Application of Mealworm Frass in Organic Seedling Production of Allium cepa L., Beta vulgaris L., and Brassica rapa L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mealworm Frass
2.2. Germination Index and Phytotoxicity Test of Mealworm Frass
2.3. Germination Test in Substrate
2.4. Growth Performance of Seedlings
2.5. Statistical Analysis
3. Results
3.1. Effects of Frass Dilutions on Germination and Phytotoxicity in Petri Dish
3.2. Influence of Different Frass Doses in Substrate on Seedling Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Szabó, O.; Pisarčik, M.; Hrevušová, Z.; Hakl, J. Seed treatment potential for the improvement of lucerne seed performance and early field growth. Agronomy 2023, 13, 2207. [Google Scholar] [CrossRef]
- Mancini, V.; Romanazzi, G. Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag. Sci. 2013, 70, 860–868. [Google Scholar] [CrossRef]
- Qiu, Y.; Amirkhani, M.; Mayton, H.; Chen, Z.; Taylor, A.G. Biostimulant seed coating treatments to improve cover crop germination and seedling growth. Agronomy 2020, 10, 154. [Google Scholar] [CrossRef]
- Godínez-Garrido, N.A.; Torres-Castillo, J.A.; Ramírez-Pimentel, J.G.; Covarrubias-Prieto, J.; Cervantes-Ortiz, F.; Aguirre-Mancilla, C.L. Effects on germination and plantlet development of sesame (Sesamum indicum L.) and bean (Phaseolus vulgaris L.) seeds with chitosan coatings. Agronomy 2022, 12, 666. [Google Scholar] [CrossRef]
- Do Prado Mattos, A.; Dinelli, G.; Marotti, I.; Faedo, L.F.; Boff, M.I.C.; Boff, P. Effects of dynamised high dilutions and vegetal extract based on silicon on the growth and induction of resistance in tomato plants against Rhizoctonia solani. Biol. Agric. Hortic. 2024, 1–22. [Google Scholar] [CrossRef]
- Cardarelli, M.; Woo, S.L.; Rouphael, Y.; Colla, G. Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants 2022, 11, 259. [Google Scholar] [CrossRef]
- Kruker, G.; Guidi, E.S.; Santos, J.M.D.S.D.; Mafra, Á.L.; Almeida, J.A.D. Quality of Bokashi-type Biofertilizer Formulations and its Application in the Production of Vegetables in an Ecological System. Horticulturae 2023, 9, 1314. [Google Scholar] [CrossRef]
- Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. Available online: http://data.europa.eu/eli/reg/2018/848/oj (accessed on 15 November 2024).
- Dey, A.; Srivastava, P.C.; Pachauri, S.P.; Shukla, A.K. Time-dependent release of some plant nutrients from different organic amendments in a laboratory study. Int. J. Recycl. Org. Waste Agric. 2019, 8, 173–188. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2021/1925 of 5 November 2021 Amending Certain Annexes to Regulation (EU) No 142/2011 as Regards the Requirements for Placing on the Market of Certain Insect Products and the Adaptation of a Containment Method. Available online: http://data.europa.eu/eli/reg/2021/1925/oj (accessed on 15 November 2024).
- IPIFF. Contribution Paper on the Application of Insect Frass as Fertilizing Product in Agriculture. Available online: https://ipiff.org/wp-content/uploads/2019/09/19-09-2019-IPIFF-contribution-on-insect-frass-application-as-fertilising-product-final-version.pdf (accessed on 15 November 2024).
- Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 Authorising Certain Products and Substances for Use in organic Production and Establishing Their Lists. Available online: http://data.europa.eu/eli/reg_impl/2021/1165/oj (accessed on 15 November 2024).
