Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = chard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3372 KiB  
Article
Impact of Nitrogen Fertilizer Application Rates on Plant Growth and Yield of Organic Kale and Swiss Chard in Vertical Farming System
by Andruw Jones, Sai Prakash Naroju, Dilip Nandwani, Anthony Witcher and Shahidullah Chowdhary
Horticulturae 2025, 11(7), 827; https://doi.org/10.3390/horticulturae11070827 - 11 Jul 2025
Viewed by 455
Abstract
To support the growing global population, sustainable farming methods like vertical farming must complement traditional agriculture. This study evaluated the effects of various nitrogen fertilizer application rates (N_low (1055.3 ppm), N_rec (1640.9 ppm), N_high (2811.3 ppm), and N_0 (469.9 ppm)) on organic kale [...] Read more.
To support the growing global population, sustainable farming methods like vertical farming must complement traditional agriculture. This study evaluated the effects of various nitrogen fertilizer application rates (N_low (1055.3 ppm), N_rec (1640.9 ppm), N_high (2811.3 ppm), and N_0 (469.9 ppm)) on organic kale (Brassica oleracea L. var. acephala ‘Lacinato’) and Swiss chard (Beta vulgaris subsp. Vulgaris ‘Ruby/Rhubarb Red’), grown in a vertical growing system installed in a high tunnel during the spring and fall season of 2023 at the organic farm of Tennessee State University. Growth parameters studied included fresh weight, Brix, chlorophyll, plant height, and leaf count. Most parameters did not exhibit statistically significant differences (alpha = 0.05). However, consistent numerical trends and deviations were observed. Although not statistically significant, kale achieved the highest mean fresh weight in N_rec (688.08 g), and Swiss chard in N_high by spring (649.62 g). Among the few parameters, significant differences were observed for Swiss chard plant height (48.07 cm) and leaf count (47.25), with N_high during fall. Findings suggest that while definitive conclusions were limited, recommended nitrogen rates (N_rec) may enhance crop performance and contribute sustainable yields in resource constrained vertical farming systems. Further controlled studies are warranted to validate trends and refine nutrient strategies in vertical growing system. Full article
(This article belongs to the Special Issue Horticultural Production in Controlled Environment)
Show Figures

Graphical abstract

22 pages, 1664 KiB  
Article
Environmental and Food Safety Assessment of Pre-Harvest Activities in Local Small-Scale Fruit and Vegetable Farms in Northwest Portugal: Hazard Identification and Compliance with Good Agricultural Practices (GAPs)
by Ariana Macieira, Virgínia Cruz Fernandes, Teresa R. S. Brandão, Cristina Delerue-Matos and Paula Teixeira
Foods 2025, 14(12), 2129; https://doi.org/10.3390/foods14122129 - 18 Jun 2025
Viewed by 721
Abstract
The popularity of small-scale and local fruit and vegetable production has increased in recent years due to perceived economic, environmental, and social benefits. However, these operations face contamination risks that both consumers and small-scale producers may underestimate. The present study aimed to assess [...] Read more.
The popularity of small-scale and local fruit and vegetable production has increased in recent years due to perceived economic, environmental, and social benefits. However, these operations face contamination risks that both consumers and small-scale producers may underestimate. The present study aimed to assess the microbiological and chemical hazards on fruit, vegetables, soil, and water samples from small-scale farms in north-western Portugal during pre-harvest activities. Additionally, the study investigated farmers’ non-compliance with food safety regulations and good agricultural practices (GAPs), exploring how their behaviour might contribute to the identified hazards. A before-and-after analysis of non-compliant behaviours was conducted to determine the impact of training on improving food safety practices. The analysis identified the presence of pathogenic bacteria, pesticides, flame retardant residues, nitrates, and heavy metals. Lead (Pb) concentrations exceeded EU limits in organic carrots from one producer (0.156 ± 0.043 mg/kg) and in chard from another (0.450 ± 0.126 mg/kg). Cadmium (Cd) levels were also above regulatory thresholds in bell peppers (0.023 ± 0.009 mg/kg) and organic tomatoes (0.026 ± 0.015 mg/kg) from two different producers. Elevated levels of heavy metals were detected in irrigation water from two sites, with zinc (Zn) at 0.2503 ± 0.0075 mg/L and Pb at 0.0218 ± 0.0073 mg/L. Among food samples, the most prevalent microorganisms were Pseudomonas spp. (88.2%), Bacillus cereus (76.5%), and aerobic mesophilic bacteria (100%). Phosphorus flame retardants (PFRs), particularly tris(2-butoxyethyl) phosphate (TBEP), were detected in all food and soil samples. Some EU-banned pesticides were detected in food and soil samples, but at levels below the maximum residue limits (MRLs). Chlorpyrifos (35.3%) and p,p’-DDD (23.5%) were the most detected pesticides in food samples. After the training, GAP behaviour improved, particularly that related to hygiene. However, issues related to record-keeping and soil and water analyses persisted, indicating ongoing challenges in achieving full compliance. Full article
(This article belongs to the Special Issue Emerging Challenges in the Management of Food Safety and Authenticity)
Show Figures

