Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (286)

Search Parameters:
Keywords = chemokine structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 18319 KiB  
Review
Influence of Scaffold Structure and Biomimetic Properties on Adipose Stem Cell Homing in Personalized Reconstructive Medicine
by Doina Ramona Manu, Diana V. Portan, Monica Vuţă and Minodora Dobreanu
Biomimetics 2025, 10(7), 438; https://doi.org/10.3390/biomimetics10070438 - 3 Jul 2025
Viewed by 586
Abstract
Human adipose stem cells (ASCs) are multipotent cells expressing mesenchymal stem cell (MSC) markers that are capable of multilineage differentiation and secretion of bioactive factors. Their “homing” to injured tissues is mediated by chemokines, cytokines, adhesion molecules, and signaling pathways. Enhancing ASC homing [...] Read more.
Human adipose stem cells (ASCs) are multipotent cells expressing mesenchymal stem cell (MSC) markers that are capable of multilineage differentiation and secretion of bioactive factors. Their “homing” to injured tissues is mediated by chemokines, cytokines, adhesion molecules, and signaling pathways. Enhancing ASC homing is critical for improving regenerative therapies. Strategies include boosting chemotactic signaling, modulating immune responses to create a supportive environment, preconditioning ASCs with hypoxia or mechanical stimuli, co-culturing with supportive cells, applying surface modifications or genetic engineering, and using biomaterials to promote ASC recruitment, retention, and integration at injury sites. Scaffolds provide structural support and a biomimetic environment for ASC-based tissue regeneration. Natural scaffolds promote adhesion and differentiation but have mechanical limitations, while synthetic scaffolds offer tunable properties and controlled degradation. Functionalization with bioactive molecules improves the regenerative outcomes of different tissue types. Ceramic-based scaffolds, due to their strength and bioactivity, are ideal for bone healing. Composite scaffolds, combining polymers, ceramics, or metals, further optimize mechanical and biological properties, supporting personalized regenerative therapies. This review integrates concepts from cell biology, biomaterials science, and regenerative medicine to offer a comprehensive understanding of ASC homing and its impact on tissue engineering and clinical applications. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

20 pages, 1462 KiB  
Article
Transcriptomic Profiling of Lesional and Perilesional Skin in Atopic Dermatitis Suggests Barrier Dysfunction, Inflammatory Activation, and Alterations to Vitamin D Metabolism
by Teresa Grieco, Giovanni Paolino, Elisa Moliterni, Camilla Chello, Alvise Sernicola, Colin Gerard Egan, Mariangela Morelli, Fabrizio Nannipieri, Santina Battaglia, Marina Accoto, Erika Tirotta, Silvia Trasciatti, Silvano Bonaretti, Giovanni Pellacani and Stefano Calvieri
Int. J. Mol. Sci. 2025, 26(13), 6152; https://doi.org/10.3390/ijms26136152 - 26 Jun 2025
Viewed by 430
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease marked by impaired barrier function and immune dysregulation. This study explores transcriptomic differences between lesional (IL) and perilesional (PL) skin in patients with AD, focusing on barrier-related and vitamin D-associated pathways. RNA sequencing was [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disease marked by impaired barrier function and immune dysregulation. This study explores transcriptomic differences between lesional (IL) and perilesional (PL) skin in patients with AD, focusing on barrier-related and vitamin D-associated pathways. RNA sequencing was performed on matched IL and PL biopsies from 21 adults with moderate-to-severe AD. Differential gene expression, pathway enrichment, and correlation analysis with clinical variables were assessed. A total of 8817 genes were differentially expressed in IL versus PL skin (padj < 0.05). Among genes with the highest level of dysregulation, strong upregulation was observed for inflammatory mediators (IL-19, IL-8, CXCL6), and epidermal remodeling and barrier-disrupting genes (MMP1, GJB2). The vitamin D pathway genes CYP27B1 and CYP24A1 were also significantly upregulated. In contrast, key barrier-related genes such as FLG2 and CGNL1 were markedly downregulated. While some patterns in gene expression showed subgroup-specific trends, no independent clinical predictors emerged in multivariate models. Reactome pathway analysis revealed the enrichment of pathways involved in keratinization, cornified envelope formation, IL-4/IL-13 signaling, chemokine activity, and antimicrobial responses, highlighting coordinated structural and immunologic dysregulation in lesional skin. Lesional skin in AD displays a distinct transcriptomic profile marked by barrier impairment, heightened inflammatory signaling, and activation of vitamin D-related pathways. These findings provide the first RNA-seq-based comparison of IL and adjacent PL skin in AD. We identify subclinical activation in PL skin and vitamin D pathway upregulation with disrupted gene coordination in lesions. These findings enhance our understanding of the molecular mechanisms underlying inflammation in AD. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Skin Diseases (Second Edition))
Show Figures

