Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = charge-shift bonding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7489 KB  
Article
Interface Charge Transfer Engineering in NiFe Layered Double Hydroxide-Cs0.32WO3 Heterostructures for Enhanced Oxygen Evolution Reaction
by Ze Wang, Xinyu Song, Yue Liu, Zhiwang Sun, Xin Zhang, Yuanhao Wang and Shifeng Wang
Nanomaterials 2025, 15(16), 1255; https://doi.org/10.3390/nano15161255 - 14 Aug 2025
Viewed by 452
Abstract
Electrochemical water splitting for hydrogen production is considered a key pathway for achieving sustainable energy conversion. However, the sluggish reaction kinetics of the oxygen evolution reaction (OER) and high overpotentials severely hinder the large-scale application of water electrolysis technology. Nickel–iron layered double hydroxide [...] Read more.
Electrochemical water splitting for hydrogen production is considered a key pathway for achieving sustainable energy conversion. However, the sluggish reaction kinetics of the oxygen evolution reaction (OER) and high overpotentials severely hinder the large-scale application of water electrolysis technology. Nickel–iron layered double hydroxide (NiFe-LDH) has gained attention as a promising non-precious metal OER catalyst due to its abundant active sites and good intrinsic activity. However, its relatively low conductivity and charge transfer efficiency limit the improvement of catalytic performance. Therefore, this study used a simple hydrothermal method to generate a NiFe-LDH/Cs0.32WO3 heterojunction composite catalyst, relying on the excellent electronic conductivity of Cs0.32WO3 to improve overall charge transfer efficiency. According to electrochemical testing results, the modified NiFe-LDH/Cs0.32WO3-20 mg achieved a low overpotential of 349 mV at a current density of 10 mA cm−2, a Tafel slope of 67.0 mV dec−1, and a charge transfer resistance of 65.1 Ω, which represent decreases of 39 mV, 23.1%, and 40%, respectively, compared to pure NiFe-LDH. The key to performance improvement lies in the tightly bonded heterojunction interface between Cs0.32WO3 and NiFe-LDH. X-ray photoelectron spectroscopy (XPS) shows a distinct interfacial charge transfer phenomenon, with a notable negative shift of the W4f peak (0.85 eV), indicating the directional transfer of electrons from Cs0.32WO3 to NiFe-LDH. Under the influence of the built-in electric field within the heterojunction, this interfacial charge redistribution improved the electronic structure of NiFe-LDH, increased the proportion of high-valent metal ions, and significantly enhanced the OER reaction kinetics. This study provides new insights for the preparation of efficient heterojunction electrocatalysts. Full article
Show Figures

Figure 1

30 pages, 5942 KB  
Article
Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights
by Jayson C. dos Santos, João G. de Oliveira Neto, Ana B. N. Moreira, Luzeli M. da Silva, Alejandro P. Ayala, Mateus R. Lage, Rossano Lang, Francisco F. de Sousa, Fernando Mendes and Adenilson O. dos Santos
Molecules 2025, 30(13), 2873; https://doi.org/10.3390/molecules30132873 - 6 Jul 2025
Viewed by 571
Abstract
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an [...] Read more.
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an octahedral Ni(II) coordination involving Phen and Ile ligands. A Hirshfeld surface analysis highlighted intermolecular interactions stabilizing the crystal lattice, with hydrogen bonds (H···H and O···H/H···O) dominating (99.1% of contacts). Density functional theory (DFT) calculations, including solvation effects (in water and methanol), demonstrated strong agreement with the experimental geometric parameters and revealed higher affinity to the water solvent. The electronic properties of the complex, such as HOMO−LUMO gaps (3.20–4.26 eV) and electrophilicity (4.54–5.88 eV), indicated a charge-transfer potential suitable for biological applications through interactions with biomolecules. Raman and infrared spectroscopic studies showed vibrational modes associated with Ni–N/O bonds and ligand-specific deformations, with solvation-induced shifts observed. A study using ultraviolet–visible–near-infrared absorption spectroscopy demonstrated that the complex remains stable in solution. In vitro cytotoxicity assays against MCF-7 (breast adenocarcinoma) and HCT-116 (colorectal carcinoma) cells showed dose-dependent activity, achieving 47.6% and 65.3% viability reduction at 100 μM (48 h), respectively, with lower toxicity to non-tumor lung fibroblasts (GM07492A, 39.8%). Supporting the experimental data, we performed computational modeling to examine the pharmacokinetic profile, with particular focus on the absorption, distribution, metabolism, and excretion properties and drug-likeness potential. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Figure 1

