Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (711)

Search Parameters:
Keywords = chemical strengthening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1310 KiB  
Article
Enhancing Energy Efficiency of Electric Grade Isopropyl Alcohol Production Process by Using Noble Thermally Coupled Distillation Technology
by Neha Agarwal, Nguyen Nhu Nga, Le Cao Nhien, Raisa Aulia Hanifah, Minkyu Kim and Moonyong Lee
Energies 2025, 18(15), 4159; https://doi.org/10.3390/en18154159 - 5 Aug 2025
Abstract
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent [...] Read more.
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent feed that consists of IPA and water, along with other impurities. Modeling and energy optimization were performed for a conventional distillation train as a base case by using the rigorous process simulator Aspen Plus V12.1. To improve energy efficiency, various options for intensifying distillation were examined. The side-stream preconcentration column was subsequently replaced by a dividing wall column (DWC) with two side streams, i.e., a Kaibel column, reducing the total energy consumption of corresponding distillation columns by 9.1% compared to the base case. Further strengthening was achieved by combining two columns in the preconcentration process into a single Kaibel column, resulting in a 22.8% reduction in reboiler duty compared to the base case. Optimization using the response surface methodology identified key operating parameters, such as side-draw positions and stage design, which significantly influence both energy efficiency and separation quality. The intensified Kaibel setup offers significant energy efficiencies and simplified column design, suggesting enormous potential for process intensification in energy-intensive distillation processes at the industrial level, including the IPA purification process. Full article
Show Figures

Figure 1

40 pages, 1142 KiB  
Review
The Blurred Lines Between New Psychoactive Substances and Potential Chemical Weapons
by Loreto N. Valenzuela-Tapia, Cristóbal A. Quintul, Nataly D. Rubio-Concha, Luis Toledo-Ríos, Catalina Salas-Kuscevic, Andrea V. Leisewitz, Pamela Cámpora-Oñate and Javier Campanini-Salinas
Toxics 2025, 13(8), 659; https://doi.org/10.3390/toxics13080659 - 1 Aug 2025
Viewed by 197
Abstract
The historical use of toxic chemicals to cause intentional harm has evolved from blister agents in World War I to highly lethal organophosphates and emerging families of chemicals, such as Novichok. In turn, medical or recreational substances like fentanyl, lysergamides, and phencyclidine pose [...] Read more.
The historical use of toxic chemicals to cause intentional harm has evolved from blister agents in World War I to highly lethal organophosphates and emerging families of chemicals, such as Novichok. In turn, medical or recreational substances like fentanyl, lysergamides, and phencyclidine pose a growing risk of hostile use, particularly related to the rapid proliferation of new psychoactive substances (NPSs). A narrative literature review was conducted covering specialized databases (PubMed, ScienceDirect, SciELO, Google Scholar) and sources from international organizations (OPCW, UNODC, ONU), analyzing historical and recent cases of the use of nerve agents in conflicts and the use of NPSs for hostile purposes. The main families of conventional agents (G, V, A series, and Novichok) and NPSs (lysergamides, PCP, fentanyl derivatives) were identified, highlighting their ease of synthesis, high toxicity profiles, and the regulatory gaps that facilitate their illicit production. In this scenario, it is essential to strengthen regulatory frameworks, surveillance systems, and ethical protocols in chemical research, as well as to promote international cooperation to prevent these substances from becoming chemical threats. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Figure 1

