Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,983)

Search Parameters:
Keywords = chemical exposure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2923 KB  
Article
Functional and Molecular Characterization of Melamine-Induced Disruption of Human Spermatozoa via Oxidative Stress and Apoptotic Pathways: An In Vitro Study
by Francesca Paola Luongo, Eugenia Annunzi, Rosetta Ponchia, Francesca Girolamo, Giuseppe Morgante, Paola Piomboni and Alice Luddi
Antioxidants 2026, 15(1), 122; https://doi.org/10.3390/antiox15010122 (registering DOI) - 17 Jan 2026
Abstract
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in [...] Read more.
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in vitro effects of melamine on human sperm, under both capacitating and non-capacitating conditions. Functional analyses revealed that the exposure to 0.8 mM melamine, the highest non-cytotoxic concentration in vitro, significantly compromised sperm motility and disrupted key capacitation processes, including tyrosine phosphorylation patterns, cholesterol efflux, and the acrosome reaction. Molecular assessments demonstrated melamine-induced mitochondrial dysfunction, characterized by COX4I1 downregulation, reduced mitochondrial membrane potential, and altered reactive oxygen species production. In parallel, gene expression analyses revealed the activation of apoptotic pathways, with the upregulation of BAX and downregulation of BCL2, changes that were more pronounced during capacitation. Furthermore, melamine exposure significantly increased sperm DNA fragmentation and denaturation, indicating genotoxic stress. Collectively, these findings demonstrate that even low, non-cytotoxic concentrations of melamine compromise sperm function by disrupting capacitation, mitochondrial activity, and genomic integrity. This study identifies capacitation as a critical window of vulnerability and underscores the need to consider melamine as a potential environmental risk factor for male reproductive health. Full article
Show Figures

Figure 1

27 pages, 8939 KB  
Article
A Comprehensive GC-MS Approach for Monitoring Legacy and Emerging Halogenated Contaminants in Human Biomonitoring
by Rossana Comito, Nicholas Kassouf, Alessandro Zappi, Nicolò Interino, Emanuele Porru, Jessica Fiori, Dora Melucci and Francesco Saverio Violante
Separations 2026, 13(1), 36; https://doi.org/10.3390/separations13010036 - 16 Jan 2026
Abstract
Human exposure to persistent organic pollutants such as polychlorinated biphenyls (PCB) and brominated flame retardants (BFR), including both legacy and emerging compounds, remains a concern due to their bioaccumulative nature and potential health effects. Comprehensive analytical methods are necessary to monitor these substances [...] Read more.
Human exposure to persistent organic pollutants such as polychlorinated biphenyls (PCB) and brominated flame retardants (BFR), including both legacy and emerging compounds, remains a concern due to their bioaccumulative nature and potential health effects. Comprehensive analytical methods are necessary to monitor these substances in complex biological matrices, such as human serum. A gas chromatography–mass spectrometry (GC-MS) method was developed for the simultaneous determination of 44 analytes, encompassing PCB and a broad spectrum of BFR with diverse physicochemical properties. The extraction procedure and GC-MS parameters were optimized using a design of experiments approach to maximize performance while minimizing analysis time. The method demonstrated high sensitivity, precision, and accuracy, thereby meeting internationally recognized validation criteria for biomonitoring applications. To further ensure analytical reliability, compound confirmation was achieved using gas chromatography–high-resolution mass spectrometry, providing enhanced selectivity and confidence in identification, particularly for low-level analytes. Key advantages of the method include its applicability to analytes with significantly different chemical behaviors and its capacity to quantify a large number of target compounds simultaneously. This makes it a powerful tool for assessing human exposure to both regulated and emerging halogenated contaminants. Full article
(This article belongs to the Special Issue Novel Solvents and Methods for Extraction of Chemicals)
Show Figures