Graphical abstract

17 pages, 2381 KiB  
Review
The Genetic Fingerprint of HIV in the Brain: Insights into Neurocognitive Dysfunction
by Sushama Jadhav, Shreeya Nair and Vijay Nema
Neuroglia 2025, 6(2), 23; https://doi.org/10.3390/neuroglia6020023 - 9 Jun 2025
Viewed by 723
Abstract
HIV, primarily targeting CD4 cells, infiltrates the CNS through various mechanisms, including chemokine-mediated signaling and blood–brain barrier disruption, leading to neuroinflammation and neuronal dysfunction. Viral proteins such as gp120, Tat, and Vpr directly induce neurotoxicity, oxidative stress, and mitochondrial dysfunction, exacerbating cognitive deficits [...] Read more.
HIV, primarily targeting CD4 cells, infiltrates the CNS through various mechanisms, including chemokine-mediated signaling and blood–brain barrier disruption, leading to neuroinflammation and neuronal dysfunction. Viral proteins such as gp120, Tat, and Vpr directly induce neurotoxicity, oxidative stress, and mitochondrial dysfunction, exacerbating cognitive deficits and motor impairments observed in HIV-associated neurocognitive disorders (HANDs). Host genetic factors, including CCR5 mutations and HLA alleles, influence susceptibility to HIV-related neurologic complications, shaping disease progression and treatment responses. Advanced molecular and bioinformatics techniques, from genome sequencing to structural modeling and network analysis, provide insights into viral pathogenesis and identify potential therapeutic targets. These findings underscore the future potential of precision medicine approaches tailored to individual genetic profiles to mitigate neurologic complications and improve outcomes in HIV-infected populations. This comprehensive review explores the intricate interplay between HIV infection and neurogenetics, focusing on how the virus impacts the central nervous system (CNS) and contributes to neurocognitive disorders. This report delves into how the virus influences genetic expression, neuroinflammation, and neurodegeneration, offering insights into molecular mechanisms behind HAND. Full article
Show Figures

Figure 1

13 pages, 1636 KiB  
Article
Structural Insights into the ADCC Mechanism and Resistance of Mogamulizumab, a First-in-Class Anti-CCR4 Therapy for Cutaneous T Cell Lymphoma
by Seung Beom Choi, Hyun Tae Lee, Nahyeon Gu, Yu-Jeong Jang, Ui Beom Park, Tae Jun Jeong, Sang Hyung Lee and Yong-Seok Heo
Int. J. Mol. Sci. 2025, 26(12), 5500; https://doi.org/10.3390/ijms26125500 - 8 Jun 2025
Viewed by 577
Abstract
Mogamulizumab is a humanized monoclonal antibody that targets C-C chemokine receptor 4 (CCR4) present on certain T cells in lymphomas and leukemias. This antibody-based therapy has demonstrated efficacy in treating various cutaneous T cell lymphomas (CTCLs), including mycosis fungoides and Sézary syndrome, through [...] Read more.
Mogamulizumab is a humanized monoclonal antibody that targets C-C chemokine receptor 4 (CCR4) present on certain T cells in lymphomas and leukemias. This antibody-based therapy has demonstrated efficacy in treating various cutaneous T cell lymphomas (CTCLs), including mycosis fungoides and Sézary syndrome, through the depletion of CCR4-expressing T cells by antibody-dependent cellular cytotoxicity (ADCC). However, the precise epitope and binding mode of mogamulizumab responsible for its augmented ADCC activity remain undisclosed. Here, X-ray crystallographic studies of mogamulizumab in complex with a 28-residue N-terminal peptide indicated that SIYSNYYLYES (residues 14–24) would constitute the antibody epitope. Another high-resolution structure, using a short core peptide of these 11 residues, has elucidated unambiguous electron density for the bound peptide, confirming consistent binding for both peptides. This linear epitope is located in the membrane-proximal region of CCR4, facilitating the Fc-mediated effector functions, including ADCC. The structures also provide insights into the molecular basis for the resistance of the CCR4 L21V variant to mogamulizumab, which is due to a lack of structural complementarity with mogamulizumab binding. Understanding the structural basis for the mechanism of action of mogamulizumab is crucial for optimizing anti-CCR4 therapeutics to improve treatment outcomes for patients with these challenging diseases. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