16 pages, 2229 KB  
Article
Investigation of the Effect of Molecules Containing Sulfonamide Moiety Adsorbed on the FAPbI3 Perovskite Surface: A First-Principles Study
by Shiyan Yang, Yu Zhuang, Youbo Dou, Jianjun Wang, Hongwen Zhang, Wenjing Lu, Qiuli Zhang, Xihua Zhang, Yuan Wu and Xianfeng Jiang
Molecules 2025, 30(11), 2463; https://doi.org/10.3390/molecules30112463 - 4 Jun 2025
Viewed by 593
Abstract
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite [...] Read more.
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite surface, aiming to establish a significant positive correlation between the molecular structures and their regulatory effects on the perovskite surface. A systematic comparison was conducted to evaluate the adsorption stability of the three molecules on the two distinct surface terminations. The results show that all three molecules exhibit strong adsorption on the FAPbI3(001) surface, with C2H12N6O4S demonstrating the most favorable binding stability due to its extended frameworks and multiple electron-donating/withdrawing groups. Simpler molecules lacking carbon skeletons exhibit weaker adsorption and less dependence on surface termination. Ab initio molecular dynamics simulations (AIMD) further corroborated the thermal stability of the stable adsorption configurations at elevated temperatures. Electronic structure analysis reveals that molecular adsorption significantly reconstructs the density of states (DOS) on the PbI2-terminated surface, inducing shifts in band-edge states and enhancing energy-level coupling between molecular orbitals and surface states. In contrast, the FAI-terminated surface shows weaker interactions. Charge density difference (CDD) analysis indicates that the molecules form multiple coordination bonds (e.g., Pb–O, Pb–S, and Pb–N) with uncoordinated Pb atoms, facilitated by –SO2–NH2 groups. Bader charge and work function analyses indicate that the PbI2-terminated surface exhibits more pronounced electronic coupling and interfacial charge transfer. The C2H12N6O4S adsorption system demonstrates the most substantial reduction in work function. Optical property calculations show a distinct red-shift in the absorption edge along both the XX and YY directions for all adsorption systems, accompanied by enhanced absorption intensity and broadened spectral range. These findings suggest that sulfonamide-containing molecules, particularly C2H12N6O4S with extended carbon skeletons, can effectively stabilize the perovskite interface, optimize charge transport pathways, and enhance light-harvesting performance. Full article
Show Figures

Figure 1

13 pages, 3697 KB  
Article
Interfacial Chemical and Electrical Performance Study and Thermal Annealing Refinement for AlTiO/4H-SiC MOS Capacitors
by Yu-Xuan Zeng, Wei Huang, Hong-Ping Ma and Qing-Chun Zhang
Nanomaterials 2025, 15(11), 814; https://doi.org/10.3390/nano15110814 - 28 May 2025
Viewed by 436
Abstract
The gate reliability issues in SiC-based devices with a gate dielectric formed through heat oxidation are important factors limiting their application in power devices. Aluminum oxide (Al2O3) and titanium dioxide (TiO2) were combined using the ALD process [...] Read more.
The gate reliability issues in SiC-based devices with a gate dielectric formed through heat oxidation are important factors limiting their application in power devices. Aluminum oxide (Al2O3) and titanium dioxide (TiO2) were combined using the ALD process to form a composite AlTiO gate dielectric on a 4H-SiC substrate. TDMAT and TMA were the precursors selected and deposited at 200 °C, and the samples were Ar or N2 annealed at temperatures ranging from 300 °C to 700 °C. An XPS analysis suggested that the AlTiO film had been deposited with a high overall quality and the involvement of Ti atoms had increased the interfacial bonding with the substrate. The as-deposited MOS structure had band shifts of ΔEC = 1.08 eV and ΔEV = 2.41 eV. After annealing, the AlTiO bandgap increased by 0.85 eV at most, and better band alignment was attained. Leakage current and breakdown voltage characteristic investigations were conducted after Al electrode deposition. The leakage current density and electrical breakdown field of an MOS capacitor structure with a SiC substrate were ~10−3 A/cm2 and 6.3 MV/cm, respectively. After the annealing process, both the measures of the JV performance of the MOS capacitor had improved to ~10−6 A/cm2 and 7.2 MV/cm. The interface charge Neff of the AlTiO layer was 4.019 × 1010 cm−2. The AlTiO/SiC structure fabricated in this work proved the feasibility of adjusting the properties of single-component gate dielectric materials using the ALD method, and using a suitable thermal annealing process has great potential to improve the performance of the compound MOS dielectric layer. Full article
(This article belongs to the Special Issue Advanced Studies in Wide-Bandgap Nanomaterials and Devices)
Show Figures