Figure 1

22 pages, 5824 KB  
Article
In Silico Hazard Assessment of Ototoxicants Through Machine Learning and Computational Systems Biology
by Shu Luan, Chao Ji, Gregory M. Zarus, Christopher M. Reh and Patricia Ruiz
Toxics 2026, 14(1), 82; https://doi.org/10.3390/toxics14010082 - 16 Jan 2026
Abstract
Individuals across their lifespan may experience hearing loss from medications or chemicals, prompting concern about ototoxic environmental exposures. This study applies computational modeling as a screening-level hazard identification and chemical prioritization approach and is not intended to constitute a human health risk assessment [...] Read more.
Individuals across their lifespan may experience hearing loss from medications or chemicals, prompting concern about ototoxic environmental exposures. This study applies computational modeling as a screening-level hazard identification and chemical prioritization approach and is not intended to constitute a human health risk assessment or to estimate exposure- or dose-dependent ototoxic risk. We evaluated in silico drug-induced ototoxicity models on 80 environmental chemicals, excluding 4 with known ototoxicity, and analyzed 76 chemicals using fingerprinting, similarity assessment, and machine learning classification. We compared predicted environmental ototoxicants with ototoxic drugs, paired select polychlorinated biphenyls with the antineoplastic drug mitotane, and used PCB 177 as a case study to construct an ototoxicity pathway. A systems biology framework predicted and compared molecular targets of mitotane and PCB 177 to generate a network-level mechanism. The consensus model (accuracy 0.95 test; 0.90 validation) identified 18 of 76 chemicals as potential ototoxicants within acceptable confidence ranges. Mitotane and PCB 177 were both predicted to disrupt thyroid-stimulating hormone receptor signaling, suggesting thyroid-mediated pathways may contribute to auditory harm; additional targets included AhR, transthyretin, and PXR. Findings indicate overlapping mechanisms involving metabolic, cellular, and inflammatory processes. This work shows that integrated computational modeling can support virtual screening and prioritization for chemical and drug ototoxicity risk assessment. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

14 pages, 2001 KB  
Article
Black Crust-Induced Spalling of Marble: An Multi Analytical Study on the Danbi Stone Carvings
by Jianrui Zha, Bo Sheng, Wenjia Hu, Jiake Chen and Wengang Wu
Chemosensors 2026, 14(1), 24; https://doi.org/10.3390/chemosensors14010024 - 15 Jan 2026
Viewed by 32
Abstract
Black crust and spalling are common deterioration phenomena affecting marble relics, yet their correlation remains inadequately understood. Hyperspectral imaging, reflectance spectroscopy, portable X-ray Fluorescence (p-XRF), infrared thermography, Scanning Electron Microscopy coupled with Energy-Dispersive Spectroscopy (SEM-EDS), and microbiological analysis was employed to connect these [...] Read more.
Black crust and spalling are common deterioration phenomena affecting marble relics, yet their correlation remains inadequately understood. Hyperspectral imaging, reflectance spectroscopy, portable X-ray Fluorescence (p-XRF), infrared thermography, Scanning Electron Microscopy coupled with Energy-Dispersive Spectroscopy (SEM-EDS), and microbiological analysis was employed to connect these two types of deterioration on the Danbi stone carving of the Confucian Temple in Beijing. Spectral and thermal analyses reveal that black crust significantly reduces reflectance and increase solar absorption by 27%, resulting in thermal stress. p-XRF and SEM-EDS analyses indicated that black crust is enriched in Fe, Ti, Zn, Pb, As and clay minerals, while spalling areas display increase Ca, reflecting substrate exposure. Microscopy reveals microcracks at the layer–substrate interface. Microbiological analyses identify Cladosporium anthropophilum and Alternaria alternata as contributors to surface-darkening. These multi-scale datasets collectively demonstrate that alterations in surface chemistry and bio-mediated darkening promoting the formation of black crusts, which subsequently induce marble spalling due to solar absorption and thermal stress. These findings clarify the coupled physical–chemical–biological pathways through which black crust accelerates stone spalling. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Figure 1

