Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = chemical grouting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5153 KiB  
Article
Macro- and Micro-Analysis of Factors Influencing the Performance of Sustained-Release Foamed Cement Materials
by Yijun Chen, Shengyu Wang, Yu Zhao, Pan Guo, Lei Zhang, Yingchun Cai, Jiandong Wei and Heng Liu
Materials 2025, 18(14), 3330; https://doi.org/10.3390/ma18143330 - 15 Jul 2025
Viewed by 314
Abstract
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic [...] Read more.
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic mechanism analysis, the study systematically investigates the performance modulation mechanisms of controlled-release foamed cement using additives such as heavy calcium powder (0–20%), calcium chloride (0.2–1.2%), latex powder (0.2–1.2%), and polypropylene fiber (0.2–0.8%). The study innovatively employs a titanium silicate coupling agent coating technique (with the coating agent amounting to 25% of the catalyst’s mass) to delay foaming by 40 s. Scanning electron microscopy (SEM) and pore structure analysis reveal the microscopic essence of material performance optimization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 7900 KiB  
Article
Microbial Culture Condition Optimization and Fiber Reinforcement on Microbial-Induced Carbonate Precipitation for Soil Stabilization
by Changjun Wang, Xiaoxiao Li, Jianjun Zhu, Wenzhu Wei, Xinran Qu, Ling Wang, Ninghui Sun and Lei Zhang
Sustainability 2025, 17(7), 3101; https://doi.org/10.3390/su17073101 - 31 Mar 2025
Viewed by 829
Abstract
Traditional soil stabilization methods, including cement and chemical grouting, are energy-intensive and environmentally harmful. Microbial-induced carbonate precipitation (MICP) technology offers a sustainable alternative by utilizing microorganisms to precipitate calcium carbonate, binding soil particles to improve mechanical properties. However, the application of MICP technology [...] Read more.
Traditional soil stabilization methods, including cement and chemical grouting, are energy-intensive and environmentally harmful. Microbial-induced carbonate precipitation (MICP) technology offers a sustainable alternative by utilizing microorganisms to precipitate calcium carbonate, binding soil particles to improve mechanical properties. However, the application of MICP technology in soil stabilization still faces certain challenges. First, the mineralization efficiency of microorganisms needs to be improved to optimize the uniformity and stability of carbonate precipitation, thereby enhancing the effectiveness of soil stabilization. Second, MICP-treated soil generally exhibits high fracture brittleness, which may limit its practical engineering applications. Therefore, improving microbial mineralization efficiency and enhancing the ductility and overall integrity of stabilized soil remain key issues that need to be addressed for the broader application of MICP technology. This study addresses these challenges by optimizing microbial culture conditions and incorporating polyethylene fiber reinforcement. The experiments utilized sandy soil and polyethylene fibers, with Bacillus pasteurii as the microbial strain. The overall experimental process included microbial cultivation, specimen solidification, and performance testing. Optimization experiments for microbial culture conditions indicated that the optimal urea concentration was 0.5 mol/L and the optimal pH was 9, significantly enhancing microbial growth and urease activity, thereby improving calcium carbonate production efficiency. Specimens with different fiber contents (0% to 1%) were prepared using a stepwise intermittent grouting technique to form cylindrical samples. Performance test results indicated that at a fiber content of 0.6%, the unconfined compressive strength (UCS) increased by 80%, while at a fiber content of 0.4%, the permeability coefficient reached its minimum value (5.83 × 10−5 cm/s). Furthermore, microscopic analyses, including X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM–EDS), revealed the synergistic effect between calcite precipitation and fiber reinforcement. The combined use of MICP and fiber reinforcement presents an eco-friendly and efficient strategy for soil stabilization, with significant potential for geotechnical engineering applications. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