Figure 1

14 pages, 1377 KiB  
Article
Sensitivity of Leafy Vegetables to Simulated Mesotrione Residues in the Soil
by Milena Radivojević, Dejan Nedeljković and Katarina Jovanović-Radovanov
Horticulturae 2025, 11(6), 644; https://doi.org/10.3390/horticulturae11060644 - 6 Jun 2025
Viewed by 381
Abstract
Mesotrione is a triketone herbicide widely used for weed control in maize (Zea mays L.). In a bioassay conducted under controlled conditions, the simulated residual effects of mesotrione on leafy vegetables, including chard, lettuce, spinach, and endive were evaluated. The herbicide was [...] Read more.
Mesotrione is a triketone herbicide widely used for weed control in maize (Zea mays L.). In a bioassay conducted under controlled conditions, the simulated residual effects of mesotrione on leafy vegetables, including chard, lettuce, spinach, and endive were evaluated. The herbicide was applied at nine concentrations (0–240 µg a.i./kg soil), with the highest corresponding to the recommended field application rate. Nonlinear regression analysis was used to describe the relationship between morphological (shoot fresh weight) and physiological (pigment content) parameters as a function of herbicide dose. Shoot fresh weight was a more sensitive parameter than pigment content with mean EC50 ± SE values of 23.9 ± 3.5 (chard), 34.3 ± 7.7 (lettuce), 13.2 ± 2.4 (spinach), and 990.3 ± 3921.5 (endive) µg a.i./kg soil, indicating that spinach is the most sensitive and endive the most tolerant species. A mesotrione residue level equivalent to EC20 for shoot fresh weight corresponds to approximately 2, 4, 6, and 29% of the recommended application rate of mesotrione at which spinach, chard, lettuce, and endive (respectively) can be safely sown. Therefore, spinach, chard, and lettuce are not suitable substitutes for maize when the latter fails and should not be sown after silage maize. In such cases, only endive appears to be a viable alternative without the risk of crop injury. Full article
(This article belongs to the Special Issue New Advances in Green Leafy Vegetables)
Show Figures

Figure 1

23 pages, 2295 KiB  
Article
Stochastic Frontier Model for the Evaluation of the Sustainability of Urban Gardens in Puebla, Mexico
by Elimelec Muñoz-Nuñez, Omar Romero-Arenas, Sonia Emilia Silva Gómez, Rolando Rueda Luna, Ricardo Munguía Pérez and Manuel Huerta-Lara
Urban Sci. 2025, 9(5), 164; https://doi.org/10.3390/urbansci9050164 - 9 May 2025
Viewed by 1226
Abstract
Amid rapid urbanization and persistent food insecurity in Latin America, urban gardens have emerged as sustainable alternatives to conventional agriculture. This study evaluates the technical and economic efficiency of producing four vegetables (lettuce, Swiss chard, spinach, and tomato) in urban and conventional systems [...] Read more.
Amid rapid urbanization and persistent food insecurity in Latin America, urban gardens have emerged as sustainable alternatives to conventional agriculture. This study evaluates the technical and economic efficiency of producing four vegetables (lettuce, Swiss chard, spinach, and tomato) in urban and conventional systems in Puebla, Mexico. Using a stochastic frontier model, the analysis integrates key environmental costs, specifically, water-use efficiency and nutrient balance valuation, to assess the sustainability trade-offs. The results show that urban gardens achieve comparable efficiency to conventional systems while reducing water use by up to 66% and optimizing nutrient cycling. These findings support urban agroecological models as viable strategies for local food production and provide actionable insights for municipal policies aimed at enhancing urban food resilience and environmental performance. Full article
Show Figures