18 pages, 2695 KiB  
Article
Environmentally Sustainable Functionalized WS2 Nanoparticles as Curing Promoters and Interface Modifiers in Epoxy Nanocomposites
by Lyazzat Tastanova, Amirbek Bekeshev, Sultan Nurlybay, Andrey Shcherbakov and Anton Mostovoy
Nanomaterials 2025, 15(15), 1145; https://doi.org/10.3390/nano15151145 - 24 Jul 2025
Viewed by 366
Abstract
This study investigates the effect of the surface functionalization of tungsten disulfide (WS2) nanoparticles with aminoacetic acid (glycine) on the structure, curing behavior, and mechanical performance of epoxy nanocomposites. Aminoacetic acid, as a non-toxic, bio-based modifier, enables a sustainable approach to [...] Read more.
This study investigates the effect of the surface functionalization of tungsten disulfide (WS2) nanoparticles with aminoacetic acid (glycine) on the structure, curing behavior, and mechanical performance of epoxy nanocomposites. Aminoacetic acid, as a non-toxic, bio-based modifier, enables a sustainable approach to producing more efficient nanofillers. Functionalization, as confirmed by FTIR, EDS, and XRD analyses, led to elevated surface polarity and greater chemical affinity between WS2 and the epoxy matrix, thereby promoting uniform nanoparticle dispersion. The strengthened interfacial bonding resulted in a notable decrease in the curing onset temperature—from 51 °C (for pristine WS2) to 43 °C—accompanied by an increase in polymerization enthalpy from 566 J/g to 639 J/g, which reflects more extensive crosslinking. The SEM examination of fracture surfaces revealed tortuous crack paths and localized plastic deformation zones, indicating superior fracture resistance. Mechanical testing showed marked improvements in flexural and tensile strength, modulus, and impact toughness at the optimal WS2 loading of 0.5 phr and a 7.5 wt% aminoacetic acid concentration. The surface-modified WS2 nanoparticles, which perform dual functions, not only reinforce interfacial adhesion and structural uniformity but also accelerate the curing process through chemical interaction with epoxy groups. These findings support the development of high-performance, environmentally sustainable epoxy nanocomposites utilizing amino acid-modified 2D nanofillers. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

130 pages, 2839 KiB  
Review
Issues Relative to the Welding of Nickel and Its Alloys
by Adam Rylski and Krzysztof Siczek
Materials 2025, 18(15), 3433; https://doi.org/10.3390/ma18153433 - 22 Jul 2025
Viewed by 261
Abstract
Nickel is used in aerospace, military, energy, and chemical sectors. Commercially pure (CP) Ni, and its alloys, including solid-solution strengthened (SSS), precipitation strengthened (PS), and specialty alloys (SA), are widely utilized, typically at elevated temperatures, in corrosive settings and in cryogenic milieu. Ni [...] Read more.
Nickel is used in aerospace, military, energy, and chemical sectors. Commercially pure (CP) Ni, and its alloys, including solid-solution strengthened (SSS), precipitation strengthened (PS), and specialty alloys (SA), are widely utilized, typically at elevated temperatures, in corrosive settings and in cryogenic milieu. Ni or Ni-based alloys frequently require welding realized, inter alia, via methods using electric arc and beam power. Tungsten inert gas (TIG) and Electron-beam welding (EBW) have been utilized most often. Friction stir welding (FSW) is the most promising solid-state welding technique for connecting Ni and its alloys. The primary weldability issues related to Ni and its alloys are porosity, as well as hot and warm cracking. CP Ni exhibits superior weldability. It is vulnerable to porosity and cracking during the solidification of the weld metal. Typically, SSS alloys demonstrate superior weldability when compared to PS Ni alloys; however, both types may experience weld metal solidification cracking, liquation cracking in the partially melted and heat-affected zones, as well as ductility-dip cracking (DDC). Furthermore, PS alloys are prone to strain-age cracking (SAC). The weldability of specialty Ni alloys is limited, and brazing might provide a solution. Employing appropriate filler metal, welding settings, and minimal restraint can reduce or avert cracking. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 7197 KiB  
Article
Simulation of Water–Energy–Food–Carbon Nexus in the Agricultural Production Process in Liaocheng Based on the System Dynamics (SD)
by Wenshuang Yuan, Hao Wang, Yuyu Liu, Song Han, Xin Cong and Zhenghe Xu
Sustainability 2025, 17(14), 6607; https://doi.org/10.3390/su17146607 - 19 Jul 2025
Viewed by 384
Abstract
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes [...] Read more.
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes including crop cultivation, animal husbandry, and agricultural input. Additionally, a simulation model of the water–energy–food–carbon nexus (WEFC-Nexus) for Liaocheng’s agricultural production process was developed. Using Vensim PLE 10.0.0 software, this study constructed a WEFC-Nexus model encompassing four major subsystems: economic development, agricultural production, agricultural inputs, and water use. The model explored four policy scenarios: business-as-usual scenario (S1), ideal agricultural development (S2), strengthening agricultural investment (S3), and reducing agricultural input costs (S4). It also forecast the trends in carbon emissions and primary sector GDP under these different scenarios from 2023 to 2030. The conclusions were as follows: (1) Total agricultural carbon emissions exhibited a three-phase trajectory, namely, “rapid growth (2010–2014)–sharp decline (2015–2020)–gradual rebound (2021–2022)”, with sectoral contributions ranked as livestock farming (50%) > agricultural inputs (27%) > crop cultivation (23%). (2) The carbon emissions per unit of primary sector GDP (CEAG) for S2, S3, and S4 decreased by 8.86%, 5.79%, and 7.72%, respectively, compared to S1. The relationship between the carbon emissions under the four scenarios is S3 > S1 > S2 > S4. The relationship between the four scenarios in the primary sector GDP is S3 > S2 > S4 > S1. S2 can both control carbon emissions and achieve growth in primary industry output. Policy recommendations emphasize reducing chemical fertilizer use, optimizing livestock management, enhancing agricultural technology efficiency, and adjusting agricultural structures to balance economic development with environmental sustainability. Full article
Show Figures