Figure 1

14 pages, 1716 KB  
Article
Beyond Empirical Trends: Density Functional Theory-Based Nuclear Magnetic Resonance Analysis of Mono-Hydroxyflavone Derivatives
by Feng Wang and Vladislav Vasilyev
Appl. Sci. 2025, 15(11), 5928; https://doi.org/10.3390/app15115928 - 24 May 2025
Viewed by 511
Abstract
Flavone derivatives have emerged as promising antiviral agents, with baicalein demonstrating the potent inhibition of the SARS-CoV-2 main protease (Mpro). In this study, the unique electronic and structural properties of 3-hydroxyflavone (3-HF) were investigated using the density functional theory (B3PW91/cc-pVTZ), providing insights into [...] Read more.
Flavone derivatives have emerged as promising antiviral agents, with baicalein demonstrating the potent inhibition of the SARS-CoV-2 main protease (Mpro). In this study, the unique electronic and structural properties of 3-hydroxyflavone (3-HF) were investigated using the density functional theory (B3PW91/cc-pVTZ), providing insights into its potential as a bioactive scaffold. Among mono-hydroxyflavone (n-HF) isomers, 3-HF exhibits an extensive intramolecular hydrogen-bonding network linking the phenyl B-ring to the A- and γ-pyrone C-rings, enabled by the distinctive C3-OH substitution. Despite a slight non-planarity (dihedral angle: 15.4°), this hydrogen-bonding network enhances rigidity and influences the electronic environment. A 13C-NMR chemical shift analysis revealed pronounced quantum mechanical effects of the C3-OH group, diverging from the trends observed in other flavones. A natural bond orbital (NBO) analysis highlighted an unusual charge distribution, with predominantly positive charges on the γ-pyrone C-ring carbons, in contrast to the typical negative charges in flavones. These effects impact C1s orbital energies, suggesting that the electronic structure plays a more significant role in 13C-NMR shifts than simple ring assignments. Given the established antiviral activity of hydroxylated flavones, the distinct electronic properties of 3-HF may enhance its interaction with SARS-CoV-2 Mpro, making it a potential candidate for further investigation. This study underscores the importance of quantum mechanical methods in elucidating the structure–activity relationships of flavones and highlights 3-HF as a promising scaffold for future antiviral drug development. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