Figure 1

28 pages, 4289 KiB  
Article
The Combination of Oncolytic Virus and Antibody Blockade of TGF-β Enhances the Efficacy of αvβ6-Targeting CAR T Cells Against Pancreatic Cancer in an Immunocompetent Model
by Zuoyi Zhao, Lauren C. Cutmore, Renato B. Baleeiro, Joseph J. Hartlebury, Nicholas Brown, Louisa Chard-Dunmall, Nicholas Lemoine, Yaohe Wang and John F. Marshall
Cancers 2025, 17(9), 1534; https://doi.org/10.3390/cancers17091534 - 30 Apr 2025
Viewed by 1220
Abstract
Background/Objectives: CAR T cell therapy, as a rapidly advancing immuno-oncology modality, has achieved significant success in the treatment of leukaemia and lymphoma. However, its application in solid tumours remains limited. The challenges include the heterogeneity of tumours, local immunosuppression, poor trafficking and infiltration, [...] Read more.
Background/Objectives: CAR T cell therapy, as a rapidly advancing immuno-oncology modality, has achieved significant success in the treatment of leukaemia and lymphoma. However, its application in solid tumours remains limited. The challenges include the heterogeneity of tumours, local immunosuppression, poor trafficking and infiltration, life-threatening toxicity and the lack of precise representative immunocompetent research models. Considering its typically dense and immunosuppressive tumour microenvironment (TME) and early metastasis, pancreatic ductal adenocarcinoma (PDAC) was employed as a model to address the challenges that hinder CAR T cell therapies against solid tumours and to expand immunotherapeutic options for advanced disease. Methods: A novel murine A20FMDV2 (A20) CAR T cell targeting integrin αvβ6 (mA20CART) was developed, demonstrating efficient and specific on-target cytotoxicity. The mA20CART cell as a monotherapy for orthotopic pancreatic cancer in an immunocompetent model demonstrated modest efficacy. Therefore, a novel triple therapy regimen, combining mA20CART cells with oncolytic vaccinia virus encoding IL-21 and a TGF-β-blocking antibody was evaluated in vivo. Results: The triple therapy improved overall survival, improved the safety profile of the CAR T cell therapy, attenuated metastasis and enhanced T cell infiltration. Notably, the potency of mA20CART was dependent on IL-2 supplementation. Conclusions: This study presents an αvβ6-targeting murine CAR T cell, offering a novel approach to developing CAR T cell technologies for solid tumours and a potential adjuvant therapy for pancreatic cancer. Full article
Show Figures

Graphical abstract

14 pages, 2759 KiB  
Article
Nitrates and Nitrites in Leafy Vegetables: The Influence of Culinary Processing on Concentration Levels and Possible Impact on Health
by Sanja Luetic, Zlatka Knezovic, Katarina Jurcic, Marina Luetic Perasovic and Davorka Sutlovic
Int. J. Mol. Sci. 2025, 26(7), 3018; https://doi.org/10.3390/ijms26073018 - 26 Mar 2025
Cited by 2 | Viewed by 1722
Abstract
Vegetables, as an important source of vitamins and minerals, are highly recommended in a healthy diet. At the same time, vegetables can contain elevated amounts of nitrates and nitrites, which are the possible nitrosating agents responsible for the formation of carcinogenic nitrosamines. In [...] Read more.
Vegetables, as an important source of vitamins and minerals, are highly recommended in a healthy diet. At the same time, vegetables can contain elevated amounts of nitrates and nitrites, which are the possible nitrosating agents responsible for the formation of carcinogenic nitrosamines. In young children, they can cause methemoglobinemia. Determining the level of nitrates and nitrites, as well as the possible reduction in their concentrations during culinary processing, is especially important for the diet of young children, who are introduced to leafy vegetables during the first year. For some types of vegetables that are often found in the diet, maximum permissible concentrations have not yet been established. Our goal was to estimate the reduction factors of nitrates and nitrites and suggest the best ways to properly prepare foods. For this purpose, samples of Swiss chard, spinach, and white cabbage were collected from the market to determine the nitrate and nitrite content. Vegetable samples were subjected to culinary preparations: soaking, cooking, and a combination of soaking and cooking. Quantitative and qualitative determination of nitrates and nitrites in vegetables was carried out on high-performance liquid chromatography (HPLC) equipped with a diode array detector (DAD). The obtained results showed that the highest nitrate concentrations were in Swiss chard samples, followed by spinach, and the lowest in white cabbage samples. The impact of culinary preparation was highest on spinach samples. Considering the average nitrate concentrations achieved after cooking or soaking and cooking, there was no risk of exceeding the ADI limit. However, the ADI values would be exceeded at the maximum nitrate concentrations. Full article
(This article belongs to the Special Issue Dietary Nitrate and Metabolic Health)
Show Figures

