Prevention of Water Seepage Impact on the Soluble Rocks Using Colloidal Silica
Abstract
:1. Introduction
1.1. Kinetics of Gypsum Dissolution by Water
1.2. Mosul Dam and Geological Setting of Its Foundation
2. Materials and Methods
2.1. Gypsum Rocks and Sampling
2.2. Colloidal Silica Grout
2.3. Sample Treatment
2.4. Velocity-Based Dissolution Test
2.5. Pressure-Based Dissolution Test
2.6. Dissolved Gypsum Measurement Methods
3. Results and Discussion
3.1. Dissolution Test of the Untreated Samples under Different Water Flow Velocity
3.2. Dissolution Test of the Untreated Samples under Pressure
3.3. Treated Samples Results
4. Conclusions
- The findings highlight the noticeable impact of water pressure and water flow velocity on accelerating the dissolution rate of gypsum samples, concurrently lowering the water-sealing effectiveness of the silica gel to protect the samples from dissolution. This means that this material is useful in preventing the water seepage impact on the soluble rocks and can be applied as a grout in protective measures for shallow foundations.
- The adhesion strength between silica and gypsum rocks and the sealing performance of silica gel showed an upward trend over time, which was related to the simultaneous decrease in the dissolution rate of the treated samples. In essence, this material considerably contributes to the decline in the solubility of soluble rocks as curing time extends.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, R.; Hu, Y.; Yan, Z.; Zhao, Y.; Li, Z. Experimental investigation on the effect of water saturation on the failure mechanism and acoustic emission characteristics of sandstone. Int. J. Geomech. 2024, 24, 04024102. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Laue, J.; Knutsson, S.; Sissakian, V. Risk management concepts in dam safety evaluation: Mosul Dam as a case study. J. Civ. Eng. Archit. 2017, 11, 635–652. [Google Scholar]
- Calaforra, J. Karstologı’a de Yesos; Universidad de Almerı´a,p: Almería, Spain, 1998; Volume 384. [Google Scholar]
- Cooper, A. The GIS approach to evaporite-karst geohazards in Great Britain. Environ. Geol. 2008, 53, 981–992. [Google Scholar] [CrossRef]
- Ford, D.C.; Williams, P.W. Karst Geomorphology and Hydrology; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Jeschke, A.A.; Vosbeck, K.; Dreybrodt, W. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochim. Cosmochim. Acta 2001, 65, 27–34. [Google Scholar] [CrossRef]
- Kimchouk, A.B.; Ford, D.C.; Palmer, A.N.; Dreybrodt, W. Speleogenesis Evolution of Karst Aquifers; National Speleological Society: Huntsville, AL, USA, 2000. [Google Scholar]
- White, W.B. Geomorphology and Hydrology of Karst Terrains. 1988. Available online: https://digitalcommons.usf.edu/kip_articles/2160 (accessed on 14 April 2022).
- Warren, J.K. Evaporites: Sediments, Resources and Hydrocarbons; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Stawski, T.M.; Van Driessche, A.E.; Ossorio, M.; Diego Rodriguez-Blanco, J.; Besselink, R.; Benning, L.G. Formation of calcium sulfate through the aggregation of sub-3 nanometre primary species. Nat. Commun. 2016, 7, 11177. [Google Scholar] [CrossRef]
- Mancebo Piqueras, J.A.; Sanz Pérez, E.; Menéndez-Pidal, I. Water seepage beneath dams on soluble evaporite deposits: A laboratory and field study (Caspe Dam, Spain). Bull. Eng. Geol. Environ. 2012, 71, 201–213. [Google Scholar] [CrossRef]
- Milanović, P.; Maksimovich, N.; Meshcheriakova, O.; Milanović, P.; Maksimovich, N.; Meshcheriakova, O. Overview of dams and reservoirs in evaporites. In Dams and Reservoirs in Evaporites; Springer: Cham, Switzerland, 2019; pp. 115–157. [Google Scholar]
- Cooper, A.H.; Calow, R. Avoiding gypsum geohazards: Guidance for planning and construction. Br. Geol. Surv. 1998, unpublished. [Google Scholar]