19 pages, 38168 KiB  
Article
Exploring Sustainable Mineralization Pathways: Multi-Factor Impacts on Microbial-Induced Carbonate Precipitation and Crystals Characteristics
by Meng Xie, Junhui Zhang, Weiming Guan, Guangming Shi, Fangcan Ji, Xichen Zhao, Xuewei Zhang and Xiaocheng Xia
Processes 2025, 13(3), 711; https://doi.org/10.3390/pr13030711 - 28 Feb 2025
Viewed by 800
Abstract
Microbial-induced calcium carbonate precipitation is an efficient and environmentally friendly soil stabilization technology. To explore the mineralization performance of carbonate precipitation, this study selects three factors, including the type of cementing solution (TCS), the cementing solution concentration (CSC), and the ratio of bacteria [...] Read more.
Microbial-induced calcium carbonate precipitation is an efficient and environmentally friendly soil stabilization technology. To explore the mineralization performance of carbonate precipitation, this study selects three factors, including the type of cementing solution (TCS), the cementing solution concentration (CSC), and the ratio of bacteria to cementing solution (B/C ratio), to investigate their effects on microbial mineralization. This study reveals the influence of each factor on the amount and rate of carbonate precipitation and analyzes the changes in the characteristics of carbonate precipitation crystals, such as the crystal diameter. The experimental results show that (1) the mineralization effect of magnesium ions and calcium ions results in higher precipitation amounts and rates than copper ions, with less environmental pollution. The concentration of the grout solution is positively correlated with the precipitation amount and negatively correlated with the precipitation rate, while the B/C ratio shows the opposite trend. (2) The crystal diameter of CaCO3 between crystals reduces as the B/C ratio decreases and the CSC increases. (3) The characteristics of MgCO3 crystals are mainly affected by the CSC. Both excessively high and low concentrations lead to an increase in crystal diameter. (4) The characteristics of CuCO3 crystals are relatively stable, with smaller crystal particles maintained at around 1 μm. This study can provide a reference for the reinforcement of different types of soils, offering optimal reinforcement solutions based on the required crystal size, carbonate generation amount, and generation rate. It reduces resource waste and unnecessary chemical use, providing a theoretical foundation for sustainable soil remediation and ecological construction. Full article
Show Figures

Graphical abstract

22 pages, 15915 KiB  
Article
Determining a Suitable Reinforcement Strategy for TBM Advance in a Gully Fault Zone Without Jamming—A Numerical Analysis
by Yuanzhuo Li, Qinglou Li, Zhongsheng Tan, Linfeng Li and Baojin Zhang
Appl. Sci. 2025, 15(5), 2258; https://doi.org/10.3390/app15052258 - 20 Feb 2025
Viewed by 623
Abstract
This study aims to identify the most suitable pre-reinforcement support measures to prevent TBM jamming when passing through the fractured zone of a gully fault. Given the high likelihood of jamming in such areas, the research focuses on selecting the most effective support [...] Read more.
This study aims to identify the most suitable pre-reinforcement support measures to prevent TBM jamming when passing through the fractured zone of a gully fault. Given the high likelihood of jamming in such areas, the research focuses on selecting the most effective support system by considering factors such as surrounding rock stability, strata displacement, support structure stress, and cost-effectiveness. Theoretical analysis is employed to predict TBM jamming risks, based on design data, a 10 m gully unit and fractured rock mass were established at 75 m in the excavation direction with assigned parameters. Support effects of pipe curtains, grouting, anchors, and arch supports were analyzed under four conditions: chemical grouting, conduit installation, advanced pipe grouting, and double-layer pipe grouting. On-site verification reveals that TBM jamming occurs when the resisting torque on the cutter exceeds the maximum torque the cutter can generate. For the gully fault, pre-reinforcement measures are essential to stabilize the surrounding rock. Among the different methods, surface drilling reinforcement is the most effective. It significantly improves the surrounding rock’s stability, reducing the plastic zone’s depth by approximately 52.3% compared to the advanced pipe shed method. The axial force on the anchors decreases by 77.9–83.8%, arch stress is reduced by 68.9–90.8%, and tunnel deformation is minimized by 2.13–50.78%, all of which contribute to enhancing the safety of the initial support structure. On-site coring results, TBM boring parameters, and deformation monitoring data confirm that the surface drilling pre-reinforcement method outperforms the grouting pre-reinforcement for the pipe shed, ensuring the safe excavation of TBM in the gully fault conditions. These findings provide valuable insights for TBM tunnel construction in similar geological environments. Full article
Show Figures