Figure 1

37 pages, 2184 KiB  
Article
Exploring the Biochemical Profile of Beta vulgaris L.: A Comparative Study of Beetroots and Swiss Chard
by Daiana Almeida, Spyridon A. Petropoulos, Tayse F. F. da Silveira, Tânia C. S. P. Pires, Isabel C. F. R. Ferreira, Ângela Fernandes and Lillian Barros
Plants 2025, 14(4), 591; https://doi.org/10.3390/plants14040591 - 14 Feb 2025
Viewed by 1509
Abstract
In this study, leaves and roots from three beetroot cultivars (cv. Albina Vereduna (white roots), cv. Burpee’s Golden (golden roots), and cv. Pablo F1 (red roots)), as well as Swiss chard leaves (also known as “rhubarb chard”, or Beta vulgaris subsp. cicla var. [...] Read more.
In this study, leaves and roots from three beetroot cultivars (cv. Albina Vereduna (white roots), cv. Burpee’s Golden (golden roots), and cv. Pablo F1 (red roots)), as well as Swiss chard leaves (also known as “rhubarb chard”, or Beta vulgaris subsp. cicla var. flavescens) were evaluated in terms of their chemical profile and bioactive properties. Roots were characterized by high carbohydrate content, which also contributed to greater energy values. In contrast, fibers were the predominant macronutrient in leaves, followed by carbohydrates. In both leaves and roots, the most abundant organic acids were quinic and oxalic, while the major free sugar was sucrose. The profile of fatty acid varied between the studied plant parts, with saturated fatty acids prevailing in root samples, while leaves exhibited higher levels of polyunsaturated fatty acids. Regarding phenolic composition, a total of 19 compounds were tentatively identified in leaves (including derivatives of vitexin, isorhamnetin, quercetin, and ferulic, sinapic, and p-coumaric acids), while the roots exhibited a less diverse composition, with a total of eight compounds identified (e.g., derivatives of ferulic, sinapic, p-coumaric and caffeic acids). A total of eight betalains were also identified, out of which seven were classified as betacyanins and one as betaxanthin. The leaves of Swiss chard presented compounds from both classes, while the roots and leaves of cv. Pablo F1 were characterized only by the presence of betacyanins, and those of cv. Burpee’s Golden only by betaxanthin. All samples exhibited relevant activity against Y. enterocolitica, L. monocytogenes, and S. aureus, although leaf samples demonstrated better antioxidant capacity. In conclusion, beetroot leaves outperformed their corresponding roots in terms of chemical composition, antioxidant, and antimicrobial activity, suggesting their high potential as nutrient-rich and functional ingredients in a diverse and well-balanced diet. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 7613 KiB  
Article
Characterization of Volatilized Compounds in Conventional and Organic Vegetable-Source Alternative Meat-Curing Ingredients
by Siyuan Sheng, Erin M. Silva, Steven C. Ricke and James R. Claus
Molecules 2025, 30(4), 835; https://doi.org/10.3390/molecules30040835 - 11 Feb 2025
Cited by 2 | Viewed by 1153
Abstract
This study investigates the volatile compounds that contribute to the unique flavor and aroma profiles of cured meat products using alternative ingredients, specifically focusing on commercially available, conventional, and organically produced pre-converted celery (Apium graveolens) and Swiss chard (Beta vulgaris [...] Read more.
This study investigates the volatile compounds that contribute to the unique flavor and aroma profiles of cured meat products using alternative ingredients, specifically focusing on commercially available, conventional, and organically produced pre-converted celery (Apium graveolens) and Swiss chard (Beta vulgaris subsp. maritima) juices and powders. Volatile compounds were isolated and analyzed using an optimized method involving steam distillation with liquid–liquid phase extraction coupled with gas chromatography–tandem mass spectrometry (GC-MS/MS). The key volatile compound identified in celery was 3-butylisobenzofuran-1(3H)-one, and in Swiss chard, 2-methoxy-4-vinylphenol. In both conventional and organic celery juice, senkyunolide, sedanolide, and limonene were the primary volatiles, listed in descending order of concentration. This pioneering work on volatile and aromatic compounds in alternative curing ingredients provides foundational knowledge for sensory and volatile compound studies in alternative meat curing. It also offers valuable insights for organic plant and meat producers, processors, and consumers. Practically, this research highlights volatile chemicals that could interact with other meat constituents or residues in finished products, informing and enlightening future studies on the sensory and aromatic properties of alternative cured meats. Overall, this study contributes to the development of alternative cured meats, supporting the research and innovation of organic meats. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

