima, Peru, 2008. [Google Scholar]
- Ramulondi, M.; de Wet, H.; Ntuli, N.R. Traditional food taboos and practices during pregnancy, postpartum recovery, and infant care of Zulu women in northern KwaZulu-Natal. J. Ethnobiol. Ethnomed. 2021, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Myintzaw, P.; Jaiswal, A.K.; Jaiswal, S. A Review on Campylobacteriosis Associated with Poultry Meat Consumption. Food Rev. Int. 2023, 39, 2107–2121. [Google Scholar] [CrossRef]
- Ul-Rahman, A.; Ishaq, H.M.; Raza, M.A.; Shabbir, M.Z. Zoonotic potential of Newcastle disease virus: Old and novel perspectives related to public health. Rev. Med. Virol. 2022, 32, 1. [Google Scholar] [CrossRef]
- Hogerwerf, L.L.; Roof, L.; de Jong, M.J.K.; Dijkstram, F.; van der Hoek, W. Animal sources for zoonotic transmission of psittacosis: A systematic review. BMC Infect. Dis. 2020, 20, 192. [Google Scholar] [CrossRef]
- Shaw, K.A.; Szablewski, C.M.; Kellner, S.; Kornegay, L.; Bair, P.; Brennan, S.; Kunkes, A.; Davis, M.; McGovern, O.L.; Winchell, J.; et al. Outbreak among Workers at Chicken Slaughter Plants, Virginia and Georgia, USA. Emerg. Infect. Dis. 2019, 25, 2143–2145. [Google Scholar] [CrossRef]
- Kathayat, D.; Lokesh, D.; Ranjit, S.; Rajashekara, G. Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens 2021, 10, 467. [Google Scholar] [CrossRef]
- Zinsstag, J.; Schelling, E.; Roth, F.; Bonfoh, B.; de Savigny, D.; Tanner, M. Human benefits of animal interventions for zoonosis control. Emerg. Infect. Dis. 2007, 13, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.R.T.; Fliss, I.; Biron, E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics 2022, 11, 766. [Google Scholar] [CrossRef] [PubMed]
- Hlashwayo, D.F.; Sigaúque, B.; Bila, C.G. Epidemiology and antimicrobial resistance of Campylobacter spp. in animals in Sub-Saharan Africa: A systematic review. Heliyon 2020, 6, e03537. [Google Scholar] [CrossRef] [PubMed]
- WOAH. Terrestrial Animal Health Code. 2022. Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/?id=169&L=1&htmfile=glossaire.htm (accessed on 19 December 2023).
- Conan, A.; Goutard, F.L.; Sorn, S.; Vong, S. Biosecurity measures for backyard poultry in developing countries: A systematic review. BMC Vet. Res. 2012, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Ahlers, C.; Alders, R.G.; Bagnol, B.; Cambaza, A.B.; Harun, M.; Mgomezulu, R.; Msami, H.; Pym, B.; Wegener, P.; Wethli, E.; et al. Improving Village Chicken Production: A Manual for Field Workers and Trainers; ACIAR Monograph. No. 139; Australian Centre for International Agricultural Research: Canberra, Australia, 2009; pp. 104–106. [Google Scholar]
- Rimi, N.A.; Sultana, R.; Ishtiak-Ahmed, K.; Rahman, M.Z.; Hasin, M.; Islam, M.S.; Azziz-Baumgartner, E.; Nahar, N.; Gurley, E.S.; Luby, S.P. Understanding the failure of a behavior change intervention to reduce risk behaviors for avian influenza transmission among backyard poultry raisers in rural Bangladesh: A focused ethnography. BMC Public Health 2016, 16, 858. [Google Scholar] [CrossRef] [PubMed]
- Rota, A.; Barua, K.; Urbani, I.; Oum, N. Empowering Rural People through a Semi-Intensive Rural Poultry Production Model; International Fund for Agricultural Development: Rome, Italy, 2021. [Google Scholar]
- Harrington, D.W.J.; George, D.R.; Guy, J.H.; Sparagano, O.A.E. Opportunities for integrated pest management to control the poultry red mite, Dermanyssus gallinae. World’s Poult. Sci. J. 2011, 67, 83–94. [Google Scholar] [CrossRef]
