Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (298)

Search Parameters:
Keywords = chemokine structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 714 KB  
Review
Lumpy Skin Disease Virus Pathogenesis: Viral Protein Functions and Comparative Insights from Vaccinia Virus
by Huan Chen, Ruiyu Zhai, Chang Cai, Xiaojie Zhu, Yong-Sam Jung and Yingjuan Qian
Animals 2025, 15(21), 3176; https://doi.org/10.3390/ani15213176 - 31 Oct 2025
Viewed by 374
Abstract
Lumpy Skin Disease Virus (LSDV), a member of the poxvirus family, represents a significant threat to global cattle industries. This review presents an analysis of LSDV-encoded proteins and their interactions with host systems, elucidating the molecular mechanisms governing viral life cycle progression and [...] Read more.
Lumpy Skin Disease Virus (LSDV), a member of the poxvirus family, represents a significant threat to global cattle industries. This review presents an analysis of LSDV-encoded proteins and their interactions with host systems, elucidating the molecular mechanisms governing viral life cycle progression and immune evasion strategies. We provide detailed characterization of the complex architecture of LSDV virions, including Intracellular Mature Virus (IMV), Extracellular Enveloped Virus (EEV), lateral bodies, and the core components, while summarizing the crucial functions of viral proteins throughout various stages of infection—entry, replication, transcription, translation, assembly, and egress. Particular attention is given to the immunomodulatory strategies employed by LSDV to subvert both innate and adaptive immune responses. These mechanisms encompass molecular mimicry of cytokines and chemokines, interference with antigen presentation pathways, inhibition of key immune signaling cascades, and modulation of apoptosis and autophagy processes. Through comparative analysis with homologs from related poxviruses, especially vaccinia virus, we highlight both evolutionarily conserved functions and potential unique adaptations in LSDV proteins. This review further identifies critical knowledge gaps in current understanding and proposes promising research directions. We emphasize that integrating multi-omics approaches with structural biology will be essential for advancing our understanding of LSDV pathogenesis and for developing novel preventive and therapeutic strategies against this important animal pathogen. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

25 pages, 3944 KB  
Review
N-Glycosylation of Antibodies: Biological Effects During Infections and Therapeutic Applications
by Jessica Castañeda-Casimiro, Luis Vallejo-Castillo, Eliud S. Peregrino, Alejandro Hernández-Solis, Luis Vázquez-Flores, Rommel Chacón-Salinas, Isabel Wong-Baeza and Jeanet Serafín-López
Antibodies 2025, 14(4), 93; https://doi.org/10.3390/antib14040093 - 28 Oct 2025
Viewed by 449
Abstract
Antibodies are produced by cells of the adaptive immune response and recognize epitopes of microbial structures with high affinity and specificity. Antibodies are recognized by Fc fragment receptors (FcRs) found on the surface of phagocytic cells (neutrophils, monocytes, macrophages) and NK cells, among [...] Read more.
Antibodies are produced by cells of the adaptive immune response and recognize epitopes of microbial structures with high affinity and specificity. Antibodies are recognized by Fc fragment receptors (FcRs) found on the surface of phagocytic cells (neutrophils, monocytes, macrophages) and NK cells, among others. Hence, antibodies link the adaptive immune response with the innate immune response. The functions of antibodies are related to the N-glycosylation profile of these proteins. In this review, we describe how N-glycosylation of the Fc fragment of the different antibody classes is carried out, and which oligosaccharides are most commonly found in these antibodies. Subsequently, we summarize the biological effects of N-glycosylation of antibodies: on the binding of antibodies to FcRs (which affects various functions, such as antibody-dependent cellular cytotoxicity, antibody-dependent phagocytosis, and the production of pro- or anti-inflammatory chemokines and cytokines), on the ability of antibodies to activate complement and on the ability of some antibodies to directly neutralize the adhesion of bacteria and viruses to host cells (independently of Fab recognition). We describe how the N-glycosylation profile of antibodies is modified during certain infections (such as tuberculosis, COVID-19, influenza and dengue) and in response to vaccination, and the potential use of this profile to identify the stage and severity of an infection. Finally, we review the importance of N-glycosylation for the pharmacokinetic, pharmacodynamic and safety profiles of therapeutic monoclonal antibodies. Full article
Show Figures

