Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = ceramic geopolymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3232 KiB  
Article
Residual Flexural Behavior of Hybrid Fiber-Reinforced Geopolymer After High Temperature Exposure
by Yiyang Xiong, Ruiwen Jiang, Yi Li and Peipeng Li
Materials 2025, 18(15), 3572; https://doi.org/10.3390/ma18153572 - 30 Jul 2025
Viewed by 226
Abstract
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using [...] Read more.
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using hybrid fibers. The flexural load–deflection response, strength, deformation capacity, toughness and microstructure are investigated by a thermal exposure test, bending test and microstructure observation. The results indicate that the plain geopolymer exhibits a continuously increasing flexural strength from 10 MPa at 20 °C to 25.9 MPa after 1000 °C exposure, attributed to thermally induced further geopolymerization and ceramic-like crystalline phase formation. Incorporating 5% wollastonite fibers results in slightly increased initial and residual flexural strength but comparable peak deflection, toughness and brittle failure. The binary 5% wollastonite and 1% basalt fibers in geopolymer obviously improve residual flexural strength exposed to 400–800 °C. The steel fibers show remarkable reinforcement on flexural behavior at 20–800 °C exposure; however, excessive steel fiber content such as 2% weakens flexural properties after 1000 °C exposure due to severe oxidation deterioration and thermal incompatibility. The wollastonite/basalt/steel fibers exhibit a positive synergistic effect on flexural strength and toughness of geopolymers at 20–600 °C. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

39 pages, 3281 KiB  
Review
Sustainable Alkali-Activated and Geopolymer Materials: What Is the Future for Italy?
by Laura Ricciotti, Daniele Lucariello, Valeria Perrotta, Antonio Apicella and Raffaella Aversa
Recycling 2025, 10(4), 140; https://doi.org/10.3390/recycling10040140 - 15 Jul 2025
Viewed by 560
Abstract
Using innovative and sustainable materials has become crucial for developed countries. Reusing waste as a secondary raw material in industrial processes central to the circular economy could enhance environmental sustainability and support local economies. Building materials such as Portland cement have a significant [...] Read more.
Using innovative and sustainable materials has become crucial for developed countries. Reusing waste as a secondary raw material in industrial processes central to the circular economy could enhance environmental sustainability and support local economies. Building materials such as Portland cement have a significant environmental impact due to greenhouse gas emissions and construction and demolition waste (CDW), which is challenging to recycle. Research into sustainable alternatives is, therefore, essential. The European Union has set ambitious targets to reduce greenhouse gas emissions by 55% by 2030 and achieve climate neutrality by 2050. The National Recovery and Resilience Plan (PNRR) supports the green transition in Italy by promoting sustainable materials like geopolymers. These ceramic-like materials are based on aluminosilicates obtained through the chemical activation of waste rich in silica and aluminosilicate compounds. Though promising, these materials require further research to address challenges like long-term durability and chemical variability. Collaboration between scientific research and industry is essential to develop specific protocols and suitable infrastructures. This article provides a critical review of the advancements and challenges in using alkali-activated waste as construction binders, focusing on Italy, and encourages the exploration of alternative sustainable materials beyond conventional Portland cement. Full article
Show Figures

Figure 1

19 pages, 3219 KiB  
Article
Development and Mechanical Analysis of Geopolymers Formed with Mining Residue and Fly Ash from Municipal Solid Waste Incineration Obtained After the Neutralisation Stage
by Antonia Terrones-Saeta, Juan María Terrones-Saeta, Jorge Suárez-Macías, Francisco Javier Iglesias-Godino and Francisco Antonio Corpas-Iglesias
Polymers 2025, 17(12), 1704; https://doi.org/10.3390/polym17121704 - 19 Jun 2025
Viewed by 253
Abstract
Renewable energy sources are presented as a key solution to today’s energy needs, but they also generate waste that can have a negative impact on the environment. In particular, fly ash from the incineration of municipal solid waste (MSW), classified as hazardous by [...] Read more.
Renewable energy sources are presented as a key solution to today’s energy needs, but they also generate waste that can have a negative impact on the environment. In particular, fly ash from the incineration of municipal solid waste (MSW), classified as hazardous by European regulations, is often deposited in landfills due to its lack of usefulness. This research proposes its valorisation in geopolymers, combining it with mining to create a sustainable material with a high industrial waste content. Firstly, all the wastes involved were characterised, which allowed for the development of a high-quality geopolymer from mining residue activated with 5% NaOH. This material was enriched with up to 50% fly ash (in increasing percentages) with the aim of making it inert, retaining it in the geopolymer matrix, and observing its effect on the final material. The physical and mechanical properties of the geopolymers obtained were evaluated, demonstrating that they do not produce contaminating leachates. The results indicate the feasibility of developing a geopolymer with up to 20% fly ash, obtaining a building material comparable to traditional ceramics, suitable for commercialisation, with a lower environmental impact and in line with the principles of the circular economy. Full article
Show Figures