23 pages, 8054 KB  
Article
Electron Beam Irradiation’s Effect on Polyaniline/LiClO4/CuO Nanocomposite: A Study of Dielectric, Conductivity and Electrochemical Properties
by Yesappa Laxmayyaguddi, Sharanappa Chapi and Nagaraj Nandihalli
Appl. Sci. 2025, 15(7), 4001; https://doi.org/10.3390/app15074001 - 4 Apr 2025
Viewed by 554
Abstract
A straightforward chemical polymerization process was used to create the polyaniline/LiClO4/CuO nanoparticle (PLC) nanocomposite, which was then exposed to varying doses of electron beam (EB) radiation and studied. The FESEM, XRD, FTIR, DSC, TG/DTA, and electrochemical measurements with higher EB doses [...] Read more.
A straightforward chemical polymerization process was used to create the polyaniline/LiClO4/CuO nanoparticle (PLC) nanocomposite, which was then exposed to varying doses of electron beam (EB) radiation and studied. The FESEM, XRD, FTIR, DSC, TG/DTA, and electrochemical measurements with higher EB doses showed clear changes. The FTIR spectra of the PLC nanocomposite showed variations in the C-N and carbonyl groups at 1341 cm−1 and 1621 cm−1, respectively. After a 120 kGy EB dose, the shape changed from a smooth, uneven surface to a well-connected, nanofiber-like structure, creating pathways for electricity to flow through the polymer matrix. The EB irradiation improved the thermal stability by decreasing the melting temperature, and the XRD and DSC studies reveal that the decrease in crystallinity is attributed to the dominant chain scission mechanism. The enhanced absorption and red shift in the wavelength (from 374 nm to 400 nm) observed in the UV-Visible spectroscopy were caused by electrons transitioning from a lower to a higher energy state, with a progressive drop in the band gaps (Eg) from 2.15 to 1.77 eV following irradiation. The dielectric parameters increased with the temperature and electron beam doses because of the dissociation of the ion aggregates and the emergence of defects and/or disorders in the polymer band gaps. This was triggered by chain scission, discontinuity, and bond breaking in the molecular chains at elevated levels of radiation energy, leading to an augmented charge carrier density and, subsequently, enhanced conductivity. The cyclic voltammetry study revealed an enhanced electrochemical stability at a high scan rate of about 600 mV/s for the PLC nanocomposite with the increase in the EB doses. The I-V characteristics measured at room temperature exhibited nonohmic behavior with an expanded current range, and the electrical conductivity was estimated, using the I-V curve, to be around 1.05 × 10−4 S/cm post 20 kGy EB irradiation. Full article
Show Figures

Figure 1

17 pages, 3833 KB  
Article
Anisotropy in Carbon Dioxide Adsorption on Forsterite
by Yakov Ermolov, Andrey Vasilchenko and Georgy Lazorenko
Int. J. Mol. Sci. 2024, 25(23), 12639; https://doi.org/10.3390/ijms252312639 - 25 Nov 2024
Cited by 1 | Viewed by 782
Abstract
In this study, density functional theory (DFT) method were used to investigate the adsorption behavior and binding mechanism of CO2 molecules on six crystallographic surfaces of forsterite (Mg2SiO4). The influence of surface crystallographic orientation on CO2 adsorption [...] Read more.
In this study, density functional theory (DFT) method were used to investigate the adsorption behavior and binding mechanism of CO2 molecules on six crystallographic surfaces of forsterite (Mg2SiO4). The influence of surface crystallographic orientation on CO2 adsorption efficiency was examined at the atomic level. Results showed stable binding of CO2 on all surfaces. The interaction strength decreases in the order: (001) > (101) > (120) > (111) > (010) > (110), with the (001) surface exhibiting the highest binding capacity due to accessible magnesium cations interacting with CO2. Detailed electronic property analysis revealed significant charge transfer between CO2 oxygen atoms and surface magnesium atoms, driven by hybridization of oxygen 2p and magnesium 2s orbitals, leading to the formation of ionic and covalent bonds. These interactions stabilize the adsorbed CO2 and are accompanied by changes in the electronic structure, such as energy level shifts and modifications in the partial density of states (PDOS). The computational analysis provides a theoretical foundation for understanding CO2 binding mechanisms by forsterite. The findings highlight the importance of crystallographic orientation and electronic properties of the mineral surface in adsorption efficiency, contributing to a deeper understanding of CO2 interactions with mineral surfaces. Full article
(This article belongs to the Special Issue Adsorption Materials and Adsorption Behavior: 3rd Edition)
Show Figures