18 pages, 6452 KiB  
Article
Ganoderma lucidum and Robinia pseudoacacia Flower Extract Complex Alleviates Kidney Inflammation and Fibrosis by Modulating Oxidative Stress
by Soyoung Kim, Jeongwon Kim, Jong-Lae Kim, Mi-Ryeong Park, Kye Won Park and Ki Wung Chung
Antioxidants 2025, 14(4), 409; https://doi.org/10.3390/antiox14040409 - 28 Mar 2025
Viewed by 1043
Abstract
Chronic kidney disease (CKD) is characterized by functional and structural abnormalities, with its progression strongly influenced by oxidative stress and inflammatory responses, ultimately leading to renal fibrosis. This study aimed to investigate the effects of a Ganoderma lucidum and Robinia pseudoacacia flower extract [...] Read more.
Chronic kidney disease (CKD) is characterized by functional and structural abnormalities, with its progression strongly influenced by oxidative stress and inflammatory responses, ultimately leading to renal fibrosis. This study aimed to investigate the effects of a Ganoderma lucidum and Robinia pseudoacacia flower extract complex (NEPROBIN) through in vitro and in vivo experiments. In vitro experiments with NRK52E renal tubular epithelial cells demonstrated that NEPROBIN significantly alleviates H2O2-induced oxidative stress and suppresses lipopolysaccharide (LPS)-induced activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways. Additionally, NEPROBIN reduced LPS-induced NF-κB transcriptional activity and downregulated the expression of cytokines and chemokines in these cells. We further investigated the effects of NEPROBIN in vivo. Kidney damage was induced in mice using a 0.25% adenine diet (AD), and the mice were orally treated with NEPROBIN at doses of 100, 200, and 400 mg/kg/day for two weeks. NEPROBIN treatment significantly reduced AD-induced elevations in blood urea, serum creatinine, and urinary β2-microglobulin levels. Markers of oxidative stress and kidney damage were notably lower in the kidneys of NEPROBIN-treated mice. Furthermore, NEPROBIN effectively mitigated the AD-induced inflammatory response in the kidneys, with a marked reduction in cytokine and chemokine expression. This decrease in inflammation was associated with a significant reduction in tubulointerstitial fibrosis. Overall, NEPROBIN alleviated renal damage and fibrosis by directly targeting renal oxidative stress and inflammation, highlighting its potential as a therapeutic agent for CKD. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