Figure 1

18 pages, 29742 KiB  
Article
Enhanced Oilfield-Produced-Water Treatment Using Fe3+-Augmented Composite Bioreactor: Performance and Microbial Community Dynamics
by Qiushi Zhao, Chunmao Chen, Zhongxi Chen, Hongman Shan and Jiahao Liang
Bioengineering 2025, 12(7), 784; https://doi.org/10.3390/bioengineering12070784 - 19 Jul 2025
Viewed by 495
Abstract
The presence of recalcitrant organic compounds in oilfield-produced-water poses significant challenges for conventional biological treatment technologies. In this study, an Fe3+-augmented composite bioreactor was developed to enhance the multi-pollutant removal performance and to elucidate the associated microbial community dynamics. The Fe [...] Read more.
The presence of recalcitrant organic compounds in oilfield-produced-water poses significant challenges for conventional biological treatment technologies. In this study, an Fe3+-augmented composite bioreactor was developed to enhance the multi-pollutant removal performance and to elucidate the associated microbial community dynamics. The Fe3+-augmented system achieved efficient removal of oil (99.18 ± 0.91%), suspended solids (65.81 ± 17.55%), chemical oxygen demand (48.63 ± 15.15%), and polymers (57.72 ± 14.87%). The anaerobic compartment served as the core biotreatment unit, playing a pivotal role in microbial pollutant degradation. High-throughput sequencing indicated that Fe3+ supplementation strengthened syntrophic interactions between iron-reducing bacteria (Trichococcus and Bacillus) and methanogenic archaea (Methanobacterium and Methanomethylovorans), thereby facilitating the biodegradation of long-chain hydrocarbons (e.g., eicosane and nonadecane). Further metabolic function analysis identified long-chain-fatty-acid CoA ligase (EC 6.2.1.3) as a key enzyme mediating the interplay between hydrocarbon degradation and nitrogen cycling. This study elucidated the ecological mechanisms governing Fe3+-mediated multi-pollutant removal in a composite bioreactor and highlighted the potential of this approach for efficient, sustainable, and adaptable management of produced water in the petroleum industry. Full article
Show Figures