Figure 1

12 pages, 1404 KB  
Article
Covalent vs. Dative Bonding in Carbon Monoxide and Other 10-Valence-Electron Diatomics
by Khadija Rizwan and John Morrison Galbraith
Molecules 2024, 29(22), 5396; https://doi.org/10.3390/molecules29225396 - 15 Nov 2024
Cited by 1 | Viewed by 1508
Abstract
Valence bond theory (VB) was used to determine the extent and driving forces for covalent vs. dative bonding in 10-valence-electron diatomic molecules N2, CO, NO+, CN, P2, SiS, PS+, and SiP. [...] Read more.
Valence bond theory (VB) was used to determine the extent and driving forces for covalent vs. dative bonding in 10-valence-electron diatomic molecules N2, CO, NO+, CN, P2, SiS, PS+, and SiP. VBSCF calculations were performed at the CCSD(T)/cc-pVDZ optimized geometries. The full triply bonded system included 20 VB structures. A separation of the σ and π space allowed for a subdivision of the full 20 structure set into sets of 8 and 3 for the π and σ systems, respectively. The smaller structure sets allowed for a more focused look at each type of bond. In situ bond energies for σ bonds, individual π bonds, the π system, and triple bonds follow expected trends. Our data shows that N2 and P2 have three covalent bonds whereas CO and SiS contain two covalent and one dative bond, and charged species NO+, CN, PS+, and SiP are a mixture of N2 and CO type electronic arrangements, resulting in a nearly equal charge distribution. Dative bonds prefer to be in the π position due to enhanced σ covalency and π resonance. Both σ and π resonance energies depend on a balance of ionic strength, orbital compactness, σ constraints, and bond directionality. Resonance energy is a major contributor to bond strength, making up more than 50% of the π bonds in SiS and PS+ (charge-shift bonds), and is greater than charge transfer in dative bonds. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

22 pages, 6216 KB  
Article
Synthesis and Dye Adsorption Dynamics of Chitosan–Polyvinylpolypyrrolidone (PVPP) Composite
by Hilda Dinah Kyomuhimbo, Wandile McHunu, Marco Arnold, Usisipho Feleni, Nils H. Haneklaus and Hendrik Gideon Brink
Polymers 2024, 16(18), 2555; https://doi.org/10.3390/polym16182555 - 10 Sep 2024
Cited by 2 | Viewed by 2475
Abstract
One major environmental issue responsible for water pollution is the presence of dyes in the aquatic environment as a result of human activity, particularly the textile industry. Chitosan–Polyvinylpolypyrrolidone (PVPP) polymer composite beads were synthesized and explored for the adsorption of dyes (Bismarck brown [...] Read more.
One major environmental issue responsible for water pollution is the presence of dyes in the aquatic environment as a result of human activity, particularly the textile industry. Chitosan–Polyvinylpolypyrrolidone (PVPP) polymer composite beads were synthesized and explored for the adsorption of dyes (Bismarck brown (BB), orange G (OG), brilliant blue G (BBG), and indigo carmine (IC)) from dye solution. The CS-PVPP beads demonstrated high removal efficiency of BB (87%), OG (58%), BBG (42%), and IC (49%). The beads demonstrated a reasonable surface area of 2.203 m2/g and were negatively charged in the applicable operating pH ranges. TGA analysis showed that the polymer composite can withstand decomposition up to 400 °C, proving high stability in harsh conditions. FTIR analysis highlighted the presence of N-H amine, O-H alcohol, and S=O sulfo groups responsible for electrostatic interaction and hydrogen bonding with the dye molecules. A shift in the FTIR bands was observed on N-H and C-N stretching for the beads after dye adsorption, implying that adsorption was facilitated by hydrogen bonding and Van der Waals forces of attraction between the hydroxyl, amine, and carbonyl groups on the surface of the beads and the dye molecules. An increase in pH increased the adsorption capacity of the beads for BB while decreasing OG, BBG, and IC due to their cationic and anionic nature, respectively. While an increase in temperature did not affect the adsorption capacity of OG and BBG, it significantly improved the removal of BB and IC from the dye solution and the adsorption was thermodynamically favoured, as demonstrated by the negative Gibbs free energy at all temperatures. Adsorption of dye mixtures followed the characteristic adsorption nature of the individual dyes. The beads show great potential for applications in the treatment of dye wastewater. Full article
(This article belongs to the Special Issue Advanced Polymers for Wastewater Treatment and Toxicant Removal)
Show Figures