- Enahoro, D.; Galiè, A.; Abukari, Y.; Chiwanga, G.H.; Kelly, T.R.; Kahamba, J.; Massawe, F.A.; Mapunda, F.; Jumba, H.; Weber, C.; et al. Strategies to Upgrade Animal Health Delivery in Village Poultry Systems: Perspectives of Stakeholders from Northern Ghana and Central Zones in Tanzania. Front. Vet. Sci. 2021, 8, 611357. [Google Scholar] [CrossRef]
- FAO. AO. A review of the current poultry disease control strategies in smallholder poultry production systems and local poultry populations in Uganda. In HBL—Promoting Strategies for Prevention and Control of HPAI; Food and Agriculture Organization of The United Nations: Rome, Italy, 2009. [Google Scholar]
- Campbell, Z.A.; Marsh, T.L.; Mpolya, E.A.; Thumbi, S.M.; Palmer, G.H. Newcastle disease vaccine adoption by smallholder households in Tanzania: Identifying determinants and barriers. PLoS ONE 2018, 13, e0206058. [Google Scholar] [CrossRef]
- FAO-IAEA. Improving farmyard poultry production in Africa: Interventions and their economic assessment. In Proceedings of the Final Research Coordination Meeting, IAEA, Vienna, Austria, 24–28 May 2004; FAO-IAEA: Vienna, Austria, 2006. [Google Scholar]
- Alders, R.G. Making Newcastle disease vaccines available at village level. Vet. Rec. 2014, 17, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, J.F.; Young, J.; Wyatt, A.; Young, M.; Alders, R.; Bagnol, B.; Kibaya, A.; Grace, D. Do vaccination interventions have effects? A study on how poultry vaccination interventions change smallholder farmer knowledge, attitudes, and practice in villages in Kenya and Tanzania. Trop. Anim. Health Prod. 2019, 51, 213–220. [Google Scholar] [CrossRef]
- Alders, R.; Spradbrow, P. Controlling Newcastle Disease in Village Chickens: A Field Manual; ACIAR Monograph 82; Australian Centre for International Agricultural Research: Canberra, Australia, 2002. [Google Scholar]
- Lal, M.; Zhu, C.; McClurkan, C.; Koelle, D.M.; Miller, P.; Afonso, C.; Donadeu, M.; Dungu, B.; Chen, D. Development of a low-dose fast-dissolving tablet formulation of Newcastle disease vaccine for low-cost backyard poultry immunisation. Vet. Rec. 2014, 174, 504. [Google Scholar] [CrossRef] [PubMed]
- Guyonnet, V.; Peters, A.R. Are current avian influenza vaccines a solution for smallholder poultry farmers? Gates Open Res. 2020, 4, 122. [Google Scholar] [CrossRef] [PubMed]
- Ekiri, A.B.; Armson, B.; Adebowale, K.; Endacott, I.; Galipo, E.; Alafiatayo, R.; Horton, D.L.; Ogwuche, A.; Bankole, O.N.; Galal, H.M.; et al. Evaluating Disease Threats to Sustainable Poultry Production in Africa: Newcastle Disease, Infectious Bursal Disease, and Avian Infectious Bronchitis in Commercial Poultry Flocks in Kano and Oyo States, Nigeria. Front. Vet. Sci. 2021, 8, 730159. [Google Scholar] [CrossRef] [PubMed]
- Rcheulishvili, N.; Papukashvili, D.; Liu, C.; Ji, Y.; He, Y.; Wang, P.G. Promising strategy for developing mRNA-based universal influenza virus vaccine for human population, poultry, and pigs- focus on the bigger picture. Front. Immunol. 2022, 13, 1025884. [Google Scholar] [CrossRef] [PubMed]
- Mpenda, F.N.; Schilling, M.A.; Campbell, Z.; Mngumi, E.B.; Buza, Z. The genetic diversity of local african chickens: A potential for selection of chickens resistant to viral infections. J. Appl. Poult. Res. 2019, 28, 1–12. [Google Scholar] [CrossRef]
- Banos, G.; Lindsay, V.; Desta, T.T.; Bettridge, J.; Sanchez-Molano, E.; Vallejo-Trujillo, A.; Matika, O.; Dessie, T.; Wigley, P.; Christley, R.M.; et al. Integrating genetic and genomic analyses of combined health data across ecotypes to improve disease resistance in indigenous African chickens. Front. Genet. 2020, 11, 543890. [Google Scholar] [CrossRef] [PubMed]
- Sonaiya, E.B.; Swan, S.E.J. Small-scale poultry technical guide. In FAO Animal Production and Health Manual; FAO: Rome, Italy, 2004. [Google Scholar]