Figure 1

13 pages, 5908 KiB  
Article
Experimental Study on the Strength Characteristics of Modified Guilin Red Clay
by Wenwu Chen, Zhigao Xie, Jiguang Chen, Mengyao Hong, Xiaobo Wang, Haofeng Zhou and Bai Yang
Buildings 2025, 15(14), 2533; https://doi.org/10.3390/buildings15142533 - 18 Jul 2025
Viewed by 232
Abstract
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to [...] Read more.
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to evaluate the strength characteristics and microstructural changes in modified clay specimens with varying dosages. The results demonstrate distinct strengthening mechanisms: Lignin exhibits an optimal dosage (6%), significantly increasing cohesion and internal friction angle through physical reinforcement (“soil fiber” formation), but higher dosages (8%) lead to particle separation and strength reduction. In contrast, lime provides continuous and substantial strength enhancement with increasing dosage (up to 8%), primarily through chemical reactions producing cementitious compounds (e.g., C-S-H, C-A-H) that densify the structure. Consequently, lime-modified clay shows significantly higher cohesion and internal friction angle compared to lignin-modified clay at equivalent or higher dosages, with corresponding stress–strain curves shifting from enhanced (strain-hardening) to softening behavior. These findings provide practical insights into red clay improvement in geotechnical engineering applications. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

10 pages, 715 KiB  
Perspective
The Role of Trifluoromethyl and Trifluoromethoxy Groups in Medicinal Chemistry: Implications for Drug Design
by Manuel Novás and Maria J. Matos
Molecules 2025, 30(14), 3009; https://doi.org/10.3390/molecules30143009 - 18 Jul 2025
Viewed by 2422
Abstract
One of the key strategies in drug design involves modifying molecular scaffolds with specific chemical groups, or side chains, to enhance biological and physicochemical properties. These modifications can strengthen interactions with biological targets or improve pharmacokinetic and physicochemical characteristics, factors that are critical [...] Read more.
One of the key strategies in drug design involves modifying molecular scaffolds with specific chemical groups, or side chains, to enhance biological and physicochemical properties. These modifications can strengthen interactions with biological targets or improve pharmacokinetic and physicochemical characteristics, factors that are critical in transforming a compound into a viable drug candidate. In this overview, we focus on the presence of trifluoromethyl and trifluoromethoxy groups on different molecules, highlighting their relevance and impact in medicinal chemistry. The discussion and future perspectives in the field are based on a comprehensive review of current literature, with data sourced mainly from SciFinder and PubMed. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

35 pages, 1398 KiB  
Review
Process Intensification of Anaerobic Digestion of Biowastes for Improved Biomethane Production: A Review
by Sahil Sahil and Sonil Nanda
Sustainability 2025, 17(14), 6553; https://doi.org/10.3390/su17146553 - 17 Jul 2025
Viewed by 555
Abstract
Anaerobic digestion is a widely adopted technique for biologically converting organic biomass to biogas under oxygen-limited conditions. However, several factors, including the properties of biomass and its complex structure, make it challenging to degrade biomass effectively, thereby reducing the overall efficiency of anaerobic [...] Read more.
Anaerobic digestion is a widely adopted technique for biologically converting organic biomass to biogas under oxygen-limited conditions. However, several factors, including the properties of biomass and its complex structure, make it challenging to degrade biomass effectively, thereby reducing the overall efficiency of anaerobic digestion. This review examines the recent advancements in commonly used pretreatment techniques, including physical, chemical, and biological methods, and their impact on the biodegradability of organic waste for anaerobic digestion. Furthermore, this review explores integrated approaches that utilize two or more pretreatments to achieve synergistic effects on biomass degradation. This article highlights various additives and their physicochemical characteristics, which play a vital role in stimulating direct interspecies electron transfer to enhance biomethanation reaction rates. Direct electron interspecies transfer is a crucial aspect that accelerates electron transfer among syntrophic microbial communities during anaerobic digestion, thereby enhancing biomethane formation. Finally, this article reviews potential approaches, identifies research gaps, and outlines future directions to strengthen and develop advanced pretreatment strategies and novel additives to improve anaerobic digestion processes for generating high-value biogas. Full article
Show Figures