Figure 1

10 pages, 2781 KB  
Article
Interface and Size Effects of Amorphous Si/Amorphous Silicon Oxynitride Multilayer Structures on the Photoluminescence Spectrum
by Chao Song, Jie Song and Xiang Wang
Coatings 2024, 14(8), 977; https://doi.org/10.3390/coatings14080977 - 2 Aug 2024
Cited by 2 | Viewed by 1425
Abstract
A room-temperature photoluminescence (PL) study of amorphous Si/amorphous silicon oxynitride multilayer films prepared by plasma-enhanced chemical vapor deposition is reported. The PL peak position can be tuned from 800 nm to 660 nm by adjusting the oxygen/nitride ratio in the a-SiOxN [...] Read more.
A room-temperature photoluminescence (PL) study of amorphous Si/amorphous silicon oxynitride multilayer films prepared by plasma-enhanced chemical vapor deposition is reported. The PL peak position can be tuned from 800 nm to 660 nm by adjusting the oxygen/nitride ratio in the a-SiOxNy:H sublayer. The Fourier transform infrared (FTIR) absorption spectra indicate that the shift of the PL peak position is accompanied by an increase in the Si-O-Si absorption peak’s intensity, which induces the structural disorder at the interface, resulting in an increase in band gap energy. The effects of size on the photoluminescence spectrum have been studied. As a result, it has been observed that the addition of oxygen atoms introduces a large number of localized states at the interface, causing a blue shift in the emission peak position. With an increase in oxygen atoms, the localized states tend to saturate, and the quantum phenomenon caused by the a-Si sublayer becomes more pronounced. It is found that, as the thickness of the a-Si sublayer decreases, the increase in the [O/N] ratio is more likely to cause an increase in disordered states, leading to a decrease in luminescence intensity. For a-Si/a-SiOxNy:H samples with thinner a-Si sublayers, an appropriate value of [O/N] is required to achieve luminescence enhancement. When the value of [O/N] is one, the enhanced luminescence is obtained. It is also suggested that the PL originates from the radiative recombination in the localized states’ T3- level-related negatively charged silicon dangling bond in the band tail of the a-Si:H sublayer embedded in an a-Si/a-SiOxNy:H multilayer structure. Full article
Show Figures

Figure 1

18 pages, 5648 KB  
Article
Photochemical Generation and Characterization of C-Aminophenyl-Nitrilimines: Insights on Their Bond-Shift Isomers by Matrix-Isolation IR Spectroscopy and Density Functional Theory Calculations
by A. J. Lopes Jesus, Cláudio M. Nunes, Gil A. Ferreira, Kiarash Keyvan and R. Fausto
Molecules 2024, 29(15), 3497; https://doi.org/10.3390/molecules29153497 - 25 Jul 2024
Cited by 3 | Viewed by 1380
Abstract
The intriguing ability of C-phenyl-nitrilimine to co-exist as allenic and propargylic bond-shift isomers motivated us to investigate how substituents in the phenyl ring influence this behavior. Building on our previous work on the meta- and para-OH substitution, here we extended [...] Read more.
The intriguing ability of C-phenyl-nitrilimine to co-exist as allenic and propargylic bond-shift isomers motivated us to investigate how substituents in the phenyl ring influence this behavior. Building on our previous work on the meta- and para-OH substitution, here we extended this investigation to explore the effect of the NH2 substitution. For this purpose, C-(4-aminophenyl)- and C-(3-aminophenyl)-nitrilimines were photogenerated in an argon matrix at 15 K by narrowband UV-light irradiation (λ = 230 nm) of 5-(4-aminophenyl)- and 5-(3-aminophenyl)-tetrazole, respectively. The produced nitrilimines were further photoisomerized to carbodiimides via 1H-diazirines by irradiations at longer wavelengths (λ = 380 or 330 nm). Combining IR spectroscopic measurements and DFT calculations, it was found that the para-NH2-substituted nitrilimine exists as a single isomeric structure with a predominant allenic character. In contrast, the meta-NH2-substituted nitrilimine co-exists as two bond-shift isomers characterized by propargylic and allenic structures. To gain further understanding of the effects of phenyl substitution on the bond-shift isomerism of the nitrilimine fragment, we compared geometric and charge distribution data derived from theoretical calculations performed for C-phenyl-nitrilimine with those performed for the derivatives resulting from NH2 (electron-donating group) and NO2 (electron-withdrawing group) phenyl substitutions. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis)
Show Figures