22 pages, 2316 KiB  
Review
Is the vIL-10 Protein from Cytomegalovirus Associated with the Potential Development of Acute Lymphoblastic Leukemia?
by Ruvalcaba-Hernández Pamela, Mata-Rocha Minerva, Cruz-Muñoz Mario Ernesto, Mejía-Aranguré Juan Manuel, Sánchez-Escobar Norberto, Arenas-Huertero Francisco, Melchor-Doncel de la Torre Silvia, Rangel-López Angélica, Jiménez-Hernández Elva, Nuñez-Enriquez Juan Carlos, Ochoa Sara, Xicohtencatl-Cortes Juan, Cruz-Córdova Ariadnna, Figueroa-Arredondo Paula and Arellano-Galindo José
Viruses 2025, 17(3), 435; https://doi.org/10.3390/v17030435 - 18 Mar 2025
Viewed by 942
Abstract
Leukemia is a hematologic malignancy; acute lymphoblastic leukemia (ALL) is the most prevalent subtype among children rather than in adults. Orthoherpesviridae family members produce proteins during latent infection phases that may contribute to cancer development. One such protein, viral interleukin-10 (vIL-10), closely resembles [...] Read more.
Leukemia is a hematologic malignancy; acute lymphoblastic leukemia (ALL) is the most prevalent subtype among children rather than in adults. Orthoherpesviridae family members produce proteins during latent infection phases that may contribute to cancer development. One such protein, viral interleukin-10 (vIL-10), closely resembles human interleukin-10 (IL-10) in structure. Research has explored the involvement of human cytomegalovirus (hCMV) in the pathogenesis of ALL. However, the limited characterization of its latent-phase proteins restricts a full understanding of the relationship between hCMV infection and leukemia progression. Studies have shown that hCMV induces an inflammatory response during infection, marked by the release of cytokines and chemokines. Inflammation may, therefore, play a role in how hCMV contributes to oncogenesis in pediatric ALL, possibly mediated by latent viral proteins. The classification of a virus as oncogenic is based on its alignment with cancer’s established hallmarks. Viruses can manipulate host cellular mechanisms, causing dysregulated cell proliferation, evasion of apoptosis, and genomic instability. These processes lead to mutations, chromosomal abnormalities, and chronic inflammation, all of which are vital for carcinogenesis. This study aims to investigate the role of vIL-10 during the latent phase of hCMV as a potential factor in leukemia development. Full article
(This article belongs to the Special Issue Molecular Biology of Human Cytomegalovirus)
Show Figures

Figure 1

46 pages, 3950 KiB  
Review
Proinflammatory Cytokines in Chronic Respiratory Diseases and Their Management
by Vivek P. Chavda, Rajashri Bezbaruah, Nasima Ahmed, Shahnaz Alom, Bedanta Bhattacharjee, Lakshmi Vineela Nalla, Damanbhalang Rynjah, Laura Kate Gadanec and Vasso Apostolopoulos
Cells 2025, 14(6), 400; https://doi.org/10.3390/cells14060400 - 9 Mar 2025
Cited by 2 | Viewed by 2928
Abstract
Pulmonary homeostasis can be agitated either by external environmental insults or endogenous factors produced during respiratory/pulmonary diseases. The lungs counter these insults by initiating mechanisms of inflammation as a localized, non-specific first-line defense response. Cytokines are small signaling glycoprotein molecules that control the [...] Read more.
Pulmonary homeostasis can be agitated either by external environmental insults or endogenous factors produced during respiratory/pulmonary diseases. The lungs counter these insults by initiating mechanisms of inflammation as a localized, non-specific first-line defense response. Cytokines are small signaling glycoprotein molecules that control the immune response. They are formed by numerous categories of cell types and induce the movement, growth, differentiation, and death of cells. During respiratory diseases, multiple proinflammatory cytokines play a crucial role in orchestrating chronic inflammation and structural changes in the respiratory tract by recruiting inflammatory cells and maintaining the release of growth factors to maintain inflammation. The issue aggravates when the inflammatory response is exaggerated and/or cytokine production becomes dysregulated. In such instances, unresolving and chronic inflammatory reactions and cytokine production accelerate airway remodeling and maladaptive outcomes. Pro-inflammatory cytokines generate these deleterious consequences through interactions with receptors, which in turn initiate a signal in the cell, triggering a response. The cytokine profile and inflammatory cascade seen in different pulmonary diseases vary and have become fundamental targets for advancement in new therapeutic strategies for lung diseases. There are considerable therapeutic approaches that target cytokine-mediated inflammation in pulmonary diseases; however, blocking specific cytokines may not contribute to clinical benefit. Alternatively, broad-spectrum anti-inflammatory approaches are more likely to be clinically effective. Herein, this comprehensive review of the literature identifies various cytokines (e.g., interleukins, chemokines, and growth factors) involved in pulmonary inflammation and the pathogenesis of respiratory diseases (e.g., asthma, chronic obstructive pulmonary, lung cancer, pneumonia, and pulmonary fibrosis) and investigates targeted therapeutic treatment approaches. Full article
(This article belongs to the Topic Inflammation: The Cause of all Diseases 2.0)
Show Figures