Figure 1

17 pages, 5004 KiB  
Article
Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta
by Minyan Wu, Ningning Cai, Jiong Fang, Ling Huang, Xurong Shi, Yezheng Wu, Li Li and Hongbing Qin
Atmosphere 2025, 16(7), 867; https://doi.org/10.3390/atmos16070867 - 16 Jul 2025
Viewed by 327
Abstract
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics [...] Read more.
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics and components of PM2.5, and quantified the contributions of meteorological conditions, regional transport, and local emissions to the summertime PM2.5 surge in a typical Yangtze River Delta (YRD) city. Chemical composition analysis highlighted a sharp increase in nitrate ions (NO3, contributing up to 49% during peak pollution), with calcium ion (Ca2+) and sulfate ion (SO42−) concentrations rising to 2 times and 7.5 times those of clean periods, respectively. Results from the random forest model demonstrated that emission sources (74%) dominated this pollution episode, significantly surpassing the meteorological contribution (26%). The Weather Research and Forecasting model combined with the Community Multiscale Air Quality model (WRF–CMAQ) further revealed that local emissions contributed the most to PM2.5 concentrations in Suzhou (46.3%), while external transport primarily originated from upwind cities such as Shanghai and Jiaxing. The findings indicate synergistic effects from dust sources, industrial emissions, and mobile sources. Validation using electricity consumption and key enterprise emission data confirmed that intensive local industrial activities exacerbated PM2.5 accumulation. Recommendations include strengthening regulations on local industrial and mobile source emissions, and enhancing regional joint prevention and control mechanisms to mitigate cross-boundary transport impacts. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

9 pages, 1767 KiB  
Article
Nondestructive Hardness Assessment of Chemically Strengthened Glass
by Geovana Lira Santana, Raphael Barbosa, Vinicius Tribuzi, Filippo Ghiglieno, Edgar Dutra Zanotto, Lino Misoguti and Paulo Henrique Dias Ferreira
Optics 2025, 6(3), 31; https://doi.org/10.3390/opt6030031 - 15 Jul 2025
Viewed by 236
Abstract
Chemically strengthened glass is widely used for its remarkable fracture strength, mechanical performance, and scratch resistance. Assessing its hardness is crucial to evaluating improvements from chemical tempering. However, conventional methods like Vickers hardness tests are destructive, altering the sample surface. This study presents [...] Read more.
Chemically strengthened glass is widely used for its remarkable fracture strength, mechanical performance, and scratch resistance. Assessing its hardness is crucial to evaluating improvements from chemical tempering. However, conventional methods like Vickers hardness tests are destructive, altering the sample surface. This study presents a novel, rapid, and nondestructive testing (NDT) approach by correlating the nonlinear refractive index (n2) with surface hardness. Using ultrafast laser pulses, we measured the n2 cross-section via the nonlinear ellipse rotation (NER) signal in Gorilla®-type glass subjected to ion exchange (Na+ by K+). A microscope objective lens provided a penetration resolution of ≈5.5 μm, enabling a localized NER signal analysis. We demonstrate a correlation between the NER signal and hardness, offering a promising pathway for advanced, noninvasive characterization. This approach provides a reliable alternative to traditional destructive techniques, with potential applications in industrial quality control and material science research. Full article
Show Figures