Figure 1

23 pages, 11117 KB  
Article
Comparative Study of Two Spectral Methods for Estimating the Excited State Dipole Moment of Non-Fluorescent Molecules
by Mihaela Iuliana Avadanei and Dana Ortansa Dorohoi
Molecules 2024, 29(14), 3358; https://doi.org/10.3390/molecules29143358 - 17 Jul 2024
Cited by 2 | Viewed by 1123
Abstract
The electronic absorption spectral characteristics of cycloimmonium ylids with a zwitterionic structure have been analyzed in forty-three solvents with different hydrogen bonding abilities. The two ylids lack fluorescence emission but are very dynamic in electronic absorption spectra. Using the maximum of the ICT [...] Read more.
The electronic absorption spectral characteristics of cycloimmonium ylids with a zwitterionic structure have been analyzed in forty-three solvents with different hydrogen bonding abilities. The two ylids lack fluorescence emission but are very dynamic in electronic absorption spectra. Using the maximum of the ICT band, the goal was to establish an accurate relationship between the shift of the ICT visible band and the solvent parameters and to estimate two of the descriptors of the first (the) excited state: the dipole moment and the polarizability. Two procedures were involved: the variational method and the relationships of the Abe model. The results indicate that the excited state dipole moment of the two methylids decreases in the absorption process in comparison with the ground state. The introduction of a correction term in the Abe model that neglects the intermolecular H-bonding interactions leads to a more accurate determination of the two descriptors. The strong solvatochromic response of both ylids has been further applied in distinguishing the solvents as a function of their specific parameters. Principal component analysis was applied to five selected properties, including the maximum of the charge transfer band. The results were further applied to discriminate several binary solvent mixtures. Full article
(This article belongs to the Special Issue Chemical Bond and Intermolecular Interactions, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 2704 KB  
Article
Computational Investigation about the Effects of Solvent Polarity and Chalcogen Element Electronegativity on ESIPT Behaviors for the Et2N-Substituted Flavonoid
by Tuo Chang, Fang Yang and Tangyan Chen
Molecules 2024, 29(13), 2957; https://doi.org/10.3390/molecules29132957 - 21 Jun 2024
Cited by 1 | Viewed by 1084
Abstract
Inspired by the outstanding nature of flavonoid derivatives in the fields of chemistry and medicine, in this work we mainly focus on exploring the photo-induced properties of the novel Et2N-substituted flavonoid (ENF) fluorophore theoretically. Considering the potential photo-induced properties in different [...] Read more.
Inspired by the outstanding nature of flavonoid derivatives in the fields of chemistry and medicine, in this work we mainly focus on exploring the photo-induced properties of the novel Et2N-substituted flavonoid (ENF) fluorophore theoretically. Considering the potential photo-induced properties in different solvents and the chalcogen atomic electronegativity-associated photoexcitation, by time-dependent density functional theory (TDDFT) methods we primarily explore the intramolecular hydrogen bonding interactions and photo-induced charge redistribution behaviors. Via comparing geometrical data and the infrared (IR) spectral shifts-associated hydroxy moiety of ENF, we confirm that the intramolecular hydrogen bond O-H···O should be enhanced with facilitating an excited-state intramolecular proton-transfer (ESIPT) reaction. Particularly, the charge reorganization around hydrogen bonding moieties further reveals the tendency of ESIPT behavior. Combined with the construction of the potential energy surface and the search for reaction transition states, we finally confirmed the solvent-polarity-regulated behaviors as well as the chalcogen elements’ electronegativity-dependent ESIPT mechanisms for the ENF fluorophore. We sincerely wish our work could accelerate the further development and applications of flavonoid derivatives. Full article
Show Figures