31 pages, 793 KB  
Review
When Testosterone Fades: Leydig Cell Aging Shaped by Environmental Toxicants, Metabolic Dysfunction, and Testicular Niche Crosstalk
by Aris Kaltsas, Fotios Dimitriadis, Athanasios Zachariou, Sotirios Koukos, Michael Chrisofos and Nikolaos Sofikitis
Cells 2026, 15(2), 158; https://doi.org/10.3390/cells15020158 - 15 Jan 2026
Viewed by 36
Abstract
Declining Leydig cell steroidogenesis contributes to late-onset hypogonadism and to age-associated impairment of male reproductive health. Determinants of dysfunction extend beyond chronological aging. This review synthesizes recent experimental and translational evidence on cellular and molecular processes that compromise Leydig cell endocrine output and [...] Read more.
Declining Leydig cell steroidogenesis contributes to late-onset hypogonadism and to age-associated impairment of male reproductive health. Determinants of dysfunction extend beyond chronological aging. This review synthesizes recent experimental and translational evidence on cellular and molecular processes that compromise Leydig cell endocrine output and the interstitial niche that supports spermatogenesis. Evidence spanning environmental endocrine-disrupting chemicals (EDCs), obesity and metabolic dysfunction, and testicular aging is integrated with emphasis on oxidative stress, endoplasmic reticulum stress, mitochondrial dysregulation, apoptosis, disrupted autophagy and mitophagy, and senescence-associated remodeling. Across model systems, toxicant exposure and metabolic stress converge on impaired organelle quality control and altered redox signaling, with downstream loss of steroidogenic capacity and, in some settings, premature senescence within the Leydig compartment. Aging further reshapes the testicular microenvironment through inflammatory shifts and biomechanical remodeling and may erode stem and progenitor Leydig cell homeostasis, thereby constraining regenerative potential. Single-cell transcriptomic atlases advance the field by resolving Leydig cell heterogeneity, nominating subsets that appear more vulnerable to stress and aging, and mapping age-dependent rewiring of interstitial cell-to-cell communication with Sertoli cells, peritubular myoid cells, vascular cells, and immune cells. Many mechanistic insights derive from rodent in vivo studies and in vitro platforms that include immortalized Leydig cell lines, and validation in human tissue and human clinical cohorts remains uneven. Together, these findings frame mechanistically informed opportunities to preserve endogenous androgen production and fertility through exposure mitigation, metabolic optimization, fertility-preserving endocrine stimulation, and strategies that target inflammation, senescence, and regenerative capacity. Full article
Show Figures

Figure 1

15 pages, 22627 KB  
Article
Long-Read Metagenomics Profiling for Identification of Key Microorganisms Affected by Heavy Metals at Technogenic Zones
by Iskander Isgandarov, Zhanar Abilda, Rakhim Kanat, Dias Daurov, Zagipa Sapakhova, Ainash Daurova, Kabyl Zhambakin, Dmitriy Volkov, Abylay Begaly and Malika Shamekova
Microorganisms 2026, 14(1), 196; https://doi.org/10.3390/microorganisms14010196 - 15 Jan 2026
Viewed by 70
Abstract
Heavy metal pollution poses a serious threat to soil ecosystems worldwide, as long-term exposure can alter microbial community functioning and reduce overall ecosystem resilience. This study investigated the impact of heavy metal contamination in technogenic industrial areas of the East Kazakhstan Region on [...] Read more.
Heavy metal pollution poses a serious threat to soil ecosystems worldwide, as long-term exposure can alter microbial community functioning and reduce overall ecosystem resilience. This study investigated the impact of heavy metal contamination in technogenic industrial areas of the East Kazakhstan Region on soil microbial communities. Soil samples were collected for chemical and metagenomic analyses. Concentrations of Zn, Pb, Cu, and Cd were quantified by flame atomic absorption spectrometry (FAAS). Using long-read whole-metagenome nanopore sequencing, we conducted strain-level profiling of soils with different levels of metal contamination. This approach provided high-resolution taxonomic data, enabling detailed characterization of microbial community structure. Heavy metal exposure did not significantly reduce microbial diversity or richness but influences the quality of community composition. Metal-resistant taxa dominated contaminated soils. Overall, the results highlight the value of long-read sequencing for resolving strain-level responses to environmental contamination. Full article
Show Figures