Figure 1

13 pages, 4445 KiB  
Article
Granulocyte-Macrophage Colony Stimulating Factor Receptor Contributes to Plexiform Neurofibroma Initiation
by Jay Pundavela, Ashley Hall, Samantha Anne Dinglasan, Kwangmin Choi, Tilat A. Rizvi, Bruce C. Trapnell, Jianqiang Wu and Nancy Ratner
Cancers 2025, 17(5), 905; https://doi.org/10.3390/cancers17050905 - 6 Mar 2025
Viewed by 819
Abstract
Plexiform neurofibroma (PNF) is an immune cell-rich peripheral nerve sheath tumor that develops primarily in individuals with Neurofibromatosis Type 1 (NF1). Granulocyte-macrophage colony stimulating factor receptor-β (GM-CSFR-βc) is a shared component of receptors for the cytokines GM-CSF, IL-3, and IL-5, ligands [...] Read more.
Plexiform neurofibroma (PNF) is an immune cell-rich peripheral nerve sheath tumor that develops primarily in individuals with Neurofibromatosis Type 1 (NF1). Granulocyte-macrophage colony stimulating factor receptor-β (GM-CSFR-βc) is a shared component of receptors for the cytokines GM-CSF, IL-3, and IL-5, ligands with immunomodulatory and tumor promoting roles. In the present study, we use genetically engineered mouse model of neurofibroma. We identified the expression of GM-CSFR-βc and GM-CSFR-α on PNF cells and on macrophages and dendritic cells in the PNF, using the Nf1f/f; DhhCre mouse model of neurofibroma formation. Genetic deletion of GM-CSFR-βc in this model reduced the number of PNFs, which was associated with decreased numbers of tumor-associated Iba1+ macrophages and CD11c+ dendritic cells (DC), while loss of GM-CSFR-α had no effect. Deletion of GM-CSFR-α or GM-CSFR-βc did not improve mouse survival or the structure of Remak bundles in peripheral nerves. Proteome analysis of tumor lysates showed altered levels of numerous cytokines after receptor loss, suggesting that the compensatory effects of other cyto/chemokines maintain a proinflammatory environment promoting neurofibroma. Thus, GM-CSFR-βc signaling contributes modestly to neurofibroma formation, apparently independently of its ligand GM-CSF. Full article
(This article belongs to the Special Issue Neurofibromatosis Type 1 (NF1) Related Tumors)
Show Figures

Figure 1

11 pages, 2147 KiB  
Technical Note
GPCRVS - AI-driven Decision Support System for GPCR Virtual Screening
by Dorota Latek, Khushil Prajapati, Paulina Dragan, Matthew Merski and Przemysław Osial
Int. J. Mol. Sci. 2025, 26(5), 2160; https://doi.org/10.3390/ijms26052160 - 27 Feb 2025
Cited by 1 | Viewed by 1425
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and most frequently used family of molecular drug targets. The simplicity of GPCR drug design results from their common seven-transmembrane-helix topology and well-understood signaling pathways. GPCRs are extremely sensitive to slight changes in the chemical structure [...] Read more.
G protein-coupled receptors (GPCRs) constitute the largest and most frequently used family of molecular drug targets. The simplicity of GPCR drug design results from their common seven-transmembrane-helix topology and well-understood signaling pathways. GPCRs are extremely sensitive to slight changes in the chemical structure of compounds, which allows for the reliable design of highly selective and specific drugs. Only recently has the number of GPCR structures, both in their active and inactive conformations, together with their active ligands, become sufficient to comprehensively apply machine learning in decision support systems to predict compound activity in drug design. Here, we describe GPCRVS, an efficient machine learning system for the online assessment of the compound activity against several GPCR targets, including peptide- and protein-binding GPCRs, which are the most difficult for virtual screening tasks. As a decision support system, GPCRVS evaluates compounds in terms of their activity range, the pharmacological effect they exert on the receptor, and the binding mode they could demonstrate for different types and subtypes of GPCRs. GPCRVS allows for the evaluation of compounds ranging from small molecules to short peptides provided in common chemical file formats. The results of the activity class assignment and the binding affinity prediction are provided in comparison with predictions for known active ligands of each included GPCR. Multiclass classification in GPCRVS, handling incomplete and fuzzy biological data, was validated on ChEMBL and Google Patents-retrieved data sets for class B GPCRs and chemokine CC and CXC receptors. Full article
(This article belongs to the Special Issue G Protein-Coupled Receptors)
Show Figures