- Milanovic, P. Water Resources Engineering in Karst; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Sissakian, V.; Al-Ansari, N.; Knutsson, S. Karstification effect on the stability of Mosul Dam and its assessment, North Iraq. Engineering 2014, 6, 84–92. [Google Scholar] [CrossRef]
- Wheeler, M.; Ackers, J.; Bartlett, J.; Tarrant, F.; Dunlop, C.; Campbell, P. Mosul Dam Assessment, Review of 1984 Dam Break and Flood Wave Study for Mosul Dam, Iraq; Black and Veatch: London, UK, 2004. [Google Scholar]
- Kolay, P.K.; Dhakal, B.; Kumar, S.; Puri, V.K. Effect of liquid acrylic polymer on geotechnical properties of fine-grained soils. Int. J. Geosynth. Ground Eng. 2016, 2, 29. [Google Scholar] [CrossRef]
- Sha, F.; Li, S.; Liu, R.; Li, Z.; Zhang, Q. Experimental study on performance of cement-based grouts admixed with fly ash, bentonite, superplasticizer and water glass. Constr. Build. Mater. 2018, 161, 282–291. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N. Mosul dam the full story: Engineering problems. J. Earth Sci. Geotech. Eng. 2016, 6, 213–244. [Google Scholar]
- Sögaard, C.; Funehag, J.; Abbas, Z. Silica sol as grouting material: A physio-chemical analysis. Nano Converg. 2018, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Al-Ansari, N.; Adamo, N.; Knutsson, S.; Laue, J.; Sissakian, V. Mosul dam: Is it the most dangerous dam in the world? Geotech. Geol. Eng. 2020, 38, 5179–5199. [Google Scholar] [CrossRef]
- Sissakian, V.K.; Adamo, N.; Al-Ansari, N. The role of geological investigations for dam siting: Mosul Dam a Case Study. Geotech. Geol. Eng. 2020, 38, 2085–2096. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Zhang, Q.; Cui, J.; Xu, Z.; Li, Z. Experimental study of a new polymer grouting material. Chin. J. Rock Mech. Eng 2010, 29, 3150–3156. [Google Scholar]
- Funehag, J.; Gustafson, G. Design of grouting with silica sol in hard rock–New design criteria tested in the field, Part II. Tunn. Undergr. Space Technol. 2008, 23, 9–17. [Google Scholar] [CrossRef]
- Bodi, J.; Bodi, Z.; Scucka, J.; Martinec, P. Polyurethane grouting technologies. Polyurethane 2012, 1, 307–336. [Google Scholar] [CrossRef]
- Whang, J.; Rumer, R.; Mitchell, J. Chemical-based barrier materials. Assess. Barrier Contain. Technol. Environ. Remediat. Appl. 1995, 9, 211–247. [Google Scholar]
- Agapoulaki, G.; Papadimitriou, A. Rheological Properties of Colloidal Silica as a Means for Designing Passive Stabilization of Liquefiable Soils. 2015. Available online: http://hdl.handle.net/11615/70294 (accessed on 2 May 2023).
- Funehag, J.; Gustafson, G. Design of grouting with silica sol in hard rock–New methods for calculation of penetration length, Part I. Tunn. Undergr. Space Technol. 2008, 23, 1–8. [Google Scholar] [CrossRef]
- Fattah, M.Y.; Al-Ani, M.M.; Al-Lamy, M.T. Studying collapse potential of gypseous soil treated by grouting. Soils Found. 2014, 54, 396–404. [Google Scholar] [CrossRef]
- Al-Ridha, S.; Abbood, A.A.; Hussein, H.H. Improvement of gypsum properties using SF additive. Int. J. Sci. Res. 2015, 6, 504–509. [Google Scholar]
- Nikolaev, A.; Foregina, E. Protective Effect of Films on Gypsum; Izd. Akad. Nauk SSSR: Moscow, Russia, 1944. (In Russian) [Google Scholar]
- Li, J.; Duan, Z. A thermodynamic model for the prediction of phase equilibria and speciation in the H2O–CO2–NaCl–CaCO3–CaSO4 system from 0 to 250 C, 1 to 1000 bar with NaCl concentrations up to halite saturation. Geochim. Cosmochim. Acta 2011, 75, 4351–4376. [Google Scholar] [CrossRef]
- Klimchouk, A. The dissolution and conversion of gypsum and anhydrite. Int. J. Speleol. 1996, 25, 2. [Google Scholar] [CrossRef]
- James, A.; Lupton, A. Gypsum and anhydrite in foundations of hydraulic structures. Geotechnique 1978, 28, 249–272. [Google Scholar] [CrossRef]
- James, A.N. Soluble Materials in Civil Engineering; Ellis Horwood: New York, NY, USA, 1992; p. 73. [Google Scholar]
- Wakeley, L.D.; Kelley, J.R.; Pearson, M.L. Geologic Conceptual Model of Mosul Dam. 2007. Available online: https://digitalcommons.usf.edu/kip_articles/2295 (accessed on 5 July 2021).