Figure 1

37 pages, 2307 KB  
Systematic Review
Effectiveness of Interventions and Control Measures in the Reduction of Campylobacter in Poultry Farms: A Comprehensive Meta-Analysis
by Odete Zefanias, Ursula Gonzales-Barron and Vasco Cadavez
Foods 2026, 15(2), 307; https://doi.org/10.3390/foods15020307 - 14 Jan 2026
Viewed by 179
Abstract
Campylobacter is a leading foodborne bacterial pathogen, and poultry production is a major reservoir contributing to human exposure. Reducing Campylobacter at farm level is therefore critical to limit downstream contamination. This systematic review and meta-analysis aimed to identify and quantitively summarise the current [...] Read more.
Campylobacter is a leading foodborne bacterial pathogen, and poultry production is a major reservoir contributing to human exposure. Reducing Campylobacter at farm level is therefore critical to limit downstream contamination. This systematic review and meta-analysis aimed to identify and quantitively summarise the current interventions and control measures applied in poultry farms to control the contamination and bird colonisation by Campylobacter. The Scopus electronic database was accessed to collect primary research articles that focused on observational studies and in vivo experiments, reporting results on Campylobacter concentrations or prevalence in both non-intervened and intervened groups. A total of 4080 studies were reviewed, from which 112 were selected and included in the meta-analysis according to predefined criteria, yielding 1467 observations. Meta-regression models were adjusted to the full data set and by intervention strategy based on the type of outcome measure (i.e., concentration and prevalence). In general terms, the results reveal that the effectiveness to reduce Campylobacter colonisation vary among interventions. A highly significant effect (p < 0.001) was observed in interventions such as organic acids, bacteriophages, plant extracts, probiotics, and organic iron complexes added to feed or drinking water; although drinking water was proven to be a more effective means of administration than feed for extracts and organic acids. In contrast, interventions such as chemical treatments, routine cleaning and disinfection, and vaccination showed both lower and more heterogeneous effects on Campylobacter loads. Vaccination effects were demonstrated to be driven by route and schedule, with intramuscular administration, longer vaccination periods and sufficient time before slaughter linked to greater reduction in Campylobacter colonisation. Probiotics, plant extracts and routine cleaning and disinfection were associated with lower Campylobacter prevalence in flocks. Meta-regression models consistently showed that the interventions were proven more effective when the sample analysed was caecal contents in comparison to faeces (p < 0.001). Overall, the findings of this meta-analysis study emphasise the application of a multi-barrier approach that combines targeted interventions with robust biosecurity and hygiene measures in order to reduce Campylobacter levels in poultry farms. Full article
(This article belongs to the Special Issue Quality and Safety of Poultry Meat)
Show Figures

Figure 1

22 pages, 2526 KB  
Article
Evaluating Machine Learning Models for Classifying Diabetes Using Demographic, Clinical, Lifestyle, Anthropometric, and Environmental Exposure Factors
by Rifa Tasnia and Emmanuel Obeng-Gyasi
Toxics 2026, 14(1), 76; https://doi.org/10.3390/toxics14010076 - 14 Jan 2026
Viewed by 125
Abstract
Diabetes develops through a mix of clinical, metabolic, lifestyle, demographic, and environmental factors. Most current classification models focus on traditional biomedical indicators and do not include environmental exposure biomarkers. In this study, we develop and evaluate a supervised machine learning classification framework that [...] Read more.
Diabetes develops through a mix of clinical, metabolic, lifestyle, demographic, and environmental factors. Most current classification models focus on traditional biomedical indicators and do not include environmental exposure biomarkers. In this study, we develop and evaluate a supervised machine learning classification framework that integrates heterogeneous demographic, anthropometric, clinical, behavioral, and environmental exposure features to classify physician-diagnosed diabetes using data from the National Health and Nutrition Examination Survey (NHANES). We analyzed NHANES 2017–2018 data for adults aged ≥18 years, addressed missingness using Multiple Imputation by Chained Equations, and corrected class imbalance via the Synthetic Minority Oversampling Technique. Model performance was evaluated using stratified ten-fold cross-validation across eight supervised classifiers: logistic regression, random forest, XGBoost, support vector machine, multilayer perceptron neural network (artificial neural network), k-nearest neighbors, naïve Bayes, and classification tree. Random Forest and XGBoost performed best on the balanced dataset, with ROC AUC values of 0.891 and 0.885, respectively, after imputation and oversampling. Feature importance analysis indicated that age, household income, and waist circumference contributed most strongly to diabetes classification. To assess out-of-sample generalization, we conducted an independent 80/20 hold-out evaluation. XGBoost achieved the highest overall accuracy and F1-score, whereas random forest attained the greatest sensitivity, demonstrating stable performance beyond cross-validation. These results indicate that incorporating environmental exposure biomarkers alongside clinical and metabolic features yields improved classification performance for physician-diagnosed diabetes. The findings support the inclusion of chemical exposure variables in population-level diabetes classification and underscore the value of integrating heterogeneous feature sets in machine learning-based risk stratification. Full article
Show Figures