Figure 1

15 pages, 3281 KiB  
Article
Nucleocapsid Protein of SARS-CoV-2 Upregulates RANTES Expression in A172 Glioblastoma Cells
by Bakhytgul Gadilgereyeva, Zhanar Kunushpayeva, Mira Abdrakhmanova, Aizere Khassenova, Nail Minigulov, Timo Burster and Olena Filchakova
Molecules 2025, 30(5), 1066; https://doi.org/10.3390/molecules30051066 - 26 Feb 2025
Viewed by 932
Abstract
SARS-CoV-2, the pathogenic virus that induces COVID-19 disease, contains four structural proteins in its virion. The nucleocapsid (N) protein is one of the four structural proteins that play a crucial role in the assembly of viral RNA into ribonucleoprotein. In addition, the N [...] Read more.
SARS-CoV-2, the pathogenic virus that induces COVID-19 disease, contains four structural proteins in its virion. The nucleocapsid (N) protein is one of the four structural proteins that play a crucial role in the assembly of viral RNA into ribonucleoprotein. In addition, the N protein contributes to viral pathogenesis. One of the functions attributed to the N protein is the triggering of cytokine release by lung epithelial cells, macrophages, and monocytes. This study addresses the cellular effects of the N protein of SARS-CoV-2 on cells of glial origin. We report the upregulation of the RANTES chemokine in A172 glioblastoma cells at both the mRNA and protein levels in response to exposure to SARS-CoV-2 nucleocapsid protein. The N protein did not have an effect on cell viability and cell migration. Full article
Show Figures