Graphical abstract

20 pages, 2985 KB  
Review
From Native Glycosaminoglycans to Mimetics: Design, Mechanisms, and Biomedical Applications
by Fabian Junker and Sandra Rother
Biomolecules 2025, 15(11), 1518; https://doi.org/10.3390/biom15111518 - 27 Oct 2025
Viewed by 405
Abstract
Glycosaminoglycans (GAGs) are essential regulators of numerous biological processes through their interactions with growth factors, chemokines, cytokines, and enzymes. Their structural diversity and heterogeneity, however, limit reproducibility and translational use, as native GAGs are typically obtained from animal-derived sources with notable batch-to-batch variability. [...] Read more.
Glycosaminoglycans (GAGs) are essential regulators of numerous biological processes through their interactions with growth factors, chemokines, cytokines, and enzymes. Their structural diversity and heterogeneity, however, limit reproducibility and translational use, as native GAGs are typically obtained from animal-derived sources with notable batch-to-batch variability. To overcome these challenges, a wide range of GAG mimetics has been developed with the aim of replicating or modulating the biological functions of native GAGs while offering improved structural definition, accessibility, and therapeutic potential. Polysaccharide-based GAG mimetics, including derivatives of heparan sulfate, hyaluronan, dextran, and other natural glycans, represent one major strategy, whereas non-saccharide-based mimetics provide alternative scaffolds with enhanced stability and selectivity. Both approaches have yielded compounds that serve as valuable tools for dissecting GAG/protein interactions and as candidates for therapeutic development. Biomedical applications of GAG mimetics span diverse areas such as cancer, cardiovascular and inflammatory diseases, bone and cartilage regeneration, wound healing, and infectious diseases. This mini-review summarizes key developments in the design and synthesis of GAG mimetics, highlights their potential biomedical applications, and discusses current challenges and future perspectives in advancing them toward clinical translation. Full article
(This article belongs to the Special Issue Advances in Glycosaminoglycans (GAGs) and Mimetics)
Show Figures

Graphical abstract

27 pages, 9322 KB  
Article
Identification of Marrubiin as a Cathepsin C Inhibitor for Treating Rheumatoid Arthritis
by Fei-Long Zhou, Yu Zhang, Cui Chang, Da-Xing Shi, Xing Chen, Xin-Hua Liu and Xiao-Bao Shen
Molecules 2025, 30(21), 4170; https://doi.org/10.3390/molecules30214170 - 23 Oct 2025
Viewed by 373
Abstract
Cathepsin C (CTSC) mediates neutrophil serine protease (NSP) maturation, contributing to inflammatory cascades, making it a key therapeutic target. In this study, through large-scale screening of a natural product library, marrubiin, a diterpenoid lactone compound, was identified as a potent CTSC inhibitor, which [...] Read more.
Cathepsin C (CTSC) mediates neutrophil serine protease (NSP) maturation, contributing to inflammatory cascades, making it a key therapeutic target. In this study, through large-scale screening of a natural product library, marrubiin, a diterpenoid lactone compound, was identified as a potent CTSC inhibitor, which holds potential value in the treatment of inflammatory diseases. It inhibited human recombinant CTSC (IC50 = 57.5 nM) and intracellular CTSC (IC50 = 51.6 nM) with acceptable cytotoxicity, and reduced the activity and protein levels of downstream NSPs in vitro. Functionally, marrubiin inhibited lipopolysaccharide-induced nitric oxide release and regulated the levels of cytokines and chemokines. Docking result predicted marrubiin may achieve CTSC activity inhibition by using lactone structure as a covalent unit to target Cys234. In vivo study indicated that high-dose marrubiin (IC50 = 30 mg/kg) reduced CTSC and NSPs activities in blood and bone marrow in mice without toxicity, and its efficacy was comparable to that of positive compound AZD7986. In the adjuvant-induced arthritis model, high-dose marrubiin (IC50 = 60 mg/kg) exerted a therapeutic effect by reducing the activities of CTSC and NSPs. These findings indicated marrubiin is a promising natural CTSC inhibitor, which can be used for the treatment of neutrophil-related inflammatory diseases. Full article
Show Figures