Figure 1

13 pages, 3745 KB  
Article
Development and Characterization of Chitosan-TiO2-Based Photocatalytic Membrane for Water Treatment: Applications on Methylene Blue Elimination
by Hamza En-nasri, Abdellatif Aarfane, Badreddine Hatimi, Najoua Labjar, Meryem Bensemlali, Abdoullatif Baraket, Mina Bakasse, Nadia Zine, Nicole Jaffrezic-Renault, Souad El Hajjaji and Hamid Nasrellah
Eng 2026, 7(1), 43; https://doi.org/10.3390/eng7010043 - 13 Jan 2026
Viewed by 157
Abstract
Photocatalytic membrane reactors (PMRs) are an innovative technology for water treatment, effectively combining membrane filtration and photocatalysis to enhance contaminant removal while enabling the regeneration of fouled membranes. In this study, a new porous film of chitosan that was impregnated with TiO2 [...] Read more.
Photocatalytic membrane reactors (PMRs) are an innovative technology for water treatment, effectively combining membrane filtration and photocatalysis to enhance contaminant removal while enabling the regeneration of fouled membranes. In this study, a new porous film of chitosan that was impregnated with TiO2 was developed and coated onto a ceramic support by spin coating to form a new porous immobilized PMR. The formed membrane was tested for two reasons: the removal of methylene blue dye by a dead-end filtration process and to demonstrate its ability to self-regenerate under UV exposure. The selective layer of the membrane was characterized using FTIR spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and water permeability tests. The results confirmed the formation of an amorphous film with no chemical interaction between chitosan and TiO2. The membrane exhibited an average water permeability of 10.72 L/m2·h·bar, classifying it as either ultrafiltration (UF) or nanofiltration (NF). Dead-end filtration of methylene blue (10 mg L−1) achieved 99% dye removal based on UV–vis analysis of the permeate, while flux declined rapidly due to fouling. Subsequent UV irradiation removed the deposited dye layer and restored approximately 50% of the initial flux, indicating partial self-regeneration. Overall, spin-coated chitosan–TiO2 layers on ceramic supports provide high dye removal and photocatalytically assisted flux recovery, and further work should quantify photocatalytic degradation during regeneration. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