Figure 1

13 pages, 6339 KiB  
Article
Reinforcing the Flexural Fracture Zone in the Xiangjiaba Hydropower Station by Simultaneously Applying Wet-Milling Cement and Chemical Compound Grouting
by Da Zhang, Tao Wei, Wenjian Tang, Wei Han, Yan Wu and Lingmin Liao
Buildings 2025, 15(3), 340; https://doi.org/10.3390/buildings15030340 - 23 Jan 2025
Viewed by 658
Abstract
This paper reports the results of a full-scale field test that was conducted to assess the performance of the use of wet-milling cement and chemical compound grouting in the same hole to reinforce a flexural fracture zone. Wet-milling cement and chemical compound grouting [...] Read more.
This paper reports the results of a full-scale field test that was conducted to assess the performance of the use of wet-milling cement and chemical compound grouting in the same hole to reinforce a flexural fracture zone. Wet-milling cement and chemical compound grouting methods were used to treat a layer of the flexural fracture zone with a thickness of 19 m. The procedures of the cement–chemical compound grouting method were described in detail, and the results of the normal water pressure test, fatigue water pressure test, failure water pressure test, and shear wave velocity test suggested that the working effects in the epoxy testing area were better than those in the acrylic acid salt test area, which further indicated that the cement–chemical compound grouting method was feasible. In addition, the improvement mechanism of the cement–chemical compound grouting technology was studied; this method is beneficial for solving the problem of the reinforcement effect not being ideal in practical engineering and further improving the compactness of dam structures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 4363 KiB  
Article
Delayed-Expansion Capsule Sealing Material for Coal Mine Overburden Isolated Grouting
by Dayang Xuan, Xiaoming Ning, Kaifang Lu, Jian Li and Jialin Xu
Appl. Sci. 2024, 14(24), 11595; https://doi.org/10.3390/app142411595 - 12 Dec 2024
Viewed by 802
Abstract
Grouting technology is an important method of ground reinforcement and can effectively improve the stability of engineering rock mass. During overburden isolated grouting in coal mines, the influence of unexpected fractures may lead to substantial grout leakage, resulting in ineffective grouting. The existing [...] Read more.
Grouting technology is an important method of ground reinforcement and can effectively improve the stability of engineering rock mass. During overburden isolated grouting in coal mines, the influence of unexpected fractures may lead to substantial grout leakage, resulting in ineffective grouting. The existing natural sedimentation sealing method is mainly applicable to small fractures and low grout flow, while the chemical-reagent rapid-sealing method can cause grouting channel blocking, making it less suitable for overburden isolated grouting. This paper proposes a “capsule” sealing method, detailing the preparation of the sealing material and evaluation of its properties through testing. The sealing material, prepared using the air suspension method, was coated with paraffin on a superabsorbent polymer (SAP) material, which has delayed expansion characteristics. Although this material does not expand within the grouting fractures of overburden rock, it expands rapidly upon entering the leakage channel, accumulating within the channel to achieve effective sealing. A simulation experimental system was designed to simulate the sealing of the slurry leakage channel, and the sealing characteristics were experimentally investigated. Under consistent particle size conditions, a higher film cover ratio led to a more pronounced delayed expansion effect and extended the time required for the sealing material to achieve its maximum expansion. When the content of sealing material with particle sizes of 20 mesh, 40 mesh, and 60 mesh, and a film ratio of 20% was 1.0%, the fractures below 4 mm were effectively sealed. When the fracture aperture is 4–6 mm, the sealing material with a covering ratio of 20% or 30% should have a minimum content of 1.5%, while the sealing material with a covering ratio of 50% should have a minimum content of 2.0%. The findings of this study outline an effective prevention and control method for the sealing of abnormal slurry leakage in overburden isolated grouting engineering. Full article
Show Figures