Graphical abstract

11 pages, 779 KB  
Review
Chemerin in Pulmonary Fibrosis: Advances in Mechanistic and Fundamental Research
by Yongshuai Jiang, Ziyang Li, Zhenghang Huang, Junsheng Dong and Li Qian
Biomolecules 2025, 15(10), 1469; https://doi.org/10.3390/biom15101469 - 17 Oct 2025
Viewed by 569
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease that involves stimulated growth of fibroblasts, over-deposition of extracellular matrix (ECM), and permanent damage of the lung structure. Among its various forms, idiopathic pulmonary fibrosis (IPF) is the most common and life-threatening type with few [...] Read more.
Pulmonary fibrosis is a progressive interstitial lung disease that involves stimulated growth of fibroblasts, over-deposition of extracellular matrix (ECM), and permanent damage of the lung structure. Among its various forms, idiopathic pulmonary fibrosis (IPF) is the most common and life-threatening type with few treatment options and a poor prognosis. Such obstacles highlight the urgency to find new molecular targets by better understanding the cellular and signaling processes that contribute to the pathogenesis of the disease. Chemerin is an adipokine and chemoattractant protein that has recently come into the limelight as a major controller of immune cell trafficking, inflammation, and tissue remodeling. Its biological activity is mainly mediated by binding to its receptors Chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1), and C-C chemokine receptor-like 2 (CCRL2), and has been linked to numerous pathological conditions, such as metabolic diseases, cancer, and inflammatory diseases. Emerging data now indicate that chemerin can also be a key factor in the initiation and progression of pulmonary fibrosis. The aim of the review is to overview the existing evidence regarding regulatory processes of chemerin expression, signaling pathways, and effects of this protein in cells in the fibrotic lung microenvironment. Moreover, we will comment on the findings of in vitro and in vivo experiments supporting the possibility of chemerin as a promising molecular target in basic research on pulmonary fibrosis. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

11 pages, 2172 KB  
Communication
Integrated Meta-Analysis of Scalp Transcriptomics and Serum Proteomics Defines Alopecia Areata Subtypes and Core Disease Pathways
by Li Xi, Elena Peeva, Yuji Yamaguchi, Zhan Ye, Craig L. Hyde and Emma Guttman-Yassky
Int. J. Mol. Sci. 2025, 26(19), 9662; https://doi.org/10.3390/ijms26199662 - 3 Oct 2025
Viewed by 872
Abstract
Alopecia areata (AA) is a chronic autoimmune disorder characterized by non-scarring hair loss, with subtypes ranging from patchy alopecia (AAP) to alopecia totalis and universalis (AT/AU). The aim of this research is to investigate molecular features across AA severity by performing an integrated [...] Read more.
Alopecia areata (AA) is a chronic autoimmune disorder characterized by non-scarring hair loss, with subtypes ranging from patchy alopecia (AAP) to alopecia totalis and universalis (AT/AU). The aim of this research is to investigate molecular features across AA severity by performing an integrated analysis of scalp transcriptomic datasets (GSE148346, GSE68801, GSE45512, GSE111061) and matched serum proteomic data from GSE148346. Differential expression analysis indicated that, relative to normal scalp, non-lesional AA tissue shows early immune activation—including Type 1 (C-X-C motif chemokine ligand 9 (CXCL9), CXCL10, CD8a molecule (CD8A), C-C motif chemokine ligand 5 (CCL5)) and Type 2 (CCL13, CCL18) signatures—together with reduced expression of hair-follicle structural genes (keratin 32(KRT32)–35, homeobox C13 (HOXC13)) (FDR < 0.05, |fold change| > 1.5). Lesional AAP and AT/AU scalp showed stronger pro-inflammatory upregulation and greater loss of keratins and keratin-associated proteins (KRT81, KRT83, desmoglein 4 (DSG4), KRTAP12/15) compared with non-lesional scalp (FDR < 0.05, |fold change| > 1.5). Ferroptosis-associated genes (cAMP responsive element binding protein 5 (CREB5), solute carrier family 40 member 1 (SLC40A1), (lipocalin 2) LCN2, SLC7A11) and IRS (inner root sheath) differentiation genes (KRT25, KRT27, KRT28, KRT71–KRT75, KRT81, KRT83, KRT85–86, trichohyalin (TCHH)) were consistently repressed across subtypes, with the strongest reductions in AT/AU lesions versus AAP lesions, suggesting that oxidative-stress pathways and follicular structural integrity may contribute to subtype-specific pathology. Pathway analysis of lesional versus non-lesional scalp highlighted enrichment of IFN-α/γ, cytotoxic, and IL-15 signaling. Serum proteomic profiling, contrasting AA vs. healthy controls, corroborated scalp findings, revealing parallel alterations in immune-related proteins (CXCL9–CXCL10, CD163, interleukin-16 (IL16)) and structural markers (angiopoietin 1 (ANGPT1), decorin (DCN), chitinase-3-like protein 1 (CHI3L1)) across AA subtypes. Together, these data offer an integrated view of immune, oxidative, and structural changes in AA and found ferroptosis-related and IRS genes, along with immune signatures, as potential molecular indicators to support future studies on disease subtypes and therapeutic strategies. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