20 pages, 1057 KB  
Article
Cross-Sectional Multicenter Biomonitoring Study on Genotoxicity and Oxidative DNA Damage in Oncology Healthcare Workers from Seven Italian Hospitals
by Cinzia Lucia Ursini, Giorgia Di Gennaro, Giuliana Buresti, Raffaele Maiello, Anna Maria Fresegna, Aureliano Ciervo, Marco Gentile, Virginia Di Basilio, Sabrina Beltramini, Daniela Gaggero, Nicoletta Rigamonti, Erica Maccari, Giorgia Zorzetto, Piera Maiolino, Pasquale Di Filippo, Maria Concetta Bilancio, Paolo Baldo, Valeria Martinello, Andrea Di Mattia, Chiara Esposito, Patrizia Nardulli, Mariarita Laforgia, Maria Vittoria Visconti, Matteo Vitali, Emanuela Omodeo-Salè and Delia Cavalloadd Show full author list remove Hide full author list
J. Xenobiot. 2026, 16(1), 12; https://doi.org/10.3390/jox16010012 - 13 Jan 2026
Viewed by 160
Abstract
Cancer cases have been estimated that will increase in the next years with consequent increase of antineoplastic (AD) drug treatments and workers handling these hazardous chemicals. We aimed to evaluate genotoxic/oxidative effects of AD exposure by fpg-comet assay on a large size sample [...] Read more.
Cancer cases have been estimated that will increase in the next years with consequent increase of antineoplastic (AD) drug treatments and workers handling these hazardous chemicals. We aimed to evaluate genotoxic/oxidative effects of AD exposure by fpg-comet assay on a large size sample of workers (214 exposed and 164 controls) involved in preparation; administration, including Hyperthermic intraperitoneal chemotherapy (HIPEC) and pressurized intraperitoneal aerosol chemotherapy (PIPAC); and disposal. With the final aim to identify suitable early biomarkers of genotoxic effect useful to health surveillance, we correlated fpg-comet assay (blood) and Buccal Micronucleus Cytome (BMCyt) assay data. Fpg-comet parameters resulted higher in the exposed group vs. controls, demonstrating direct and oxidative DNA damage in workers handling ADs. Fpg-comet direct DNA damage and genotoxic parameters of BMCyt assay demonstrated a weak statistically significant correlation. This cross-sectional study is one of the few available evaluating both direct and oxidative DNA damage due to ADs on a large sample size of workers and correlating fpg-comet and BMCyt assay results. It highlights the need to evaluate genotoxic effects by both the biomarkers and furnishes a contribution to their validation. Moreover, we demonstrate for the first time oxidative DNA damage on workers performing HIPEC and PIPAC administration. Full article
Show Figures

Graphical abstract

19 pages, 5487 KB  
Review
Fluoro-Edenite from Biancavilla (Sicily, Italy): A Comprehensive Review and New Perspectives on a Fibrous Amphibole of Geological and Health Concern
by Valeria Indelicato, Roberto Visalli, Maria Rita Pinizzotto, Carmelo Cantaro, Rosolino Cirrincione, Alberto Pistorio, Claudia Ricchiuti and Rosalda Punturo
Fibers 2026, 14(1), 11; https://doi.org/10.3390/fib14010011 - 13 Jan 2026
Viewed by 85
Abstract
The present review paper focuses on the peculiar environmental and health implications of fibrous amphibole “fluoro-edenite”, a new mineral first reported in Biancavilla (Etna Mount, Sicily, Italy). Its presence has been linked to an unusually high incidence of malignant pleural mesothelioma, as seen [...] Read more.
The present review paper focuses on the peculiar environmental and health implications of fibrous amphibole “fluoro-edenite”, a new mineral first reported in Biancavilla (Etna Mount, Sicily, Italy). Its presence has been linked to an unusually high incidence of malignant pleural mesothelioma, as seen from national surveys during 1988–1997, marking the first case study of natural occurrence of fibrous amphibole in a volcanic context. Despite remediation efforts since the cessation of quarrying activities at the “Il Calvario” quarry, the risk of fiber exposure may extend beyond urban areas to surrounding soils and volcanic formation, not fully characterized yet. This review synthesizes relevant existing literature on mineralogical and chemical features of fluoro-edenite, while also enriching current understanding with new observations from optical microscopy, stereomicroscopy, and Scanning Electron Microscopy (SEM). Our analyses reveal the presence of fluoro-edenite amphibole not only in the altered samples but, significantly, within the massive rock samples. This finding expands its known distribution and offers initial consideration on public health implications related to massive lava rock, which crops out. This study highlights the importance of ongoing monitoring, detailed geological surveys, and further research into fiber occurrences and distribution in the volcanic systems, of which Mt. Etna represents the first case of natural occurrences, in order to fully assess their impact on public health. Full article
Show Figures