19 pages, 3051 KiB  
Article
Non-Thermal Plasma-Activated Water Enhances Nursery Production of Vegetables: A Species-Specific Study
by Silvia Locatelli, Stefano Triolone, Marina De Bonis, Giampaolo Zanin and Carlo Nicoletto
Agronomy 2025, 15(1), 209; https://doi.org/10.3390/agronomy15010209 - 16 Jan 2025
Cited by 4 | Viewed by 1508
Abstract
Non-thermal plasma technology (NTP) has found widespread applications across several fields, including agriculture. Researchers have explored the use of NTP to improve plant growth and increase agricultural product quality using plasma-activated water (PAW). This technology has shown potential benefits in boosting seed germination, [...] Read more.
Non-thermal plasma technology (NTP) has found widespread applications across several fields, including agriculture. Researchers have explored the use of NTP to improve plant growth and increase agricultural product quality using plasma-activated water (PAW). This technology has shown potential benefits in boosting seed germination, promoting plant growth, as an effective defense against plant pathogens, and increasing systemic plant resistance. An experiment was set up over three different cultivation cycles to investigate the benefits of PAW administration on nursery production. Plasma-activated water was generated using two NTP intensities (PAW-HI = 600 mV; PAW-LI = 450 mV; CTR = tap water control) and manually applied to plants under greenhouse conditions. The species considered in the current study were tomato (Solanum lycopersicum L.), Swiss chard (Beta vulgaris L.), cabbage (Brassica oleracea L.), basil (Ocimum basilicum L.), and lettuce (Lactuca sativa L. var. Longifolia). The following morphological traits were measured at the end of each cycle and for each species: plant height (PH, cm), collar diameter (CD, mm), biomass (g), nutritional status (SPAD index), dry matter (DM, %), and chemical composition. The sturdiness index (SI) was determined by the PH-to-CD ratio. Results indicated a species-specific response to both PAW treatments compared to CTR. The plant height significantly increased in tomato (+11.9%) and cabbage (+5%) under PAW-HI treatment. In contrast, PAW-HI treatment negatively affected the PH in lettuce and basil (−18% and −9%, respectively). Swiss chard showed no significant response to either PAW-LI or PAW-HI treatments. Regarding DM, no significant differences were observed between the PAW treatments and CTR. However, an increase in total N content was detected in plant tissues across all species, except for basil, where no change was observed. The results suggest that PAW treatment has the potential to enhance vegetable nursery production, with species-specific responses observed in crops. Full article
(This article belongs to the Special Issue High-Voltage Plasma Applications in Agriculture)
Show Figures