Figure 1

12 pages, 1188 KiB  
Article
The Detection of COVID-19-Related Multivariate Biomarker Immune Response in Pediatric Patients: Statistical Aspects
by Michael Brimacombe, Aishwarya Jadhav, David A. Lawrence, Kyle Carson, William T. Lee, Alexander H. Hogan, Katherine W. Herbst, Michael A. Lynes and Juan C. Salazar
Viruses 2025, 17(3), 297; https://doi.org/10.3390/v17030297 - 21 Feb 2025
Viewed by 673
Abstract
The development of new point-of-care diagnostic testing tools for the detection of infectious diseases such as COVID-19 are a key aspect of clinical care and research. Accurate predictive classification methods are required to correctly identify and treat patients. Here, the onset of multisystem [...] Read more.
The development of new point-of-care diagnostic testing tools for the detection of infectious diseases such as COVID-19 are a key aspect of clinical care and research. Accurate predictive classification methods are required to correctly identify and treat patients. Here, the onset of multisystem inflammatory syndrome in children (MIS-C), a more serious form of COVID-19, was predicted in a pediatric population using a set of multivariate immunological biomarker expression values. A first-stage bivariate detection of statistically significant biomarkers was obtained from a chosen set of standard cytokines and chemokine biomarkers considered relevant to COVID-19-related infection and disease. To incorporate the observed correlation structure among the resulting set of significant biomarkers, dimension reduction was then applied in the form of principal components. A second-stage logistic regression model using a small number of the principal component variables provided a highly predictive classification model for MIS-C. The resulting model was shown to compare favorably with an artificial neural network-based predictive model. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 259 KiB  
Review
CX3CL1 Regulation of Gliosis in Neuroinflammatory and Neuroprotective Processes
by Irene L. Gutiérrez, David Martín-Hernández, Karina S. MacDowell, Borja García-Bueno, Javier R. Caso, Juan C. Leza and José L. M. Madrigal
Int. J. Mol. Sci. 2025, 26(3), 959; https://doi.org/10.3390/ijms26030959 - 23 Jan 2025
Viewed by 1313
Abstract
Among the different chemokines, C-X3-C motif chemokine ligand 1 or CX3CL1, also named fractalkine, is one of the most interesting due to its characteristics, including its unique structure, not shared by any other chemokine, and its ability to function both in a membrane-bound [...] Read more.
Among the different chemokines, C-X3-C motif chemokine ligand 1 or CX3CL1, also named fractalkine, is one of the most interesting due to its characteristics, including its unique structure, not shared by any other chemokine, and its ability to function both in a membrane-bound form and in a soluble form, among others. However, undoubtedly, its most relevant characteristic from the neuroscientific point of view is its role as a messenger used by neurons to communicate with microglia. The study of the interaction between both cell types and the key role that CX3CL1 seems to play has facilitated the identification of CX3CL1 as a crucial modulator of microglial activation and a promising target in the fight against neuroinflammation. As a result, numerous studies have contributed to elucidate the involvement of CX3CL1 and its specific receptor CCX3CR1 in the progression of different neuroinflammatory and neurodegenerative processes, with Alzheimer’s and Parkinson’s diseases being the most studied ones. However, the different animal and cellular models used to reproduce the pathological conditions to be analyzed, as well as the difficulties inherent to studies performed on human samples, have hindered the collection of compatible results in many cases. In this review, we summarize some of the most relevant data describing the alterations found for the CX3CL1/CX3CR1 signaling axis in different neurodegenerative conditions in which neuroinflammation is known to play a relevant role. Full article
14 pages, 1999 KiB  
Article
Phlorofucofuroeckol-A: A Natural Compound with Potential to Attenuate Inflammatory Diseases Caused by Airborne Fine Dust
by Eun-Gyeong Lee, Sung-Kun Yim, Sang-Min Kang, Byung Jae Ahn, Chang-Kwon Kim, Mina Lee, Dongseob Tark and Gun-Hee Lee
Medicina 2025, 61(1), 165; https://doi.org/10.3390/medicina61010165 - 20 Jan 2025
Viewed by 1345
Abstract
Background and Objectives: Persistent exposure to airborne fine dust (FD) particles contributing to air pollution has been linked to various human health issues, including respiratory inflammation, allergies, and skin diseases. We aimed to identify potential seaweed anti-inflammatory bioactive reagents and determine their [...] Read more.
Background and Objectives: Persistent exposure to airborne fine dust (FD) particles contributing to air pollution has been linked to various human health issues, including respiratory inflammation, allergies, and skin diseases. We aimed to identify potential seaweed anti-inflammatory bioactive reagents and determine their effects on systemic inflammatory responses induced by FD particles. Materials and Methods: While exploring anti-inflammatory bioactive reagents, we purified compounds with potential anti-inflammatory effects from the seaweed extracts of Ecklonia cava, Ecklonia stolonifera, and Codium fragile. Structural analyses of the purified compounds siphonaxanthin (Sx), fucoxanthin (Fx), dieckol (Dk), and phlorofucofuroeckol-A (PFF-A) were performed using NMR and LC-MS/MS. Results: Notably, these compounds, especially PFF-A, showed significant protective effects against FD-induced inflammatory responses in RAW 264.7 cells without cytotoxicity. Further investigation of inflammatory-associated signaling demonstrated that PFF-A inhibited IL-1β expression by modulating the NF-κB/MAPK signal pathway in FD-induced RAW 264.7 cells. Additionally, gene profiling revealed the early activation of various signature genes involved in the production of inflammatory cytokines and chemokines using gene profiling. Treatment with PFF-A markedly reduced the expression levels of pro-inflammatory and apoptosis-related genes and even elevated the Bmp gene families. Conclusions: These results suggested that PFF-A is a potential natural therapeutic candidate for managing FD-induced inflammatory response. Full article
Show Figures