Figure 1

15 pages, 5853 KiB  
Article
Spatiotemporal Evolution Mine Groundwater’s Hydrogeochemical Characteristics Under Influence of Mining and Grouting in Gubei Coal Mine, China
by Guanhong Xiao and Haifeng Lu
Water 2024, 16(22), 3217; https://doi.org/10.3390/w16223217 - 8 Nov 2024
Viewed by 1111
Abstract
Geological conditions or human activities will affect the hydrochemical characteristics and formation mechanism of mine groundwater to varying degrees. The northern part of the Beiyi mining area of Gubei Coal Mine is taken as the research area in this study. Based on the [...] Read more.
Geological conditions or human activities will affect the hydrochemical characteristics and formation mechanism of mine groundwater to varying degrees. The northern part of the Beiyi mining area of Gubei Coal Mine is taken as the research area in this study. Based on the data of 52 groups of limestone water (Taihui water) samples in the primary environment, in the mining stage and after grouting, the spatial and temporal variation trend of the chemical characteristics of Taihui water was studied by means of constant index mathematical statistics, a Piper diagram, total ionic salinity, correlation analysis, the ion ratio method and the saturation index. The purpose of this study is to analyze the influence of special geological structures, mining activities and grouting treatment on the formation process of the chemical characteristics of Taihui water, and to provide a basis for the identification of water inrush sources and the resource utilization of deep mine water in this area. The results show that in the three stages, the order of cation concentration is Na+ + K+ > Ca2+ > Mg2+, and the order of anion concentration is changed from Cl > SO42− > HCO3 to Cl > HCO3 > SO42−. The hydrochemical type is the most abundant in the mining stage, and tends to be unified after grouting. The dissolution of carbonate minerals, gypsum, rock salt and silicate minerals; cation exchange; pyrite oxidation; and the mixing of grouting precipitation liquid mainly occur in the limestone water. These effects are enhanced or weakened due to the influence of pumping and drainage and grouting precipitation liquid. The results of this study may be beneficial to the sustainable utilization of deep groundwater resources in other similar mines, and promote the establishment of data management and identification mechanisms of water inrush sources in deep coal seams. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 8606 KiB  
Article
Effects of Polymer–Curing Agent Ratio on Rheological, Mechanical Properties and Chemical Characterization of Epoxy-Modified Cement Composite Grouting Materials
by Yuxuan Wang and Jiehao Wu
Polymers 2024, 16(18), 2665; https://doi.org/10.3390/polym16182665 - 22 Sep 2024
Cited by 2 | Viewed by 1360
Abstract
This study designs and uses water-borne epoxy resin (WBER) and curing agent (CA) to modify traditional cement-based grouting for tunnels. The purpose of this paper is to analyze the rheological and mechanical properties of composite grouting with different ratios of WBER and CA [...] Read more.
This study designs and uses water-borne epoxy resin (WBER) and curing agent (CA) to modify traditional cement-based grouting for tunnels. The purpose of this paper is to analyze the rheological and mechanical properties of composite grouting with different ratios of WBER and CA and analyze the modification mechanism by means of chemical characterization to explore the feasibility of WBER as a high-performance modifier for tunnel construction. The composite grouting is prepared by mixing cement paste with polymer emulsion. A series of experiments was carried out to investigate the effects of WBER and CA, including the slump test, viscosity, rheological curve, setting time, bleeding rate, grain size distribution, zeta potential, compressive and splitting tensile strength, X-ray diffraction(XRD), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), on the composite grout. The results show that WBER improves grout fluidity, which decreases in combination with CA, while also reducing the average particle size of the composite grout for a more rational size distribution. Optimal uniaxial (38.9%) and splitting tensile strength (48.7%) of the grout are achieved with a WBER to CA mass ratio of 2:1. WBER accelerates cement hydration, with the modification centered on the reaction between free Ca2+ and polymer-OH, significantly enhancing the strength, fluidity, and stability of the polymer-modified composite grout compared to traditional cement-based grouting. Full article
(This article belongs to the Special Issue New Technologies of Epoxy Resin)
Show Figures

Figure 1

26 pages, 36425 KiB  
Article
Study on Bonding Characteristics of Polymer Grouted Concrete-Soil Interface
by Lina Wang, Xiaodong Yang, Yueliang Diao and Chengchao Guo
Polymers 2024, 16(15), 2207; https://doi.org/10.3390/polym16152207 - 2 Aug 2024
Cited by 2 | Viewed by 1691
Abstract
The issue of interfacial shear damage has been a significant challenge in the field of geotechnical engineering, particularly in the context of diaphragm walls and surrounding soils. Polymer grouting is a more commonly used repair and reinforcement method but its application to interface [...] Read more.
The issue of interfacial shear damage has been a significant challenge in the field of geotechnical engineering, particularly in the context of diaphragm walls and surrounding soils. Polymer grouting is a more commonly used repair and reinforcement method but its application to interface repair and reinforcement in the field of geotechnical engineering is still relatively rare. Consequently, this paper presents a new polymer grouting material for use in grouting reinforcement at the interface between concrete and soils. The bonding characteristics and shear damage mode of the interface after grouting were investigated by the direct shear test, and the whole process of interface shear damage was investigated by digital image correlation (DIC) technology. Finally, the reinforcement mechanism was analyzed by microscopic analysis. The results demonstrate that the permeable polymer is capable of effectively filling the pores of soil particles and penetrating into the concrete-soil interface. Through a chemical reaction with water in the soil, the polymer cements the soil particles together, forming chemical adhesion at the interface and thereby achieving the desired reinforcement and repair effect. In the shear process, as the normal stress increased, the horizontal displacement and horizontal compressive strain at the distal end of the loading end decreased, while the maximum vertical displacement and maximum vertical strain of the cured soil also decreased. The results of scanning electron microscopy (SEM) demonstrated that the four groups of test polymers exhibited a reduction in soil porosity of 53.47%, 58.79%, 52.71%, and 54.12%, respectively. Additionally, the form of concrete-soil interfacial bonding was observed in the concrete-cohesive layer-cured soil mode. The findings of this study provide a foundation for further research on diaphragm wall repair and reinforcement. Full article
(This article belongs to the Special Issue Application and Development of Polymers in Geotechnical Engineering)
Show Figures