Figure 1

13 pages, 10107 KB  
Article
Charge-Controlled Energy Optimization of the Reconstruction of Semiconductor Surfaces: sp3sp2 Transformation of Stoichiometric GaN(0001) Surface to (4 × 4) Pattern
by Pawel Strak, Wolfram Miller and Stanislaw Krukowski
Materials 2024, 17(11), 2614; https://doi.org/10.3390/ma17112614 - 29 May 2024
Cited by 1 | Viewed by 1335
Abstract
It was demonstrated by ab initio calculations that energy optimization in the reconstruction of semiconductor surfaces is controlled by the global charge balance. The charge control was discovered during simulations of the influence of heavy doping in the GaN bulk, which changes sp [...] Read more.
It was demonstrated by ab initio calculations that energy optimization in the reconstruction of semiconductor surfaces is controlled by the global charge balance. The charge control was discovered during simulations of the influence of heavy doping in the GaN bulk, which changes sp3 to sp2 ratio in the reconstruction of stoichiometric GaN(0001), i.e., a Ga-polar surface. Thus, the reconstruction is not limited to the charge in the surface only; it can be affected by the charge in the bulk. The discovered new reconstruction of the GaN(0001) surface is (4 × 4), which is different from the previously reported (2 × 1) pattern. The undoped GaN reconstruction is surface charge controlled; accordingly, (3/8) top-layer Ga atoms remain in a standard position with sp3 hybridized bonding, while the remaining (5/8) top-layer Ga atoms are shifted into the plane of N atoms with sp2 hybridized bonding. The change in the charge balance caused by doping in the bulk leads to a change or disappearance of the reconstruction pattern. Full article
Show Figures

Figure 1

24 pages, 7004 KB  
Article
DFT-D3 and TD-DFT Studies of the Adsorption and Sensing Behavior of Mn-Phthalocyanine toward NH3, PH3, and AsH3 Molecules
by Heba Mohamed Badran, Khaled Mahmoud Eid, Hatim Omar Al-Nadary and Hussein Youssef Ammar
Molecules 2024, 29(10), 2168; https://doi.org/10.3390/molecules29102168 - 7 May 2024
Cited by 10 | Viewed by 1687
Abstract
This study employs density functional theory (DFT) calculations at the B3LYP/6-311+g(d,p) level to investigate the interaction of XH3 gases (X = N, P, As) with the Mn-phthalocyanine molecule (MnPc). Grimme’s D3 dispersion correction is applied to consider long-range interactions. The adsorption behavior [...] Read more.
This study employs density functional theory (DFT) calculations at the B3LYP/6-311+g(d,p) level to investigate the interaction of XH3 gases (X = N, P, As) with the Mn-phthalocyanine molecule (MnPc). Grimme’s D3 dispersion correction is applied to consider long-range interactions. The adsorption behavior is explored under the influence of an external static electric field (EF) ranging from −0.514 to 0.514 V/Å. Chemical adsorption of XH3 molecules onto the MnPc molecule is confirmed. The adsorption results in a significant decrease in the energy gap (Eg) of MnPc, indicating the potential alteration of its optical properties. Quantum theory of atoms in molecules (QTAIM) analysis reveals partially covalent bonds between XH3 and MnPc, and the charge density differenc (Δρ) calculations suggest a charge donation-back donation mechanism. The UV-vis spectrum of MnPc experiences a blue shift upon XH3 adsorption, highlighting MnPc’s potential as a naked-eye sensor for XH3 molecules. Thermodynamic calculations indicate exothermic interactions, with NH3/MnPc being the most stable complex. The stability of NH3/MnPc decreases with increasing temperature. The direction and magnitude of the applied electric field (EF) play a crucial role in determining the adsorption energy (Eads) for XH3/MnPc complexes. The Eg values decrease with an increasing negative EF, which suggests that the electrical conductivity (σ) and the electrical sensitivity (ΔEg) of the XH3/MnPc complexes are influenced by the magnitude and direction of the applied EF. Overall, this study provides valuable insights into the suggested promising prospects for the utilization of MnPc in sensing applications of XH3 gases. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

Back to TopTop