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Mosul Dam: Geology and safety concerns. J. Civ. Eng. Archit. 2019, 13, 151–177. [Google Scholar]
- Shen, P.; Hankins, N.; Jefferis, S. Selection of colloidal silica grouts with respect to gelling and erosion behaviour. Geosciences 2017, 7, 6. [Google Scholar] [CrossRef]
- Bos, M.G. Discharge Measurement Structures; Ilri: Addis Ababa, Ethiopia, 1976. [Google Scholar]
- Horvai, G.; Gary, D. Christian, Purnendu (Sandy) Dasgupta and Kevin Schug: Analytical Chemistry; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- James, A.; Kirkpatrick, I. Design of foundations of dams containing soluble rocks and soils. Q. J. Eng. Geol. Hydrogeol. 1980, 13, 189–198. [Google Scholar] [CrossRef]
- Zanbak, C.; Arthur, R.C. Geochemical and engineering aspects of anhydrite/gypsum phase transitions. Bull. Assoc. Eng. Geol. 1986, 23, 419–433. [Google Scholar] [CrossRef]
- Yonekura, R.; Kaga, M. Current chemical grout engineering in Japan. In Grouting, Soil Improvement and Geosynthetics; ASCE: Reston, VA, USA, 1992; pp. 725–736. [Google Scholar]
- Butrón, C.; Axelsson, M.; Gustafson, G. Silica sol for rock grouting: Laboratory testing of strength, fracture behaviour and hydraulic conductivity. Tunn. Undergr. Space Technol. 2009, 24, 603–607. [Google Scholar] [CrossRef]
- Axelsson, M. Mechanical tests on a new non-cementitious grout, silica sol: A laboratory study of the material characteristics. Tunn. Undergr. Space Technol. 2006, 21, 554–560. [Google Scholar] [CrossRef]
Samples | TCs (h) Velocity-Base | TCs (h) Pressure-Base |
---|---|---|
untreated | 528 | 480 |
1 day | 816 | 480 |
7 days | 1104 | 960 |
21 days | 1632 | 1536 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, A.; Soroush, A.; Fattahi, S.M.; Imam, R.; Ghahremani, M. Prevention of Water Seepage Impact on the Soluble Rocks Using Colloidal Silica. Water 2024, 16, 1211. https://doi.org/10.3390/w16091211
Aziz A, Soroush A, Fattahi SM, Imam R, Ghahremani M. Prevention of Water Seepage Impact on the Soluble Rocks Using Colloidal Silica. Water. 2024; 16(9):1211. https://doi.org/10.3390/w16091211
Chicago/Turabian StyleAziz, Aram, Abbas Soroush, Seyed Mohammad Fattahi, Reza Imam, and Mehrdad Ghahremani. 2024. "Prevention of Water Seepage Impact on the Soluble Rocks Using Colloidal Silica" Water 16, no. 9: 1211. https://doi.org/10.3390/w16091211
APA StyleAziz, A., Soroush, A., Fattahi, S. M., Imam, R., & Ghahremani, M. (2024). Prevention of Water Seepage Impact on the Soluble Rocks Using Colloidal Silica. Water, 16(9), 1211. https://doi.org/10.3390/w16091211