49 pages, 1461 KB  
Review
Kidneys on the Frontline: Nephrologists Tackling the Wilds of Acute Kidney Injury in Trauma Patients—From Pathophysiology to Early Biomarkers
by Merita Rroji, Marsida Kasa, Nereida Spahia, Saimir Kuci, Alfred Ibrahimi and Hektor Sula
Diagnostics 2025, 15(19), 2438; https://doi.org/10.3390/diagnostics15192438 - 25 Sep 2025
Cited by 1 | Viewed by 2764
Abstract
Acute kidney injury (AKI) is a frequent and severe complication in trauma patients, affecting up to 28% of intensive care unit (ICU) admissions and contributing significantly to morbidity, mortality, and long-term renal impairment. Trauma-related AKI (TRAKI) arises from diverse mechanisms, including hemorrhagic shock, [...] Read more.
Acute kidney injury (AKI) is a frequent and severe complication in trauma patients, affecting up to 28% of intensive care unit (ICU) admissions and contributing significantly to morbidity, mortality, and long-term renal impairment. Trauma-related AKI (TRAKI) arises from diverse mechanisms, including hemorrhagic shock, ischemia–reperfusion injury, systemic inflammation, rhabdomyolysis, nephrotoxicity, and complex organ crosstalk involving the brain, lungs, and abdomen. Pathophysiologically, TRAKI involves early disruption of the glomerular filtration barrier, tubular epithelial injury, and renal microvascular dysfunction. Inflammatory cascades, oxidative stress, immune thrombosis, and maladaptive repair mechanisms mediate these injuries. Trauma-related rhabdomyolysis and exposure to contrast agents or nephrotoxic drugs further exacerbate renal stress, particularly in patients with pre-existing comorbidities. Traditional markers such as serum creatinine (sCr) are late indicators of kidney damage and lack specificity. Emerging structural and stress response biomarkers—such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), liver-type fatty acid-binding protein (L-FABP), interleukin-18 (IL-18), C-C motif chemokine ligand 14 (CCL14), Dickkopf-3 (DKK3), and the U.S. Food and Drug Administration (FDA)-approved tissue inhibitor of metalloproteinases-2 × insulin-like growth factor-binding protein 7 (TIMP-2 × IGFBP-7)—allow earlier detection of subclinical AKI and better predict progression and the need for renal replacement therapy. Together, functional indices like urinary sodium and fractional potassium excretion reflect early microcirculatory stress and add clinical value. In parallel, risk stratification tools, including the Renal Angina Index (RAI), the McMahon score, and the Haines model, enable the early identification of high-risk patients and help tailor nephroprotective strategies. Together, these biomarkers and risk models shift from passive AKI recognition to proactive, personalized management. A new paradigm that integrates biomarker-guided diagnostics and dynamic clinical scoring into trauma care promises to reduce AKI burden and improve renal outcomes in this critically ill population. Full article
(This article belongs to the Special Issue Advances in Nephrology)
Show Figures

Graphical abstract

30 pages, 1944 KB  
Review
Interactions of Hematopoietic and Associated Mesenchymal Stem Cell Populations in the Bone Marrow Microenvironment, In Vivo and In Vitro Model
by Darina Bačenková, Marianna Trebuňová, Erik Dosedla, Jana Čajková and Jozef Živčák
Int. J. Mol. Sci. 2025, 26(18), 9036; https://doi.org/10.3390/ijms26189036 - 17 Sep 2025
Viewed by 1340
Abstract
Multipotent hematopoietic stem cells (HSC) reside in specialized niches of the bone marrow (BM). The maintenance of their stemness requires a precisely regulated bone marrow microenvironment (BMM), supported by mesenchymal stem cells (MSCs), stromal reticular cells, and endothelial and nerve cells located within [...] Read more.
Multipotent hematopoietic stem cells (HSC) reside in specialized niches of the bone marrow (BM). The maintenance of their stemness requires a precisely regulated bone marrow microenvironment (BMM), supported by mesenchymal stem cells (MSCs), stromal reticular cells, and endothelial and nerve cells located within the vascular and endosteal niches. The heterogeneity of the niche environment is caused by the diversity of cell populations from HSCs to more mature hematopoietic cell types and MSCs, which collectively influence the complex intercellular interactions involved in hematopoiesis. MSC subclusters in BM are characterized by the phenotypes of CXC-chemokine ligand 12, leptin receptor, neuron-glial antigen 2, and Nestin+ cells. The article presents a detailed characterization of individual stem cell types in the BM, their reciprocal interaction, and the possibility of in vitro simulation of the bone marrow niche as a dynamic structure. Development of a suitable simulation of the BMM is essential for advancing research into both physiological and pathological processes of hematopoiesis. The main goal is to simulate 3D cell culture using biomaterials that mimic the BM niche in the form of hydrogels and scaffolds, in combination with extracellular matrix components. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