Figure 1

12 pages, 615 KiB  
Article
A Comparison of the Braking and Propulsion Phase Characteristics of Traditional and Accentuated Eccentric Loaded Back Squats in Resistance-Trained Women
by Brookelyn A. Campbell, Conor J. Cantwell, Lauren K. Marshall-Ciochon, Zachary S. Schroeder, Adam E. Sundh, Jack B. Chard, Christopher B. Taber and Timothy J. Suchomel
Appl. Sci. 2025, 15(2), 661; https://doi.org/10.3390/app15020661 - 11 Jan 2025
Viewed by 1066
Abstract
The aim of this study was to compare the braking and propulsion force–time and barbell velocity characteristics between back squat sets performed using traditional (TRAD) or accentuated eccentric loading (AEL) in resistance-trained women. In total, 14 participants completed four separate testing sessions that [...] Read more.
The aim of this study was to compare the braking and propulsion force–time and barbell velocity characteristics between back squat sets performed using traditional (TRAD) or accentuated eccentric loading (AEL) in resistance-trained women. In total, 14 participants completed four separate testing sessions that included a one repetition maximum (1RM) back squat and three squat testing sessions that used either TRAD or AEL. During the squat testing sessions, participants performed sets of three back squat repetitions using TRAD loads with 50, 60, 70, and 80% 1RM or performed the same loads with the addition of weight releasers that equated the total load to 100% (AEL-MAX) or 110% (AEL-SUPRA) 1RM during the eccentric phase of the first repetition of each set. Braking and propulsion mean force, duration, and impulse as well as mean and peak barbell velocity were examined across each back squat set. Significantly greater braking impulses were produced during the AEL conditions across all loads (p < 0.02), while greater braking mean force during AEL-SUPRA was produced compared to TRAD during with 50 and 60% 1RM (p < 0.02). There were no other significant differences in braking, propulsion, or barbell velocity that existed between different conditions (p > 0.05). AEL-MAX and AEL-SUPRA provide a greater braking stimulus compared to TRAD squats, while the propulsion phase may not be significantly impacted. Rapid and maximal force production may be favored by larger and smaller load spreads, respectively. Full article
Show Figures

Figure 1

24 pages, 10023 KiB  
Article
Glasswort as a Strategic Crop in Coastal Wetlands: Intercropping Results with Swiss Chard
by Anna Rita Bernadette Cammerino, Michela Ingaramo, Vincenzo Rizzi, Maurizio Gioiosa and Massimo Monteleone
Agronomy 2025, 15(1), 158; https://doi.org/10.3390/agronomy15010158 - 10 Jan 2025
Viewed by 1093
Abstract
The Mediterranean region is experiencing severe droughts and unprecedented high temperatures. In terms of salinity, about 18 million ha of land, or 25% of the total irrigated area in the Mediterranean, is salt affected. The use of halophytes as intercropping species to mitigate [...] Read more.
The Mediterranean region is experiencing severe droughts and unprecedented high temperatures. In terms of salinity, about 18 million ha of land, or 25% of the total irrigated area in the Mediterranean, is salt affected. The use of halophytes as intercropping species to mitigate the effects of salt stress is attractive. Halophytes have a great capacity to maintain their productivity in this extreme environment, thus supporting climate-appropriate agriculture. The aim of this study was to evaluate the productivity of Salicornia europaea L. subsp. ramosissima (glasswort) under field conditions and high soil salinity, grown as a sole crop (monocropping) and as a companion crop (intercropping) with Beta vulgaris L. subsp. cicla (Swiss chard) in a 1:1 cropping pattern. The field trials were conducted in the coastal wetland “King’s Lagoon”, a private nature reserve in the Apulia/Puglia region (southern Italy), during two consecutive spring–summer seasons in 2023 and 2024 and under different management conditions of irrigation and fertilization. These were performed to test for possible interaction effects. The results showed that both glasswort and chard can be grown sustainably under slightly saline conditions (ECe range 4–8 dS m−1). In contrast, strongly saline conditions (ECe > 16 dS m−1) were prohibitive for chard, both as a sole crop and as an intercrop, but were largely beneficial for glasswort. Swiss chard can benefit from intercropping with glasswort when soil salinity is still tolerable (6.9 dS m−1), showing an LER (Land Equivalent Ratio) ≥ 1.19. Meanwhile, glasswort did not significantly improve the growth of the companion crop (Swiss chard) when the soil was considerably saline (16.6 dS m−1). Higher LER values were observed when the contribution of chard to the intercrop performance was significantly greater than that of glasswort, i.e., under slightly saline conditions. This means that glasswort can have a significant positive effect on chard growth and productivity as long as soil is still moderately saline. Glasswort can therefore be considered a valuable model crop in extreme environments. The integration of glasswort (possibly together with other local halophytes) into diversified cropping systems on saline marginal soils is a promising sustainable agricultural practice in environmentally fragile areas such as wetlands, swamps, brackish areas, and marshes. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