Figure 1

21 pages, 1390 KiB  
Review
Singlet Oxygen in Food: A Review on Its Formation, Oxidative Damages, Quenchers, and Applications in Preservation
by Limei Xiao, Shoujing Zheng, Zhengrong Lin, Chunyan Zhang, Hua Zhang, Jiebo Chen and Lu Wang
Antioxidants 2025, 14(7), 865; https://doi.org/10.3390/antiox14070865 - 15 Jul 2025
Viewed by 436
Abstract
Singlet oxygen (1O2) has been proven to simultaneously cause oxidative damage to food and the death of microorganisms. In order to enhance the utilization of 1O2 in food systems, this review presents an overview of recent studies [...] Read more.
Singlet oxygen (1O2) has been proven to simultaneously cause oxidative damage to food and the death of microorganisms. In order to enhance the utilization of 1O2 in food systems, this review presents an overview of recent studies on the formation mechanisms of 1O2, the damage mechanisms of 1O2 on food, the self-protective mechanisms in food against 1O2, and the applications of 1O2 in food preservation based on the narrative review guidelines. Studies have shown that in vegetable and meat systems, 1O2 is mainly produced through photochemical reactions. It has been suggested that proteins and lipids are the main target compounds for oxygen in food. Natural antioxidants in food (such as vitamin E and carotenoids) can remove 1O2 through physical or chemical quenching mechanisms. Novel preservation techniques featuring a thin film technology coupled with photosensitizers have been employed on the surface of food to prolong the shelf life. However, how to balance the bactericidal effect of 1O2 and its oxidative effects on food still requires further research. It could be feasible that 1O2 will play an increasingly important role in the future food industry on the premise of strengthening supervision over food safety risks induced by 1O2. Full article
Show Figures

Figure 1

18 pages, 12112 KiB  
Article
MgO–C Refractories with Al2O3 and TiO2 Nano-Additives: Insights from X-Ray Micro-Computed Tomography and Conventional Techniques for Assessing Corrosion and Oxidation
by Sevastia Gkiouzel, Vasileios Ioannou, Christina Gioti, Konstantinos C. Vasilopoulos, Angelos Ntaflos, Alkiviadis S. Paipetis, Constantinos E. Salmas and Michael A. Karakassides
Nanomanufacturing 2025, 5(3), 10; https://doi.org/10.3390/nanomanufacturing5030010 - 9 Jul 2025
Viewed by 251
Abstract
MgO–C refractory materials were developed by incorporating different ratios of alumina/titania nano-additives which were synthesized chemically. Their physical and mechanical properties, oxidation resistance, slag wettability, bulk density, apparent porosity, cold crushing strength, oxidation index, and closed porosity were tested, evaluated, and compared using [...] Read more.
MgO–C refractory materials were developed by incorporating different ratios of alumina/titania nano-additives which were synthesized chemically. Their physical and mechanical properties, oxidation resistance, slag wettability, bulk density, apparent porosity, cold crushing strength, oxidation index, and closed porosity were tested, evaluated, and compared using conventional techniques as well as X-ray micro-computed tomography (µCT). This investigation indicated a slight degradation of physical properties and mechanical strengthening which was stronger for samples with increased alumina content. Oxidation and corrosion extent were tested both with X-ray tomography and conventional methods. The first method allowed for the calculation of the oxidation index, the detection of closed porosity, and an improved analysis of the internal corrosion, avoiding the sectioning of the materials. This result confirms the supremacy of the first technique. On the contrary, although conventional methods such as the Archimedes procedure cannot detect close porosity, they provide more accurate measurements of the physical properties of refractories. This study shows that conventional methods exhibit superiority in investigations of the pore structures of refractories for pore sizes in the range 1–2 μm, while the use of the μCT system is limited for pore sizes equal to or larger than 20 μm. Full article
Show Figures