- Yitayih, M.; Bruno, J.E.; Alemayehu, T.; Esatu, W.; Geremew, K.; Yemane, T.; Getachew, F.; Dessie, T. Beyond diffusion to sustained adoption of innovation: A case of smallholder poultry development in sub-Saharan Africa. Int. J. Agric. Sustain. 2022, 20, 1028–1046. [Google Scholar]
- Higham, L.E.; Ongeri, W.; Asena, K.; Thrusfield, M.V. Characterising and comparing animal-health services in the Rift Valley, Kenya: An exploratory analysis (part I). Trop. Anim. Health Prod. 2016, 48, 1621–1632. [Google Scholar] [CrossRef]
- Mboya, E.A.; Sanga, L.A.; Ngocho, J.S. Irrational use of antibiotics in the Moshi Municipality Northern Tanzania: A cross sectional study. Pan Afr. Med. J. 2018, 31, 165. [Google Scholar] [CrossRef]
- Johnson, S.; Bugyei, K.; Nortey, P.; Tasiame, W. Antimicrobial drug usage and poultry production: Case study in Ghana. Anim. Sci. Prod. 2019, 59, 177–182. [Google Scholar] [CrossRef]
- Afakye, K.; Kiambi, S.; Koka, E.; Kabali, E.; Dorado-Garcia, A.; Amoah, A.; Kimani, T.; Adjei, B.; Caudell, M.A. The impacts of animal health service providers on antimicrobial use attitudes and practices: An examination of poultry layer farmers in Ghana and Kenya. Antibiotics 2020, 9, 554. [Google Scholar] [CrossRef]
- Kemp, S.A.; Pinchbeck, G.L.; Fèvre, E.M.; Williams, N.J. A Cross-Sectional Survey of the Knowledge, Attitudes, and Practices of Antimicrobial Users and Providers in an Area of High-Density Livestock-Human Population in Western Kenya. Front. Vet. Sci. 2021, 8, 727365. [Google Scholar] [CrossRef]
- Sirdar, M.M.; Picard, J.; Bisschop, S.; Gummow, B. A questionnaire survey of poultry layer farmers in Khartoum State, Sudan, to study their antimicrobial awareness and usage patterns. Onderstepoort J. Vet. Res. 2012, 79, E1–E8. [Google Scholar] [CrossRef] [PubMed]
- Alhaji, N.B.; Haruna, A.E.; Muhammad, B.; Lawan, M.K.; Isola, T.O. Antimicrobials usage assessments in commercial poultry and local birds in North-central Nigeria: Associated pathways and factors for resistance emergence and spread. Prev. Vet. Med. 2018, 154, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Bamidele, O.; Amole, T.A.; Oyewale, O.A.; Bamidele, O.O.; Yakubu, A.; Ogundu, U.E.; Ajayi, F.O.; Hassan, W.A. Antimicrobial Usage in Smallholder Poultry Production in Nigeria. Vet. Med. Int. 2022, 2022, 7746144. [Google Scholar] [CrossRef] [PubMed]
- Grace, D.; Randolph, T.; Affognon, H.; Dramane, D.; Diall, O.; Clausen, P.H. Characterisation and validation of farmers’ knowledge and practice of cattle trypanosomosis management in the cotton zone of West Africa. Acta Trop. 2009, 111, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Uwagie-Ero, A.E.; Shuaibu, I.; Saviour, N.O. An Overview of Ethnoveterinary Medicine in Nigeria. Trop. J. Nat. Prod. Res. 2017, 1, 153–157. [Google Scholar] [CrossRef]
- Temeche, M.A.; Asnakew, A.T. A review on status of ethnoveterinary medicine and challenges it faces in Ethiopia. Int. J. Vet. Sci. Anim. Husb. 2020, 5, 39–48. [Google Scholar]
- Guèye, E.F. Ethnoveterinary medicine against poultry diseases in African villages. World’s Poult. Sci. J. 1999, 55, 187–198. [Google Scholar] [CrossRef]
- Mohammed, Y.; Amare, A.; Mohammed, N.; Yeneneh, A. Review on Ethnoveterinary Medicinal Practice against Poultry Diseases in African Villages. Br. J. Poult. Sci. 2019, 8, 44–52. [Google Scholar] [CrossRef]
- Adedeji, O.S.; Ogunsina, T.K.; Akinwumi, A.O.; Ameen, S.A.; Ojebiyi, O.O.; Akinlade, J.A. Ethnoveterinary medicine in African organic poultry production. Int. Food Res. J. 2013, 20, 527–532. [Google Scholar]