- Beesigamukama, D.; Subramanian, S.; Tanga, C.M. Nutrient quality and maturity status of frass fertilizer from nine edible insects. Sci. Rep. 2022, 12, 7182. [Google Scholar] [CrossRef] [PubMed]
- Gärttling, D.; Schulz, H. Compilation of black soldier fly frass analyses. J. Soil Sci. Plant Nutr. 2022, 22, 937–943. [Google Scholar] [CrossRef]
- Amorim, H.C.; Ashworth, A.J.; Arsi, K.; Rojas, M.G.; Morales-Ramos, J.A.; Donoghue, A.; Robinson, K. Insect frass composition and potential use as an organic fertilizer in circular economies. J. Econ. Entomol. 2024, 117, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.; Jiménez-Gómez, A.; Saati-Santamaría, Z.; Usategui-Martín, R.; Rivas, R.; García-Fraile, P. Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. Appl. Soil Ecol. 2019, 142, 110–122. [Google Scholar] [CrossRef]
- Addeo, N.F.; Scivicco, M.; Vozzo, S.; Bovera, F.; Asiry, K.A.; Alqurashi, S.; Cacciola, N.A.; Severino, L. Mineral profile and heavy metals bioaccumulation in black soldier fly (Hermetia illucens, L.) larvae and frass across diverse organic substrates. Ital. J. Anim. Sci. 2024, 23, 179–188. [Google Scholar] [CrossRef]
- Baldacchino, F.; Spagnoletta, A.; Lamaj, F.; Vitale, M.L.; Verrastro, V. First optimization of tomato pomace in diets for Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Insects 2023, 14, 854. [Google Scholar] [CrossRef]
- Chavez, M.; Uchanski, M. Insect left-over substrate as plant fertiliser. J. Insects Food Feed 2021, 7, 683–694. [Google Scholar] [CrossRef]
- Beesigamukama, D.; Mochoge, B.; Korir, N.K.; Fiaboe, K.K.; Nakimbugwe, D.; Khamis, F.M.; Subramanian, S.; Dubois, T.; Musyoka, M.W.; Ekesi, S.; et al. Exploring black soldier fly frass as novel fertilizer for improved growth, yield, and nitrogen use efficiency of maize under field conditions. Front. Plant Sci. 2020, 11, 574592. [Google Scholar] [CrossRef]
- Antoniadis, V.; Molla, A.; Grammenou, A.; Apostolidis, V.; Athanassiou, C.G.; Rumbos, C.I.; Levizou, E. Insect Frass as a Novel Organic Soil Fertilizer for the Cultivation of Spinach (Spinacia oleracea): Effects on Soil Properties, Plant Physiological Parameters, and Nutrient Status. J. Soil Sci. Plant Nutr. 2023, 23, 5935–5944. [Google Scholar] [CrossRef]
- Chia, S.Y.; van Loon, J.J.; Dicke, M. Effects of frass from larvae of black soldier fly (Hermetia illucens) and yellow mealworm (Tenebrio molitor) on growth and insect resistance in field mustard (Brassica rapa): Differences between insect species and frass treatments. Entomol. Exp. Appl. 2024, 172, 394–408. [Google Scholar] [CrossRef]
- Foughar, M.; Arrobas, M.; Rodrigues, M.Â. Mealworm Larvae Frass Exhibits a Plant Biostimulant Effect on Lettuce, Boosting Productivity beyond Just Nutrient Release or Improved Soil Properties. Horticulturae 2024, 10, 711. [Google Scholar] [CrossRef]