Figure 1

20 pages, 18136 KiB  
Article
Effect of Oxidation and Silane Modifications Applied to the Bonded Material and Fibers in Carbon-Fiber-Reinforced Composite Adhesive Joints
by Iclal Avinc Akpinar, Ömer Faruk Koçyiğit and Selcuk Atasoy
Polymers 2025, 17(14), 1893; https://doi.org/10.3390/polym17141893 - 8 Jul 2025
Cited by 1 | Viewed by 447
Abstract
In carbon-fiber-reinforced composites, hydroxyl and carboxyl groups are formed on the carbon fiber surface as a result of the oxidation process applied to the fibers. These groups strengthen the interfacial bond between the fibers and the epoxy resin. In addition, the silanization process [...] Read more.
In carbon-fiber-reinforced composites, hydroxyl and carboxyl groups are formed on the carbon fiber surface as a result of the oxidation process applied to the fibers. These groups strengthen the interfacial bond between the fibers and the epoxy resin. In addition, the silanization process chemically bonds amino and glycidyl groups to the fiber surface, further improving adhesion and thus optimizing the performance of the joint. In light of this, the primary objective of the present study is to optimize the performance of adhesive joints by applying oxidation and silane modifications to the fibers added to the adhesive and the bonded metal materials. In this study, carbon fibers underwent oxidation treatment for 5, 10, and 20 min, followed by silanization with 3-aminopropyltriethoxysilane (APTES) and glycidoxypropyltrimethoxysilane (GPTMS) silane agents. Additionally, the surfaces of the bonded aluminum materials were subjected to a 10 min oxidation process, followed by silanization with APTES and GPTMS silane agents. The tensile test performance of single-lap joints, bonded using chemically surface-treated aluminum and composite adhesives containing 2 wt.% chemically treated carbon fibers, was experimentally investigated. According to the contact angle measurement results obtained in this study, aluminum materials subjected to oxidation treatment exhibited superhydrophilic behavior, whereas materials subjected to silanization displayed hydrophilic behavior. A similar trend was observed in the fibers. The performance of adhesive joints increased by approximately 14% when only the aluminum materials underwent oxidation treatment. Moreover, the addition of 2 wt.% carbon fibers to the adhesive enhanced the joint performance by approximately 31%. However, when oxidation treatments of varying durations were applied to both the aluminum materials and the fibers, the joint performance improved by approximately 35% to 40%. When silanization treatments were applied in addition to the oxidation treatments on aluminum and fiber surfaces, the joint performance increased by approximately 68% to 70%. These findings were corroborated through analyses performed using 3D profilometry and Scanning Electron Microscopy (SEM) imaging. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

22 pages, 7210 KiB  
Article
Polyethylene Storage Tanks Strengthened Externally with Fiber-Reinforced Polymer Laminates
by Ghassan Hachem, Wassim Raphael and Rafic Faddoul
Polymers 2025, 17(13), 1858; https://doi.org/10.3390/polym17131858 - 3 Jul 2025
Viewed by 535
Abstract
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this [...] Read more.
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this study, a method of external strengthening using fiber-reinforced polymer (FRP) laminates is proposed and explored. The research involves a combination of laboratory testing on carbon fiber-reinforced polymer (CFRP)-strengthened polyethylene strips and finite element simulations aimed at assessing bond strength, anchorage length, and structural behavior. Results from tensile tests indicate that slippage tends to occur unless the anchorage length exceeds approximately 450 mm. To evaluate surface preparation, grayscale image analysis was used, showing that mechanical sanding increased intensity variation by over 127%, pointing to better bonding potential. Simulation results show that unreinforced tanks under seismic loads display stress levels beyond their elastic limit, along with signs of elephant foot buckling—common in thin-walled cylindrical structures. Applying CFRPs in a full-wrap setup notably reduced these effects. This approach offers a viable alternative to full tank replacement, especially in regions where cost, access, or operational constraints make replacement impractical. The applicability is particularly valuable in seismically active and densely populated areas, where rapid, non-invasive retrofitting is essential. Based on the experimental findings, a simple formula is proposed to estimate the anchorage length required for effective crack repair. Overall, the study demonstrates that CFRP retrofitting, paired with proper surface treatment, can significantly enhance the seismic performance of polyethylene tanks while avoiding costly and disruptive replacement strategies. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

Back to TopTop