27 pages, 5513 KB  
Article
Brucella-Induced Impairment of Decidualization and Its Impact on Trophoblast Function and Inflammatory Profile
by Lucía Zavattieri, Rosario Macchi, Andrea Mercedes Canellada, Matías Arturo Pibuel, Daniela Poodts, Mariana Cristina Ferrero and Pablo Cesar Baldi
Int. J. Mol. Sci. 2025, 26(17), 8189; https://doi.org/10.3390/ijms26178189 - 23 Aug 2025
Viewed by 747
Abstract
Brucella infection is associated with an increased risk of adverse obstetric outcomes in humans and animals. Decidualization, a process involving structural and functional changes in endometrial stromal cells, is essential for proper trophoblast implantation and placental development. Trophoblasts’ migration and their ability to [...] Read more.
Brucella infection is associated with an increased risk of adverse obstetric outcomes in humans and animals. Decidualization, a process involving structural and functional changes in endometrial stromal cells, is essential for proper trophoblast implantation and placental development. Trophoblasts’ migration and their ability to invade the decidua and to undergo tubulogenesis, critical for proper implantation and placental development, are normally promoted by decidual cells. We evaluated whether Brucella infection of human endometrial stromal cells (T-HESC cell line) affects their ability to decidualize and to promote trophoblast functions. Infection of T-HESC cells with either B. abortus, B. suis, or B. melitensis resulted in deficient decidualization (as revealed by reduced prolactin levels) and an increased production of proinflammatory chemokines (C-X-C motif chemokine ligand 8 -CXCL8- and C-C motif chemokine ligand 2 -CCL2-) as compared to uninfected cells subjected to decidualization stimuli. In addition, conditioned media (CM) from infected decidualized T-HESC induced an inflammatory response (CXCL8, CCL2 and interleukin-6 -IL-6) in human trophoblasts (Swan-71 cell line) but reduced their ability to produce progesterone. Trophoblasts preincubated with this CM also had reduced migration, invasion, and tubulogenesis capacities, and this impairment was mediated, at least in part, by CXCL8 and CCL2. Moreover, infection of decidual stromal cells impaired the adhesion and spreading of blastocyst-like spheroids formed by Swan-71 cells. Brucella infection also affected the chemotactic capacity of decidual stromal cells for trophoblasts. Overall, these results suggest that Brucella infection of endometrial stromal cells impairs key processes required for successful implantation and placental development. Full article
Show Figures

Graphical abstract

21 pages, 1869 KB  
Article
Anti-Inflammatory Diet and Probiotic Supplementation as Strategies to Modulate Immune Dysregulation in Autism Spectrum Disorder
by Carlos Andrés Naranjo-Galvis, Diana María Trejos-Gallego, Cristina Correa-Salazar, Jessica Triviño-Valencia, Marysol Valencia-Buitrago, Andrés Felipe Ruiz-Pulecio, Luisa Fernanda Méndez-Ramírez, Jovanny Zabaleta, Miguel Andres Meñaca-Puentes, Carlos Alberto Ruiz-Villa, Marcela Orjuela-Rodriguez, Juan Carlos Carmona-Hernández and Luisa Matilde Salamanca-Duque
Nutrients 2025, 17(16), 2664; https://doi.org/10.3390/nu17162664 - 18 Aug 2025
Cited by 1 | Viewed by 3361
Abstract
Background/Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with behavioral and cognitive impairments. Increasing evidence also links ASD with systemic immune dysregulation, including abnormal cytokine profiles and chronic low-grade inflammation. Emerging evidence suggests that targeted dietary strategies and probiotic supplementation [...] Read more.
Background/Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with behavioral and cognitive impairments. Increasing evidence also links ASD with systemic immune dysregulation, including abnormal cytokine profiles and chronic low-grade inflammation. Emerging evidence suggests that targeted dietary strategies and probiotic supplementation may modulate immune responses and gut–brain interactions in patients with ASD. This study aimed to evaluate the immunomodulatory effects of a structured anti-inflammatory diet (NeuroGutPlus) compared to multi-strain probiotics in children with ASD. NeuroGutPlus is a nutritionally complete anti-inflammatory dietary protocol that targets gut integrity, inflammation, and mitochondrial function. It includes a diet low in gluten, FODMAPs, casein, and artificial additives, and a high intake of omega-3 fatty acids, polyphenols, and fermentable fibers. Methods: A total of 30 children with ASD and 12 neurotypical controls were enrolled in a 12-week randomized controlled nutritional trial. Participants received either a NeuroGutPlus anti-inflammatory diet, probiotic supplementation (16 strains of Lactobacillus and Bifidobacterium), or no intervention. Plasma levels of 20 cytokines and chemokines were measured pre- and post-intervention using multiplex Luminex immunoassays. Principal component analysis (PCA) was used to explore shifts in the immune profile. Results: Patients treated with the NeuroGutPlus diet significantly reduced IFN-γ levels (p = 0.0090) and showed a stabilizing effect on immune profiles, as evidenced by PCA clustering. Probiotic supplementation led to a significant increase in IL-8 (+66.6 pg/mL; p = 0.0350) and MIP-1β (+74.5 pg/mL; p = 0.0100), along with a decrease in IFN-γ (p = 0.0070), suggesting reconfiguration of innate immune responses. Eight out of eleven biomarkers showed significant post-intervention differences between groups, indicating distinct immunological effects. Conclusions: This study provides evidence that anti-inflammatory diets exert broader and more consistent immunoregulatory effects than probiotics alone in children with ASD. These findings support the inclusion of precision dietary strategies as non-pharmacological interventions to mitigate immune-related dysfunction in patients with ASD. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