- Arabzadeh, G.; Delisle-Houde, M.; Dorais, M.; Deschamps, M.H.; Derome, N.; Vandenberg, G.W.; Tweddell, R.J. Evaluation of the antagonistic activity of black soldier fly frass extracts against plant pathogens using single-and double-layer agar bioassays. J. Insects Food Feed 2024, 1, 1–10. [Google Scholar] [CrossRef]
- Arabzadeh, G.; Delisle-Houde, M.; Vandenberg, G.W.; Deschamps, M.H.; Dorais, M.; Derome, N.; Tweddell, R.J. Suppressive Effect of Black Soldier Fly Larvae Frass on Fusarium Wilt Disease in Tomato Plants. Insects 2024, 15, 613. [Google Scholar] [CrossRef] [PubMed]
- Borkent, S.; Hodge, S. Glasshouse Evaluation of the Black Soldier Fly Waste Product HexaFrass™ as an Organic Fertilizer. Insects 2021, 12, 977. [Google Scholar] [CrossRef] [PubMed]
- Setti, L.; Francia, E.; Pulvirenti, A.; Gigliano, S.; Zaccardelli, M.; Pane, C.; Caradonia, F.; Bortolini, S.; Maistrello, L.; Ronga, D. Use of black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media. Waste Manag. 2019, 95, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Praeg, N.; Klammsteiner, T. Primary study on frass fertilizers from mass-reared insects: Species variation, heat treatment effects, and implications for soil application at laboratory scale. J. Environ. Manag. 2024, 356, 120622. [Google Scholar] [CrossRef]
- Houben, D.; Daoulas, G.; Faucon, M.P.; Dulaurent, A.M. Potential use of mealworm frass as a fertilizer: Impact on crop growth and soil properties. Sci. Rep. 2020, 10, 4659. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Available online: http://data.europa.eu/eli/reg/2019/1009/oj (accessed on 15 November 2024).
- González-Lara, H.; Parra-Pacheco, B.; Aguirre-Becerra, H.; Feregrino-Perez, A.A.; Garcia-Trejo, J.F. Effects of Using Thermocomposted Frass from Black Soldier Fly Larvae as a Germination Substrate on the Phytotoxicity, Germination Index, Growth and Antioxidant Contents in Kale (Brassica oleracea). Agronomy 2024, 14, 1392. [Google Scholar] [CrossRef]
- Coviello, L.; Nuzzaci, M.; Falabella, P.; Scieuzo, C.; Salvia, R.; Ronga, D.; Vitti, A. Innovative Use of Hermetia illucens Frass Extract as Priming to Promote Tomato and Wheat Growth and Protection. J. Sustain. Agric. Environ. 2024, 3, e70030. [Google Scholar] [CrossRef]
- Luo, Y.; Liang, J.; Zeng, G.; Chen, M.; Mo, D.; Li, G.; Zhang, D. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Manag. 2018, 71, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Barral, M.T.; Paradelo, R. A review on the use of phytotoxicity as a compost quality indicator. Dyn. Soil Dyn. Plant 2011, 5, 36–44. [Google Scholar]