Figure 1

20 pages, 2749 KiB  
Review
Exploration and Frontier of Coal Spontaneous Combustion Fire Prevention Materials
by Dandan Han, Guchen Niu, Hongqing Zhu, Tianyao Chang, Bing Liu, Yongbo Ren, Yu Wang and Baolin Song
Processes 2024, 12(6), 1155; https://doi.org/10.3390/pr12061155 - 3 Jun 2024
Cited by 14 | Viewed by 1572
Abstract
Mine fires have always been one of the disasters that restrict coal mining in China and endanger the life safety of underground workers. The research and development of new fire prevention materials are undoubtedly important to ensure the safe and efficient production of [...] Read more.
Mine fires have always been one of the disasters that restrict coal mining in China and endanger the life safety of underground workers. The research and development of new fire prevention materials are undoubtedly important to ensure the safe and efficient production of modern mines. At present, the main inhibiting materials used are grout material, inert gas, retarding agent, foam, gel, and so on. In order to explore the current situation of coal spontaneous combustion (CSC) fire prevention, the existing fire prevention materials were reviewed and prospected from three aspects: physical, chemical, and physicochemical inhibition. The results show that, at present, most of the methods of physicochemical inhibition are used to inhibit CSC. Antioxidants have become popular chemical inhibitors in recent years. In terms of physical inhibition, emerging biomass-based green materials, including foams, gels, and gel foams, are used to inhibit CSC. In addition, CSC fire-fighting materials also have shortcomings, including incomplete research on the mechanism of material action, poor stability of inhibitory properties, low efficiency, and economic and environmental protection to be improved. The future research direction of fire-fighting materials will be based on theoretical experiments and numerical simulation to study the mechanism and characteristics of CSC and develop new directional suppression materials with physicochemical synergies. These findings have extremely important implications for improving materials designed to prevent CSC. Full article
(This article belongs to the Special Issue Intelligent Safety Monitoring and Prevention Process in Coal Mines)
Show Figures

Figure 1

20 pages, 8014 KiB  
Article
Exploring Olive Pit Powder as a Filler for Enhanced Thermal Insulation in Epoxy Mortars to Increase Sustainability in Building Construction
by Veronica D’Eusanio, Andrea Marchetti, Stefano Pastorelli, Michele Silvestri, Lucia Bertacchini and Lorenzo Tassi
AppliedChem 2024, 4(2), 192-211; https://doi.org/10.3390/appliedchem4020013 - 7 May 2024
Cited by 1 | Viewed by 2401
Abstract
This article explores the use of olive pit powder (OPP) as a promising resource for enhancing the thermal insulation properties of epoxy mortars. A comprehensive analysis of the chemical and physical characteristics of OPP was conducted, employing analytical techniques including scanning electron microscopy [...] Read more.
This article explores the use of olive pit powder (OPP) as a promising resource for enhancing the thermal insulation properties of epoxy mortars. A comprehensive analysis of the chemical and physical characteristics of OPP was conducted, employing analytical techniques including scanning electron microscopy (SEM), thermogravimetric analysis and emitted gas analysis (TG-MS-EGA), and proximal analysis. Experimental samples of epoxy grout were prepared by using different proportions of a conventional inorganic filler, quartz powder, and OPP within an epoxy mortar matrix. As the percentage of OPP in the formulation increased, the microstructure of the samples gradually became more porous and less compact. Consequently, there was a decrease in density with the increase in OPP content. The 28-day compressive strength decreased from 46 MPa to 12.8 MPa, respectively, in the samples containing only quartz (Sample E) and only OPP (Sample A) as a filler. Similarly, flexural strength decreased from 35.2 to 5.3 MPa. The thermal conductivity decreased from 0.3 W/mK in Sample E to 0.11 in Sample A. Therefore, increasing the %wt of OPP improved insulating properties while reducing the mechanical resistance values. This study highlights the potential of OPP as an environmentally friendly and thermally efficient filler for epoxy mortars, thereby promoting sustainable construction practices. Full article
Show Figures