18 pages, 9958 KB  
Article
Atypical Chemokine Receptor CCRL2 Shapes Tumor Spheroid Structure and Immune Signaling in Melanoma
by Diana Al Delbany, Mai Chi Duong, Marius Regin, Arkajyoti Sarkar, Ayoub Radi, Anne Lefort, Frédérick Libert, Marc Parmentier and Claudia Spits
Biomolecules 2025, 15(8), 1150; https://doi.org/10.3390/biom15081150 - 11 Aug 2025
Viewed by 986
Abstract
C-C motif chemokine receptor-like 2 (CCRL2) is an atypical chemokine receptor (ACKR) that binds chemerin with high affinity but lacks classical G protein-coupled signaling. Instead, it functions as a non-signaling presenter of chemerin to CMKLR1-expressing cells, modulating antitumor immunity. CCRL2 is highly expressed [...] Read more.
C-C motif chemokine receptor-like 2 (CCRL2) is an atypical chemokine receptor (ACKR) that binds chemerin with high affinity but lacks classical G protein-coupled signaling. Instead, it functions as a non-signaling presenter of chemerin to CMKLR1-expressing cells, modulating antitumor immunity. CCRL2 is highly expressed in the tumor microenvironment and various human cancers, and its expression has been linked to delayed tumor growth in mouse models, primarily through the chemerin/CMKLR1 axis. While CCRL2’s role in immune surveillance is well established, its tumor cell-intrinsic functions remain less clear. Here, we investigated the impact of CCRL2 overexpression and knockout on tumor cell behavior in vitro. Although CCRL2 did not affect proliferation, migration, or clonogenicity in B16F0 melanoma and LLC cells, it significantly influenced spheroid morphology in B16F0 cells. Transcriptomic analysis revealed that CCRL2 modulates innate immune signaling pathways, including TLR4 and IFN-γ/STAT1, with context-dependent downstream effects. These findings suggest that CCRL2 shapes tumor architecture by rewiring inflammatory signaling networks in a cell-intrinsic manner. Further studies in other cancer types and cell models are needed to determine whether CCRL2’s regulatory role is broadly conserved and to explore its potential as a therapeutic target in solid tumors. Full article
(This article belongs to the Special Issue Cellular Signaling in Cancer)
Show Figures