- Zunzunegui, I.; Martín-García, J.; Santamaría, Ó.; Poveda, J. Analysis of yellow mealworm (Tenebrio molitor) frass as a resource for a sustainable agriculture in the current context of insect farming industry growth. J. Clean. Prod. 2024, 460, 142608. [Google Scholar] [CrossRef]
- Beesigamukama, D.; Mochoge, B.; Korir, N.; Musyoka, M.W.; Fiaboe, K.K.M.; Nakimbugwe, D.; Khamis, F.M.; Subramanian, S.; Dubois, T.; Ekesi, S.; et al. Nitrogen fertilizer equivalence of black soldier fly frass fertilizer and synchrony of nitrogen mineralization for maize production. Agronomy 2020, 10, 1395. [Google Scholar] [CrossRef]
- Bohm, K.; Hatley, G.A.; Robinson, B.H.; Gutiérrez-Ginés, M.J. Analysis of Chemical and Phytotoxic Properties of Frass Derived from Black Soldier Fly-Based Bioconversion of Biosolids. Sustainability 2023, 15, 11526. [Google Scholar] [CrossRef]
- Shannon, M.C.; Grieve, C.M. Tolerance of vegetable crops to salinity. Sci. Hortic. 1999, 78, 5–38. [Google Scholar] [CrossRef]
- Karkanis, A.; Asprogeraka, A.C.; Paouris, E.; Ntanasi, T.; Karavidas, I.; Rumbos, C.I.; Ntatsi, G. Yellow mealworm frass: A promising organic fertilizer for common sowthistle (Sonchus oleraceus L.) and bristly oxtongue (Helminthotheca echioides (L.) Holub) cultivation. Heliyon 2024, 10, e35508. [Google Scholar] [CrossRef]
- Radzikowska-Kujawska, D.; Sawinska, Z.; Grzanka, M.; Kowalczewski, P.Ł.; Sobiech, Ł.; Świtek, S.; Skrzypczak, G.; Drożdżyńska, A.; Ślachciński, M.; Nowicki, M. Hermetia illucens frass improves the physiological state of basil (Ocimum basilicum L.) and its nutritional value under drought. PLoS ONE 2023, 18, e0280037. [Google Scholar] [CrossRef]
- Ferruzca-Campos, E.A.; Rico-Chavez, A.K.; Guevara-González, R.G.; Urrestarazu, M.; Cunha-Chiamolera, T.P.L.; Reynoso-Camacho, R.; Guzmán-Cruz, R. Biostimulant and elicitor responses to cricket frass (Acheta domesticus) in tomato (Solanum lycopersicum L.) under protected conditions. Plants 2023, 12, 1327. [Google Scholar] [CrossRef] [PubMed]
- Nurfikari, A.; Leite, M.F.A.; Kuramae, E.E.; de Boer, W. Microbial community dynamics during decomposition of insect exuviae and frass in soil. Soil Biol. Biochem. 2024, 194, 109426. [Google Scholar] [CrossRef]
Treatment | EC (μS/cm) | Germination (%) | ||
---|---|---|---|---|
Allium cepa | Beta vulgaris | Brassica rapa | ||
Control 1 | 0.8 | 88.9 ± 4.0 a | 22.2 ± 2.9 a | 88.3 ± 4.8 a |
Dilution 1:100 | 458 | 86.7 ± 1.9 a | 12.2 ± 2.2 a | 90.0 ± 2.4 a |
Dilution 1:75 | 756 | 83.3 ± 3.3 ab | 13.3 ± 5.1 a | 80.8 ± 0.8 a |
Dilution 1:50 | 924 | 65.6 ± 7.8 b | 14.4 ± 1.1 a | 76.7 ± 4.9 a |
Treatment | Allium cepa | Beta vulgaris | Brassica rapa | |||
---|---|---|---|---|---|---|
GI (%) | Phytotoxicity | GI (%) | Phytotoxicity | GI (%) | Phytotoxicity | |
Control 1 | 100.0 ± 0.0 a | no | 100.0 ± 0.0 a | no | 100.0 ± 0.0 a | no |
Dilution 1:100 | 123.8 ± 16.3 a | stimulant | 60.0 ± 3.8 a | moderate | 74.9 ± 9.2 b | moderate |