Figure 1

14 pages, 13832 KiB  
Article
Prevention of Water Seepage Impact on the Soluble Rocks Using Colloidal Silica
by Aram Aziz, Abbas Soroush, Seyed Mohammad Fattahi, Reza Imam and Mehrdad Ghahremani
Water 2024, 16(9), 1211; https://doi.org/10.3390/w16091211 - 24 Apr 2024
Cited by 1 | Viewed by 1774
Abstract
Water seepage flow can dissolve soluble minerals that exist in rock formations. With the development of the excavated area due to dissolution, the water seepage velocity (discharge) into the dissolved rock will also increase. Therefore, water seepage and dissolution propagation are two interrelated [...] Read more.
Water seepage flow can dissolve soluble minerals that exist in rock formations. With the development of the excavated area due to dissolution, the water seepage velocity (discharge) into the dissolved rock will also increase. Therefore, water seepage and dissolution propagation are two interrelated processes. Mosul Dam foundation has experienced these processes since its construction, resulting in karstification in the reservoir and foundation of the dam. The present seepage-dissolution measure to minimize this phenomenon relies on traditional cementitious grouts. However, this measure has not been able to address the issue effectively. Currently, there are a few studies on the chemical remediation of soluble rocks under the influence of high-velocity water flow and water pressure. Therefore, the first part of the current study focuses on the impact of high-velocity water flow and water pressure on the dissolution acceleration of gypsum/anhydrite rocks. In the second part, the waterproof capacity of silica colloidal and its impact on the solubility reduction of the rocks is evaluated. Two distinct laboratory models were designed to simulate rock dissolution in the dam abutments and under the dam. Two sets of experiments were conducted on untreated and silica-treated samples. The experiments were executed on the samples extracted from Fatha Formation outcrop and problematic layers of brecciated gypsum situated at varying depths of the Mosul Dam foundation. The obtained findings reveal that the colloidal silica grout markedly prevents the water seepage impact on the soluble rock and that it can be very useful as an alternative to cement-based grouts. Full article
(This article belongs to the Special Issue Renewable Energy System Flexibility for Water Desalination: Volume II)
Show Figures

Figure 1

13 pages, 3631 KiB  
Communication
Evaluation of Physico-Chemical Characteristics of Cement Superplasticizer Based on Polymelamine Sulphonate
by Asta Judžentienė, Agnė Zdaniauskienė, Ilja Ignatjev and Rūta Druteikienė
Materials 2024, 17(9), 1940; https://doi.org/10.3390/ma17091940 - 23 Apr 2024
Viewed by 1536
Abstract
Cementitious materials are used to construct an engineered barrier in repositories for radioactive waste. The cement matrix may contain a variety of organic compounds, some of which are polymeric admixtures used as plasticizers. Superplasticizers (SPs) are highly effective organic cement additives for reducing [...] Read more.
Cementitious materials are used to construct an engineered barrier in repositories for radioactive waste. The cement matrix may contain a variety of organic compounds, some of which are polymeric admixtures used as plasticizers. Superplasticizers (SPs) are highly effective organic cement additives for reducing water amount, increasing workability, homogeneity, plasticity and the non-segregation of mortars and grouts, improving mechanical properties and resistance to destructive environments. SPs in cement could have an impact on the long-term safety of the disposals of radioactive waste. These organic agents can leach from the cementitious matrix into groundwater and may affect the migration behaviour of radionuclides. The detailed chemical composition and other characteristics of the cement (CEM I 42.5 R, Sweden) used for the leaching experiments were evaluated. It contained mainly CaO (52.51 ± 1.37, %), and the surface area of the cement particles was 13.2 ± 1.3 m2/g. An insignificant increase in pH (from 12.6 ± 0.1 to 12.8 ± 0.1) was observed for the leachates over 10 days. A commercially available cement superplasticizer based on polymelamine sulphonate (PMS) Peramin SMF10 (Peramin AB, Sweden) was chosen for the research. The product’s chemical composition was analysed using wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, while other physico-chemical properties of the PMS superplasticizer were assessed by Raman spectroscopy and thermo-gravimetric analysis. In aqueous solutions and powders of PMS, the same most intensive features were observed at 774 cm−1 (ring out-of-plane deformation), 977 cm−1 (C-N-C bending, SO stretching) and 1055 cm−1 (C-N=C bending) in the Raman spectra. At up to 270 °C, the polymer was thermally stable. Raman and UV/Vis spectroscopies were used to assess the rate of the alkaline degradation of PMS superplasticizer in different aqueous solutions. No changes were observed in the hydrolytic solutions with any of the above analytical methods over a period of 3 years. The results obtained revealed a good thermal and chemical stability (in highly alkaline media, pH = 9.9–12.9) of the PMS polymer. Full article
Show Figures