Figure 1

14 pages, 746 KB  
Article
Long-Term Outcomes of the Dietary Approaches to Stop Hypertension (DASH) Intervention in Nonobstructive Coronary Artery Disease: Follow-Up of the DISCO-CT Study
by Magdalena Makarewicz-Wujec, Jan Henzel, Cezary Kępka, Mariusz Kruk, Barbara Jakubczak, Aleksandra Wróbel, Rafał Dąbrowski, Zofia Dzielińska, Marcin Demkow, Edyta Czepielewska and Agnieszka Filipek
Nutrients 2025, 17(15), 2565; https://doi.org/10.3390/nu17152565 - 6 Aug 2025
Viewed by 1604
Abstract
In the original randomised Dietary Intervention to Stop Coronary Atherosclerosis (DISCO-CT) trial, a 12-month Dietary Approaches to Stop Hypertension (DASH) project led by dietitians improved cardiovascular and metabolic risk factors and reduced platelet chemokine levels in patients with coronary artery disease (CAD). It [...] Read more.
In the original randomised Dietary Intervention to Stop Coronary Atherosclerosis (DISCO-CT) trial, a 12-month Dietary Approaches to Stop Hypertension (DASH) project led by dietitians improved cardiovascular and metabolic risk factors and reduced platelet chemokine levels in patients with coronary artery disease (CAD). It is unclear whether these benefits are sustained. Objective: To determine whether the metabolic, inflammatory, and clinical benefits achieved during the DISCO-CT trial are sustained six years after the structured intervention ended. Methods: Ninety-seven adults with non-obstructive CAD confirmed in coronary computed tomography angiography were randomly assigned to receive optimal medical therapy (control group, n = 41) or the same therapy combined with intensive DASH counselling (DASH group, n = 43). After 301 ± 22 weeks, 84 individuals (87%) who had given consent underwent reassessment of body composition, meal frequency assessment, and biochemical testing (lipids, hs-CRP, CXCL4, RANTES and homocysteine). Major adverse cardiovascular events (MACE) were assessed. Results: During the intervention, the DASH group lost an average of 3.6 ± 4.2 kg and reduced their total body fat by an average of 4.2 ± 4.8 kg, compared to an average loss of 1.1 ± 2.9 kg and a reduction in total body fat of 0.3 ± 4.1 kg in the control group (both p < 0.01). Six years later, most of the lost body weight and fat tissue had been regained, and there was a sharp increase in visceral fat area in both groups (p < 0.0001). CXCL4 decreased by 4.3 ± 3.0 ng/mL during the intervention and remained lower than baseline values; in contrast, in the control group, it initially increased and then decreased (p < 0.001 between groups). LDL cholesterol and hs-CRP levels returned to baseline in both groups but remained below baseline in the DASH group. There was one case of MACE in the DASH group, compared with four cases (including one fatal myocardial infarction) in the control group (p = 0.575). Overall adherence to the DASH project increased by 26 points during counselling and then decreased by only four points, remaining higher than in the control group. Conclusions: A one-year DASH project supported by a physician and dietitian resulted in long-term suppression of the proatherogenic chemokine CXCL4 and fewer MACE over six years, despite a decline in adherence and loss of most anthropometric and lipid benefits. It appears that sustained systemic reinforcement of behaviours is necessary to maintain the benefits of lifestyle intervention in CAD. Full article
(This article belongs to the Special Issue Nutrients: 15th Anniversary)
Show Figures

Figure 1

28 pages, 18319 KB  
Review
Influence of Scaffold Structure and Biomimetic Properties on Adipose Stem Cell Homing in Personalized Reconstructive Medicine
by Doina Ramona Manu, Diana V. Portan, Monica Vuţă and Minodora Dobreanu
Biomimetics 2025, 10(7), 438; https://doi.org/10.3390/biomimetics10070438 - 3 Jul 2025
Cited by 1 | Viewed by 1220
Abstract
Human adipose stem cells (ASCs) are multipotent cells expressing mesenchymal stem cell (MSC) markers that are capable of multilineage differentiation and secretion of bioactive factors. Their “homing” to injured tissues is mediated by chemokines, cytokines, adhesion molecules, and signaling pathways. Enhancing ASC homing [...] Read more.
Human adipose stem cells (ASCs) are multipotent cells expressing mesenchymal stem cell (MSC) markers that are capable of multilineage differentiation and secretion of bioactive factors. Their “homing” to injured tissues is mediated by chemokines, cytokines, adhesion molecules, and signaling pathways. Enhancing ASC homing is critical for improving regenerative therapies. Strategies include boosting chemotactic signaling, modulating immune responses to create a supportive environment, preconditioning ASCs with hypoxia or mechanical stimuli, co-culturing with supportive cells, applying surface modifications or genetic engineering, and using biomaterials to promote ASC recruitment, retention, and integration at injury sites. Scaffolds provide structural support and a biomimetic environment for ASC-based tissue regeneration. Natural scaffolds promote adhesion and differentiation but have mechanical limitations, while synthetic scaffolds offer tunable properties and controlled degradation. Functionalization with bioactive molecules improves the regenerative outcomes of different tissue types. Ceramic-based scaffolds, due to their strength and bioactivity, are ideal for bone healing. Composite scaffolds, combining polymers, ceramics, or metals, further optimize mechanical and biological properties, supporting personalized regenerative therapies. This review integrates concepts from cell biology, biomaterials science, and regenerative medicine to offer a comprehensive understanding of ASC homing and its impact on tissue engineering and clinical applications. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