Figure 1

15 pages, 834 KiB  
Review
The Role of the Immune Response to Helicobacter pylori Antigens and Its Relevance in Gastric Disorders
by Luigi Santacroce, Skender Topi, Concetta Cafiero, Raffaele Palmirotta and Emilio Jirillo
Gastrointest. Disord. 2025, 7(1), 6; https://doi.org/10.3390/gidisord7010006 - 14 Jan 2025
Cited by 2 | Viewed by 1967
Abstract
Helicobacter pylori (H.p.) is a Gram-negative bacterium endowed with gastric tropism. H.p. infection is widely spread throughout the world, accounting for various pathologies, such as peptic ulcer, gastric cancer, mucosa-associated lymphoid tissue lymphoma, and extra-gastric manifestations. This bacterium possesses several virulence [...] Read more.
Helicobacter pylori (H.p.) is a Gram-negative bacterium endowed with gastric tropism. H.p. infection is widely spread throughout the world, accounting for various pathologies, such as peptic ulcer, gastric cancer, mucosa-associated lymphoid tissue lymphoma, and extra-gastric manifestations. This bacterium possesses several virulence factors, e.g., lipopolysaccharides (LPS), the toxins CagA and VacA, and adhesins, which elicit a robust immune response during the initial phase of the infection. Of note, the lipid A moiety of the LPS exhibits a lower endotoxic potency than that of other LPSs, thus facilitating infection through a mechanism of immune escape. H.p. colonization of the gastric mucosa induces an initial protective immune response with innate immune cells, e.g., neutrophils, monocytes, and macrophages, which engulf and kill bacteria. Moreover, the same cells, along with gastric epithelial cells, secrete cytokines and chemokines, which recruit T cells [T helper (h)1 and Th17 cells] to the site of infection, thus leading to H.p. eradication. In a large subset of individuals, the perturbation of such an immune equilibrium leads to a harmful response, with an expansion of T regulatory (TREG) cells, which suppress the protective immune response. In fact, TREG cells, via the production of interleukin (IL)-10, downregulate Th1- and Th17-related cytokines, thus allowing H.p. survival and the perpetuation of inflammation. As far as the humoral immune response is concerned, B cells, upon H.p. stimulation, produce autoreactive antibodies, and IgG anti-Lex antibodies are harmful to the gastric mucosa. In this review, the structure and function of H.p. antigenic components and immune mechanisms elicited by this bacterium will be described in relation to gastric damage. Full article
(This article belongs to the Special Issue Feature Papers in Gastrointestinal Disorders in 2023-2024)
Show Figures

Figure 1

13 pages, 1122 KiB  
Review
Immunological Regulation of Fibrosis During Heart Failure: It Takes Two to Tango
by Vinay Kumar and Shyam S. Bansal
Biomolecules 2025, 15(1), 58; https://doi.org/10.3390/biom15010058 - 3 Jan 2025
Cited by 1 | Viewed by 1461
Abstract
Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self [...] Read more.
Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling. Incomplete resolution coupled with sustained low-grade inflammation during dilated cardiomyopathy precipitates a “frustrated” immune cell response resulting in unconstrained pro-fibrotic and pro-hypertrophic signaling to induce maladaptive structural and functional changes in the myocardium. The aims of this review are to (i) briefly summarize the role of key immune cells that regulate wound healing during MI and fibrosis during LV remodeling; (ii) underscore phenotypic diversities in immune cells and their subsets to underscore their role in regulating fibrotic responses, and, last but not the least, (iii) highlight gaps in our understanding that restrict the translation of immuno-modulatory therapies from the preclinical models to heart failure patients. Full article
Show Figures

Figure 1

Back to TopTop