Diseases | Genetics (Indigenous vs. Exotic) | Production System (Scavenging vs. Small-Scale Semi-Intensive) |
---|---|---|
Newcastle disease * | Both indigenous and exotic breeds are susceptible and can suffer high mortality. | The disease is common in unvaccinated birds, including scavenging birds, which too often have limited vaccination. |
Highly pathogenic avian influenza * | High mortality is observed in all chicken breeds. | Important in intensive systems which keep large numbers of chickens. |
Infectious bursal disease | Can affect both local and exotic breeds, but high mortality is often seen in exotic breeds. | Causes high mortality in intensively kept young chickens. Less common in multi-aged chickens kept under traditional scavenging systems. |
Marek’s disease | Can affect both indigenous and exotic breeds. | Causes high mortality in intensive systems. Less common in multi-aged chickens kept under traditional scavenging systems. |
Fowl cholera | Mild in indigenous breeds and often subclinical but causes mortality in exotic chickens. | More important in intensively managed chicken systems, which often keep exotic breeds. |
Salmonellosis * | Mild in indigenous breeds. | Important in intensively managed chicken systems which keep exotic breeds. |
Coccidiosis | Can affect, and is prevalent, in both local and exotic breeds. The disease is often subclinical in indigenous breeds. | Important in intensive systems with deep litter housing. It can also be important in scavenging birds, depending on the season. |
Helminth parasites | Can affect both local and indigenous breeds. | Higher helminth exposure in extensive scavenging systems. |
Diseases | Presence and Prevalence | Production System (Scavenging vs. Small-Scale Semi-Intensive) |
---|---|---|
Avian influenza | Non-significant regional differences in prevalence were reported. Most outbreaks in West Africa [35]. | Smallholder flocks are considered high risk because of low biosecurity and higher contact with wild birds. Village chicken flocks in remote areas away from wetlands are probably not high-risk. |
Campylobacteriosis | Reported prevalence highest in Central Africa (91%), followed by Eastern, Southern and Western [42]. | Commercial flocks at higher risk because of higher stocking density. |
Salmonellosis | Reported prevalence highest in Southern Africa (28%), followed by Central, Eastern, and Western [42]. | Larger farms have increased occurrence, persistence, and spread of Salmonella. Layer at higher risk than broiler. |
Practices | Components | Intensive Production Systems/Specialised Backyard Systems | Extensive Production Systems |
---|---|---|---|
Isolation | Set-up | Keep housing away from public roads and stagnant water sources. Maintain a perimeter barrier. Use solid roofs and sides to prevent contact with infected wild birds or their droppings. Provide food and water only in covered areas; cover stored food. Ensure birds have adequate space, light, and ventilation. | Provide separate night housing for different poultry species. Chickens should not be bought from markets or neighbouring villages at times of the year when outbreaks of disease such as Newcastle Disease are common. |
Birds | Keep different ages and species separate. Avoid introducing new birds to existing flocks. Buy from reputable sellers. Follow approved vaccination schedules. Quarantine new birds. Quarantine sick birds. | Encourage separation between animal species and between animals and humans; waterfowl should be separated from chickens and turkeys. Avoid introducing new birds of unknown origin or from a sick flock into the “home” flock. Keep new or sick birds separate from the flock for 2 weeks. Vaccinate against key endemic vaccine-preventable diseases. Provide supplementary feeding when necessary to promote good health and a strong immune system. | |