20 pages, 1462 KB  
Article
Transcriptomic Profiling of Lesional and Perilesional Skin in Atopic Dermatitis Suggests Barrier Dysfunction, Inflammatory Activation, and Alterations to Vitamin D Metabolism
by Teresa Grieco, Giovanni Paolino, Elisa Moliterni, Camilla Chello, Alvise Sernicola, Colin Gerard Egan, Mariangela Morelli, Fabrizio Nannipieri, Santina Battaglia, Marina Accoto, Erika Tirotta, Silvia Trasciatti, Silvano Bonaretti, Giovanni Pellacani and Stefano Calvieri
Int. J. Mol. Sci. 2025, 26(13), 6152; https://doi.org/10.3390/ijms26136152 - 26 Jun 2025
Cited by 1 | Viewed by 1198
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease marked by impaired barrier function and immune dysregulation. This study explores transcriptomic differences between lesional (IL) and perilesional (PL) skin in patients with AD, focusing on barrier-related and vitamin D-associated pathways. RNA sequencing was [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disease marked by impaired barrier function and immune dysregulation. This study explores transcriptomic differences between lesional (IL) and perilesional (PL) skin in patients with AD, focusing on barrier-related and vitamin D-associated pathways. RNA sequencing was performed on matched IL and PL biopsies from 21 adults with moderate-to-severe AD. Differential gene expression, pathway enrichment, and correlation analysis with clinical variables were assessed. A total of 8817 genes were differentially expressed in IL versus PL skin (padj < 0.05). Among genes with the highest level of dysregulation, strong upregulation was observed for inflammatory mediators (IL-19, IL-8, CXCL6), and epidermal remodeling and barrier-disrupting genes (MMP1, GJB2). The vitamin D pathway genes CYP27B1 and CYP24A1 were also significantly upregulated. In contrast, key barrier-related genes such as FLG2 and CGNL1 were markedly downregulated. While some patterns in gene expression showed subgroup-specific trends, no independent clinical predictors emerged in multivariate models. Reactome pathway analysis revealed the enrichment of pathways involved in keratinization, cornified envelope formation, IL-4/IL-13 signaling, chemokine activity, and antimicrobial responses, highlighting coordinated structural and immunologic dysregulation in lesional skin. Lesional skin in AD displays a distinct transcriptomic profile marked by barrier impairment, heightened inflammatory signaling, and activation of vitamin D-related pathways. These findings provide the first RNA-seq-based comparison of IL and adjacent PL skin in AD. We identify subclinical activation in PL skin and vitamin D pathway upregulation with disrupted gene coordination in lesions. These findings enhance our understanding of the molecular mechanisms underlying inflammation in AD. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Skin Diseases (Second Edition))
Show Figures

Graphical abstract

17 pages, 2381 KB  
Review
The Genetic Fingerprint of HIV in the Brain: Insights into Neurocognitive Dysfunction
by Sushama Jadhav, Shreeya Nair and Vijay Nema
Neuroglia 2025, 6(2), 23; https://doi.org/10.3390/neuroglia6020023 - 9 Jun 2025
Viewed by 1966
Abstract
HIV, primarily targeting CD4 cells, infiltrates the CNS through various mechanisms, including chemokine-mediated signaling and blood–brain barrier disruption, leading to neuroinflammation and neuronal dysfunction. Viral proteins such as gp120, Tat, and Vpr directly induce neurotoxicity, oxidative stress, and mitochondrial dysfunction, exacerbating cognitive deficits [...] Read more.
HIV, primarily targeting CD4 cells, infiltrates the CNS through various mechanisms, including chemokine-mediated signaling and blood–brain barrier disruption, leading to neuroinflammation and neuronal dysfunction. Viral proteins such as gp120, Tat, and Vpr directly induce neurotoxicity, oxidative stress, and mitochondrial dysfunction, exacerbating cognitive deficits and motor impairments observed in HIV-associated neurocognitive disorders (HANDs). Host genetic factors, including CCR5 mutations and HLA alleles, influence susceptibility to HIV-related neurologic complications, shaping disease progression and treatment responses. Advanced molecular and bioinformatics techniques, from genome sequencing to structural modeling and network analysis, provide insights into viral pathogenesis and identify potential therapeutic targets. These findings underscore the future potential of precision medicine approaches tailored to individual genetic profiles to mitigate neurologic complications and improve outcomes in HIV-infected populations. This comprehensive review explores the intricate interplay between HIV infection and neurogenetics, focusing on how the virus impacts the central nervous system (CNS) and contributes to neurocognitive disorders. This report delves into how the virus influences genetic expression, neuroinflammation, and neurodegeneration, offering insights into molecular mechanisms behind HAND. Full article
Show Figures

Figure 1

Back to TopTop