Dilution 1:75 | 127.2 ± 12.7 a | stimulant | 55.9 ± 18.0 a | moderate | 64.1 ± 9.0 b | moderate |
Dilution 1:50 | 51.1 ± 11.2 b | moderate | 44.4 ± 19.6 a | high | 49.4 ± 4.2 b | high |
Treatment | Root Length (cm) | Leaf Length (cm) | Leaves (n) | Seedling Biomass (g) |
---|---|---|---|---|
Control 1 | 1.4 ± 0.1 b | 11.3 ± 0.7 b | 2.09 ± 0.11 b | 0.08 ± 0.01 b |
Fr0.5 | 2.6 ± 0.2 a | 16.8 ± 0.5 a | 2.73 ± 0.08 a | 0.20 ± 0.01 a |
Fr1 | 1.6 ± 0.1 b | 12.8 ± 1.1 b | 2.38 ± 0.13 a | 0.12 ± 0.02 b |
Fr2 | 1.9 ± 0.5 a | 14.1 ± 1.6 a | 2.67 ± 0.17 a | 0.15 ± 0.02 a |
Treatment | Root Length (cm) | Epicotyl Length (cm) | Cotyledon Length (cm) | Leaf Length (cm) | Leaves (n) | Seedling Biomass (g) |
---|---|---|---|---|---|---|
Control 1 | 4.4 ± 0.3 b | 4.8 ± 0.2 a | 4.8 ± 0.1 b | 6.7 ± 0.4 b | 2.08 ± 0.08 b | 0.39 ± 0.03 b |
Fr0.5 | 5.8 ± 0.3 a | 5.1 ± 0.3 a | 5.7 ± 0.2 ab | 9.0 ± 0.3 ab | 2.75 ± 0.18 a | 0.69 ± 0.05 a |
Fr1 | 6.0 ± 0.4 a | 5.1 ± 0.4 a | 5.9 ± 0.2 a | 9.5 ± 0.3 a | 2.92 ± 0.19 a | 0.70 ± 0.05 a |
Fr2 | 5.4 ± 0.3 ab | 4.9 ± 0.2 a | 5.8 ± 0.2 a | 9.5 ± 0.2 a | 2.92 ± 0.19 a | 0.79 ± 0.05 a |
Fr3 | 5.1 ± 0.3 ab | 4.6 ± 0.2 a | 5.7 ± 0.2 a | 9.1 ± 0.3 a | 3.00 ± 0.17 a | 0.62 ± 0.05 a |
Treatment | Root Length (cm) | Epicotyl Length (cm) | Cotyledon Length (cm) | Leaf Length (cm) | Leaves (n) | Seedling Biomass (g) |
---|---|---|---|---|---|---|
Control 1 | 2.5 ± 0.3 b | 2.8 ± 0.2 c | 1.4 ± 0.1 c | 2.8 ± 0.2 b | 1.78 ± 0.10 b | 0.08 ± 0.01 c |
Fr0.5 | 3.7 ± 0.3 a | 3.9 ± 0.2 ab | 2.3 ± 0.1 a | 4.1 ± 0.1 a | 2.00 ± 0.00 a | 0.17 ± 0.01 b |
Fr1 | 3.9 ± 0.4 a | 4.1 ± 0.2 a | 2.2 ± 0.1 a | 4.5 ± 0.2 a | 2.00 ± 0.00 a | 0.23 ± 0.01 a |
Fr2 | 3.7 ± 0.2 a | 3.6 ± 0.2 ab | 2.1 ± 0.1 ab | 4.3 ± 0.2 a | 2.00 ± 0.00 a | 0.19 ± 0.02 ab |
Fr3 | 3.6 ± 0.3 ab | 3.3 ± 0.2 bc | 1.8 ± 0.1 b | 3.8 ± 0.2 ab | 3.06 ± 0.06 a | 0.15 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldacchino, F.; Lamaj, F. Application of Mealworm Frass in Organic Seedling Production of Allium cepa L., Beta vulgaris L., and Brassica rapa L. Seeds 2025, 4, 4. https://doi.org/10.3390/seeds4010004
Baldacchino F, Lamaj F. Application of Mealworm Frass in Organic Seedling Production of Allium cepa L., Beta vulgaris L., and Brassica rapa L. Seeds. 2025; 4(1):4. https://doi.org/10.3390/seeds4010004
Chicago/Turabian StyleBaldacchino, Ferdinando, and Flutura Lamaj. 2025. "Application of Mealworm Frass in Organic Seedling Production of Allium cepa L., Beta vulgaris L., and Brassica rapa L." Seeds 4, no. 1: 4. https://doi.org/10.3390/seeds4010004
APA StyleBaldacchino, F., & Lamaj, F. (2025). Application of Mealworm Frass in Organic Seedling Production of Allium cepa L., Beta vulgaris L., and Brassica rapa L. Seeds, 4(1), 4. https://doi.org/10.3390/seeds4010004