11 pages, 472 KiB  
Article
Application of Mealworm Frass in Organic Seedling Production of Allium cepa L., Beta vulgaris L., and Brassica rapa L.
by Ferdinando Baldacchino and Flutura Lamaj
Seeds 2025, 4(1), 4; https://doi.org/10.3390/seeds4010004 - 8 Jan 2025
Cited by 1 | Viewed by 1278
Abstract
Horticulture is mainly based on transplanting seedlings produced by specialized nurseries. The recent European authorization of frass in organic farming presents new opportunities for the development of organic seedling production. Frass, a by-product of insect farming, offers innovative solutions for this sector. It [...] Read more.
Horticulture is mainly based on transplanting seedlings produced by specialized nurseries. The recent European authorization of frass in organic farming presents new opportunities for the development of organic seedling production. Frass, a by-product of insect farming, offers innovative solutions for this sector. It mainly consists of insect excrement, exuviae, and uningested feed. Their fertilizing and biostimulating effects have been demonstrated in various pot and field crops experiments. However, the current knowledge regarding the application of frass in seedling production remains insufficient. This study aims to assess the optimal dose of mealworm frass in germination substrates for Allium cepa L., Beta vulgaris L., and Brassica rapa L. Germination and phytotoxicity tests were carried out, with seedlings evaluated one month after sowing in substrates containing frass at concentrations of 0.5%, 1%, 2%, and 3% of frass. The germination test revealed that the dilution of the frass at 1:100 produced a phytostimulant effect on A. cepa and a moderate phytotoxic effect on B. vulgaris and B. rapa. The application of mealworm frass at a concentration of 0.5–1% was generally the most effective dose, although all doses of frass in the substrate resulted in seedlings whose root length, leaf length, number of leaves, and biomass were significantly higher than the control. In conclusion, the application of low doses of mealworm frass in organic seedling production is promising and allows the management of potential phytotoxicity. Full article
Show Figures

Figure 1

10 pages, 591 KiB  
Article
Effect of Different Stocking Densities on Growth, Survival and Blood Parameters of Pacific Fat Sleeper Dormitator latifrons in a Small-Scale Aquaponic System
by Manuel A. Vargas-Ceballos, Luis E. Ruiz-González, Dulce M. Flores-Rodríguez, Daniel Badillo-Zapata, Juan Diego Galavíz-Parada and Fernando Vega-Villasante
Appl. Sci. 2024, 14(24), 11476; https://doi.org/10.3390/app142411476 - 10 Dec 2024
Viewed by 1487
Abstract
Aquaponics is the integration between aquaculture and hydroponics, where bacteria mediate the interaction between fish and plants, facilitating a mutually beneficial system. Although there have been numerous studies on aquaponics, there have been few studies focused on optimizing management parameters in small-scale systems [...] Read more.
Aquaponics is the integration between aquaculture and hydroponics, where bacteria mediate the interaction between fish and plants, facilitating a mutually beneficial system. Although there have been numerous studies on aquaponics, there have been few studies focused on optimizing management parameters in small-scale systems for family farming. A key aspect is to find the appropriate culture density to maximize the production of both fish and plants. In aquaculture, introduced species have predominated due to their ease of management, great adaptability, and high growth rates; however, it is important to consider alternatives such as Dormitator latifrons. To determine the effect of density on the yield of D. latifrons and chard Beta vulgaris in an aquaponic culture, three culture densities of 10, 30, and 50 fish m−3 were evaluated in triplicate with a fixed plant density of 20 plants m−2. Nine experimental units (EU) were implemented consisting of 300 L Rotoplas® troughs, a settler (80 L), a biofilter (80 L), and a submersible water pump connected to a nutrient film technique (NFT) system that represented the hydroponic component. The results obtained suggest that an intermediate stocking density (30 fish m−3) could provide a favorable balance between fish and plant performance and fish health. These findings contribute to the knowledge on the culture of this species in aquaponics. Full article
(This article belongs to the Special Issue Advances in Aquatic Animal Nutrition and Aquaculture)
Show Figures