Graphical abstract

20 pages, 2964 KB  
Article
Correlating Scanning Electron Microscopy and Raman Microscopy to Quantify Occupational Exposure to Micro- and Nanoscale Plastics in Textile Manufacturing
by Dirk Broßell, Emilia Visileanu, Catalin Grosu, Asmus Meyer-Plath and Maike Stange
Pollutants 2026, 6(1), 6; https://doi.org/10.3390/pollutants6010006 - 13 Jan 2026
Viewed by 170
Abstract
Airborne micro- and nanoplastic particles (MNPs) are increasingly recognized as a potential occupational exposure hazard, yet substance-specific workplace data remain limited. This study quantified airborne MNP concentrations during polyester microfiber production using a correlative SEM–Raman approach that enabled chemical identification and size-resolved particle [...] Read more.
Airborne micro- and nanoplastic particles (MNPs) are increasingly recognized as a potential occupational exposure hazard, yet substance-specific workplace data remain limited. This study quantified airborne MNP concentrations during polyester microfiber production using a correlative SEM–Raman approach that enabled chemical identification and size-resolved particle characterization. The aerosol mixture at the workplace was dominated by sub-micrometer particles, with PET—handled onsite—representing the main process-related MNP type, and black tire rubber (BTR) forming a substantial background contribution. Across both sampling periods, total MNP particle number concentrations ranged between 6.2 × 105 and 1.2 × 106 particles/m3, indicating consistently high particle counts. In contrast, estimated MNP-related mass concentrations were much lower, with PM10 levels of 12–15 µg/m3 and PM2.5 levels of 1.3–1.6 µg/m3, remaining well below applicable occupational exposure limits and near or below 8 h-equivalent WHO guideline values. Comparison with earlier workplace and indoor studies suggests that previously reported concentrations were likely underestimated due to sampling strategies with low efficiency for small particles. Moreover, real-time optical measurements substantially underestimated particle number and mass in this study, reflecting their limited suitability for aerosols dominated by small or dark particles. Overall, the data show that workplace MNP exposure at the investigated site is driven primarily by very small particles present in high numbers but low mass. The findings underscore the need for substance-specific, size-resolved analytical approaches to adequately assess airborne MNP exposure and to support future development of MNP-relevant occupational health guidelines. Full article
(This article belongs to the Section Air Pollution)
Show Figures

Graphical abstract

21 pages, 512 KB  
Review
A One Health Approach Involving Composting and Compost: Balancing Human Health Risks and Agricultural Benefits
by Mohamed Ou-Zine, Said El Kinany, Said Ezrari and Rachid Bouamri
Agrochemicals 2026, 5(1), 4; https://doi.org/10.3390/agrochemicals5010004 - 12 Jan 2026
Viewed by 89
Abstract
The one health approach recognizes the interconnection between human, animal, and environmental health, emphasizing that human health should never be threatened in the pursuit of agricultural productivity. Indeed, within agricultural systems, this approach is particularly relevant, as the overuse of chemical inputs and [...] Read more.
The one health approach recognizes the interconnection between human, animal, and environmental health, emphasizing that human health should never be threatened in the pursuit of agricultural productivity. Indeed, within agricultural systems, this approach is particularly relevant, as the overuse of chemical inputs and the mismanagement of organic wastes can directly threaten human health. Overuse of chemical inputs can result in various health disturbances and contribute to the development of acute or chronic human diseases. Likewise, organic wastes constitute potential human health risks due to the presence of pathogens in these wastes such as bacteria, viruses, fungi, and parasites. Despite increasing research, many studies often lack integrated risk assessments of agrochemicals and organic waste within a “One Health” framework, leaving gaps in practical guidance for safe agricultural management. This review was conducted to address these gaps and answer the following questions: What are the human health risks associated with agrochemicals and mismanaged organic wastes? How can composting/compost mitigate these risks and support sustainable agricultural production? It examines the role of composting in managing organic wastes, producing high-quality compost, and reducing exposure to hazardous chemicals and pathogens. Furthermore, it outlines key characteristics of compost required to ensure safety for humans, plants, soil, and ecosystems. By integrating evidence on human health and crop productivity, this review provides insights for safe, sustainable agricultural practices within a unified One Health framework. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