Figure 1

15 pages, 8403 KiB  
Article
Advancing Construction Efficiency through Geochemical Remediation: Limescale Management in Jet Grout-Driven Pumping Facilities
by No’am Zach Dvory and Yariv Tsafrir
Eng 2024, 5(2), 614-628; https://doi.org/10.3390/eng5020035 - 17 Apr 2024
Cited by 1 | Viewed by 1060
Abstract
We address the challenges of limescale deposition and its management in urban construction sites, specifically within the Sumayil North project in Tel Aviv. Jet grouting, a method increasingly favored over conventional dewatering techniques for its minimal environmental impact and efficiency, is scrutinized for [...] Read more.
We address the challenges of limescale deposition and its management in urban construction sites, specifically within the Sumayil North project in Tel Aviv. Jet grouting, a method increasingly favored over conventional dewatering techniques for its minimal environmental impact and efficiency, is scrutinized for its unintended consequences on groundwater chemistry, particularly in relation to limescale formation. Our investigation centers on a dual approach: dissecting the geochemical dynamics leading to limescale deposition following jet grouting operations, and evaluating a remedial acid injection strategy implemented to counteract this phenomenon. We identify the critical factors influencing aquifer water chemistry through a detailed hydro-chemical analysis encompassing the Pleistocene Coastal Aquifer’s dynamics. The study reveals that the interaction between grout components and aquifer water significantly alters groundwater pH, driving the precipitation of calcium carbonate. The subsequent implementation of a sulfuric acid injection regimen successfully mitigated limescale accumulation, restoring pumping efficiency and neutralizing pH levels. We propose a workflow to manage and prevent limescale, emphasizing preemptive measures like custom grout compositions and controlled dewatering, with strict post-intervention groundwater monitoring. This approach balances operational efficiency, infrastructure integrity, and environmental stewardship in urban construction projects interfacing with sensitive aquifer systems. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

21 pages, 4600 KiB  
Article
Impact of Composition Ratio on the Expansion Behavior of Polyurethane Grout
by Xiaolong Li, Cen Peng, Yanna Ao, Meimei Hao, Yanhui Zhong and Bei Zhang
Materials 2024, 17(8), 1835; https://doi.org/10.3390/ma17081835 - 16 Apr 2024
Cited by 2 | Viewed by 1742
Abstract
Different formulations of foaming polyurethane grout offer controlled expansion rates. This is crucial for precision in filling voids without exerting excessive pressure on surrounding structures, which could potentially cause damage. This study focuses on the impact of composition on the expansion performance of [...] Read more.
Different formulations of foaming polyurethane grout offer controlled expansion rates. This is crucial for precision in filling voids without exerting excessive pressure on surrounding structures, which could potentially cause damage. This study focuses on the impact of composition on the expansion performance of tailor-made polyurethane grouting materials. Initially, multiple unknown chemical reaction kinetic parameters were identified by combining free expansion tests, which involved measuring density and temperature changes, with the particle swarm optimization algorithm. A numerical simulation, integrating chemical kinetic models and fluid flow equations, was established to replicate the free expansion process of polyurethane grout in a cup, aligning with our experimental results. Subsequently, we analyzed the polymerization process of polyurethane grout with varying compositions to determine the effect of composition ratios on grout expansion. Our findings reveal that the expansion ratio of foaming polyurethane is predominantly influenced by the concentrations of physical and chemical foaming agents, followed by isocyanate concentration. Polyol, in contrast, exerts a relatively minor influence. Furthermore, the solubility of the physical foaming agent in the grout determines both its maximum allowable concentration and its maximum contribution to volume increase. This study provides valuable insights for the design and selection of polyurethane grout components tailored to diverse applications. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

Back to TopTop