Figure 1

13 pages, 2396 KiB  
Article
Exploration of Freshness Identification Method for Refrigerated Vegetables Based on Metabolomics
by Zixuan Meng, Haichao Zhang, Jing Wang, Lianfeng Ai and Weijun Kang
Metabolites 2024, 14(12), 665; https://doi.org/10.3390/metabo14120665 - 1 Dec 2024
Cited by 2 | Viewed by 1186
Abstract
Background: The rapid development of refrigerated transportation technology for fresh vegetables has extended their shelf life. Some vegetables may appear undamaged on the surface, but their freshness may have decreased, often resulting in the phenomenon of passing off inferior vegetables as good. [...] Read more.
Background: The rapid development of refrigerated transportation technology for fresh vegetables has extended their shelf life. Some vegetables may appear undamaged on the surface, but their freshness may have decreased, often resulting in the phenomenon of passing off inferior vegetables as good. It is very important to establish a detection method for identifying and assessing the freshness of vegetables. Methods: Therefore, based on metabolomics methods, this study innovatively employed UHPLC-Q-Exactive Orbitrap MS and GC–MS techniques to investigate the metabolites in the refrigerated storage of four vegetables, namely chard (Beta vulgaris var. cicla L), lettuce (Lactuca sativa var. ramose Hort.), crown daisy (Glebionis coronaria (L.) Cass. ex Spach), and tomato (Solanum lycopersicum L.), exploring key biomarkers for assessing their freshness. UPLC-TQ MS was used for the quantitative analysis of key metabolites. Results: The results showed that arginine biosynthesis and the metabolism of alanine, aspartate, and glutamate are key pathways in vegetable metabolism. Four key metabolites were selected from chard, five from lettuce, three from crown daisy, and five from tomato. Conclusions: Comparing the content of substances such as alanine and arginine can help infer the freshness and nutritional value of the vegetables, providing important references for detecting spoilage, determining storage time, and improving transportation conditions. This research holds significant relevance for the vegetable transportation industry. Full article
Show Figures

Figure 1

15 pages, 903 KiB  
Review
Physio-Metabolic Mechanisms Behind Postharvest Quality Deterioration in Broccoli (Brassica oleracea var. Italica) and Swiss Chard (Beta vulgaris L. var. Cicla): A Review
by Sabelo Shezi, Mduduzi E. K. Ngcobo, Nokuthula Khanyile and Khayelihle Ncama
Plants 2024, 13(22), 3174; https://doi.org/10.3390/plants13223174 - 12 Nov 2024
Cited by 1 | Viewed by 2288
Abstract
Leafy vegetables are among the potential foods that can combat food insecurity in developing countries. Their major drawback is a short shelf life, which limits their supply chain and is commonly associated with their high metabolic activities. Leafy vegetables have a high water [...] Read more.
Leafy vegetables are among the potential foods that can combat food insecurity in developing countries. Their major drawback is a short shelf life, which limits their supply chain and is commonly associated with their high metabolic activities. Leafy vegetables have a high water content, which determines their freshness. Moisture loss through respiration and transpiration at postharvest storage is one quality attribute that leads to rapid quality deterioration. Little has been carried out in studying the mechanisms associated with the quality deterioration of leafy vegetables; however, understanding these mechanisms may aid in developing effective preservation measures. Furthermore, recent literature reviews that focus on discussing the mechanisms that lead to quality loss in leafy vegetables are scarce. The current paper aims to review the physiological and biochemical processes associated with quality deterioration in leafy vegetables. The respiration, ethylene production, moisture loss, colour, and texture are highly associated with the quality deterioration of fresh produce and, thus will be discussed critically in selected leafy vegetables, namely: broccoli and Swiss chard. The findings from this review indicate that the quality deterioration in leafy vegetables is primarily enzymatic. Understanding the mechanisms of quality deterioration involves identifying the specific enzymes responsible for each metabolic process and examining the internal and external factors that influence enzyme activities. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

Back to TopTop