28 pages, 7202 KB  
Article
Electrochemical Oxidation of Ti-Grad 23 Alloy for Biomedical Applications: Influence of TiO2 Formation on Their Morphology, Composition, Wettability, and Chemical Corrosion
by Lidia Benea, Nicoleta Bogatu, Veaceslav Neaga and Elena Roxana Axente
Molecules 2026, 31(2), 251; https://doi.org/10.3390/molecules31020251 - 12 Jan 2026
Viewed by 191
Abstract
In this study, the influence of the electrochemical oxidation process on Ti-Grad 23 alloy (Ti6Al4V ELI) in 1 M H3PO4, under applied voltages between 200 and 275 V, at a constant time of 1 min, is analyzed. The structural, [...] Read more.
In this study, the influence of the electrochemical oxidation process on Ti-Grad 23 alloy (Ti6Al4V ELI) in 1 M H3PO4, under applied voltages between 200 and 275 V, at a constant time of 1 min, is analyzed. The structural, morphological, and wettability properties of the TiO2 anodic layers obtained were investigated by X-ray diffraction (XRD), energy dispersive electron microscopy (SEM-EDS), contact angle measurements, and chemical corrosion. XRD analysis showed the development and intensification of anatase and brookite phases, with increased crystallite size after electrochemical oxidation. SEM/EDS characterization confirmed the formation of an inhomogeneous porous TiO2 layer, with pore diameters ranging from 98 to 139 nm and a significant increase in oxygen content. Contact angle measurements demonstrate enhanced hydrophilicity for all oxidized samples, with progressively lower values as the applied voltage increased. Chemical corrosion tests in Ringer solution and Ringer + 40 g/L H2O2 indicated that oxidized surfaces maintain structural stability in physiological media, whereas exposure to oxidizing environments induces partial pore closure and crack formation due to localized corrosion. The optimal anodizing condition was identified at 200 V for 1 min, yielding a uniform distribution of pores and improved morpho-functional characteristics suitable for biomedical applications. The optimal electrochemical oxidation conditions were identified at 200 V for 1 min, ensuring a uniform pore distribution. Full article
Show Figures

Figure 1

12 pages, 242 KB  
Article
An Exploratory Survey of Knowledge, Attitudes, and Behaviors Toward Cosmetic Products
by Selma Yazar, Burçin Şeyda Çorba, Hatice Ertuğrul and Ayşe Nurşen Başaran
Toxics 2026, 14(1), 68; https://doi.org/10.3390/toxics14010068 - 12 Jan 2026
Viewed by 172
Abstract
Objective: Cosmetic products are widely used, yet public awareness of their potential health risks and of cosmetovigilance remains limited. Given that studies increasingly highlight chemical exposure associated with cosmetics, this study aimed to assess public knowledge, attitudes, and behaviours regarding cosmetic use, toxicity, [...] Read more.
Objective: Cosmetic products are widely used, yet public awareness of their potential health risks and of cosmetovigilance remains limited. Given that studies increasingly highlight chemical exposure associated with cosmetics, this study aimed to assess public knowledge, attitudes, and behaviours regarding cosmetic use, toxicity, and cosmetovigilance in Türkiye. Methods: A cross-sectional study was conducted among the general population living in Türkiye, consisting of 700 people between January and May 2024. The study was conducted using a Google survey form. Results: Among 700 participants, 91.6% reported regular cosmetic use and 47.6% experienced at least one adverse effect, most commonly redness, itching, and burning. Adverse effects were more frequently associated with products purchased from shopping malls/cosmetic stores. Education level was significantly linked to awareness of cosmetovigilance and product preferences, with university graduates showing higher awareness and favoring both local and international brands. Conclusion: The study revealed that although cosmetic use is common in Türkiye, awareness of cosmetovigilance remains low, even among well-educated consumers. Many participants reported adverse effects but did not seek professional consultation, indicating gaps in safety practices and reporting. Strengthening public awareness and establishing effective cosmetovigilance systems are essential to ensure safer cosmetic use and protect public health. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Back to TopTop