Pests | Practice rodent and insect control. Line gravel or sand outside houses and keep grass short. | Store chicken feed safely away from rodents and wild birds. | |
Traffic control | Daily routine | Wash hands before and after handling birds. Use rubber boots and protective clothing. Have disinfectant footbaths at the entrance to pens. | Wash hands with soap after handling birds, especially from other flocks. |
Visitors | Try to keep people away from your birds. Provide clean clothes and foot protection for visitors. Cover roads with sand or gravel. Clean vehicle tires before and after visits. | Avoid the “home” flock coming into contact with visitors, cages, or animals from an area where there is a disease outbreak in poultry. | |
Business | Avoid sharing equipment with other backyard owners. Conduct business by mobile phone where possible. | If buyers come to the farm, keep them away from unsold birds. | |
Sanitation | Waste management | Wear gloves when handling waste. Remove and dispose of manure before adding new birds. Use composting to dispose of manure. | Clean chicken houses, troughs, and nests regularly. Regularly clean out and dispose of manure, and preferably stack for at least 3 weeks. |
Carcass disposal | Dead poultry may be disposed of by burying, composting, or incineration. Dead rodents and wild birds should be buried away from your flock. | Dispose of sick and dead animals and infected materials correctly, and clean and disinfect/decontaminate thoroughly. In villages where birds are dying of disease, no birds should be slaughtered for consumption. | |
Decontamination | First clean to physically remove dirt which can block the disinfectant from the germs. Then, perform chemical disinfection to destroy pathogens. | Always scrub cages, egg trays, etc., with disinfectant or detergent and allow to dry before bringing them onto the farm. Manure, dirt, feathers, etc., stop the disinfectant working properly. If disinfectant is not available, items can be placed in a sealed black plastic bag in direct sunlight for 1 day so that the high temperature inside can inactivate disease agents. Slaughter only healthy birds from healthy flocks for consumption—immerse the bird in boiling water for a minute before plucking the feathers to inactivate any infectious agents on the outside of the bird. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grace, D.; Knight-Jones, T.J.D.; Melaku, A.; Alders, R.; Jemberu, W.T. The Public Health Importance and Management of Infectious Poultry Diseases in Smallholder Systems in Africa. Foods 2024, 13, 411. https://doi.org/10.3390/foods13030411
Grace D, Knight-Jones TJD, Melaku A, Alders R, Jemberu WT. The Public Health Importance and Management of Infectious Poultry Diseases in Smallholder Systems in Africa. Foods. 2024; 13(3):411. https://doi.org/10.3390/foods13030411
Chicago/Turabian StyleGrace, Delia, Theodore J. D. Knight-Jones, Achenef Melaku, Robyn Alders, and Wudu T. Jemberu. 2024. "The Public Health Importance and Management of Infectious Poultry Diseases in Smallholder Systems in Africa" Foods 13, no. 3: 411. https://doi.org/10.3390/foods13030411
APA StyleGrace, D., Knight-Jones, T. J. D., Melaku, A., Alders, R., & Jemberu, W. T. (2024). The Public Health Importance and Management of Infectious Poultry Diseases in Smallholder Systems in Africa. Foods, 13(3), 411. https://doi.org/10.3390/foods13030411