Figure 1

26 pages, 10141 KiB  
Article
Study of Novel Geopolymer Concrete Prepared with Slate Stone Cutting Sludge, Chamotte, Steel Slag and Activated with Olive Stone Bottom Ash
by Raul Carrillo Beltran, Elena Picazo Camilo, Griselda Perea Toledo and Francisco Antonio Corpas Iglesias
Materials 2025, 18(9), 1974; https://doi.org/10.3390/ma18091974 - 26 Apr 2025
Cited by 2 | Viewed by 652
Abstract
The expansion of the construction sector has contributed to the depletion of raw materials and an increased demand for resources; therefore, sustainable approaches are required to satisfy the construction demand. The present study explores the development of geopolymers by utilizing industrial by-products from [...] Read more.
The expansion of the construction sector has contributed to the depletion of raw materials and an increased demand for resources; therefore, sustainable approaches are required to satisfy the construction demand. The present study explores the development of geopolymers by utilizing industrial by-products from mining, ceramics, olive oil production, and steel manufacturing. Specifically, slate stone cutting sludge (SSCS) and chamotte (CH) are used as aluminosilicate precursors, with olive biomass bottom ash (OSBA) acting as an alkaline activator, along with sodium silicate, and steel granulated slag (SGS) incorporated as an aggregate. Novel geopolymers were prepared with consistent proportions of SSCS and OSBA while varying the CH content from 10 to 2 wt.%. The SGS proportion was adjusted from 35 to 50 wt.%, and different Na2SiO3/OSBA ratios (0.35, 0.31, 0.19, and 0.08) were examined. To identify the optimal mix, a series of physical and mechanical tests was conducted, complemented by FTIR and SEM analysis to evaluate the chemical and microstructural changes. The best-performing formulation achieved a compressive strength of 42.8 MPa after 28 days of curing. FTIR analysis identified quartz and carbonate phases, suggesting that quartz did not fully dissolve and that carbonates formed during the heating process. SEM examination of the optimal mixture indicated that the incorporation of SGS (up to 45 wt.%) facilitated the creation of a compact, low-porosity structure. EDX results revealed the presence of Ca-, Na-, Si-, Al-, and K-enriched phases, supporting the formation of (N, C)-A-S-H gel networks. These results demonstrate the potential of utilizing SSCS, CH, OSBA, and SGS to create geopolymer concretes, showcasing the viability of using industrial by-products as eco-friendly substitutes for traditional construction materials. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials)
Show Figures

Figure 1

35 pages, 22378 KiB  
Article
Study of Properties of Novel Geopolymers Prepared with Slate Stone Cutting Sludge and Activated with Olive Stone Bottom Ash
by Elena Picazo Camilo, Juan José Valenzuela Expósito, Raúl Carrillo Beltrán, Griselda Elisabeth Perea Toledo and Francisco Antonio Corpas Iglesias
Materials 2025, 18(8), 1774; https://doi.org/10.3390/ma18081774 - 13 Apr 2025
Cited by 2 | Viewed by 599
Abstract
The sustainable development of building materials is based on reusing by-products to reduce environmental impact and promote alternatives to traditional materials. In this study, geopolymers were developed from by-products of the mining, ceramic, and thermal industries: slate stone cutting sludge (SSCS) and chamotte [...] Read more.
The sustainable development of building materials is based on reusing by-products to reduce environmental impact and promote alternatives to traditional materials. In this study, geopolymers were developed from by-products of the mining, ceramic, and thermal industries: slate stone cutting sludge (SSCS) and chamotte (CH) as aluminosilicate sources, and olive stone bottom ash (OSBA) as an alkaline activator, combined with sodium silicate (Na2SiO3). Eight geopolymer families were prepared with constant amounts of SSCS and CH and varying proportions of OSBA/Na2SiO3 (0.88–1.31). The evaluation phase included physical, chemical, mechanical, and microstructural tests. The results showed that the optimum geopolymer formulation (GP E) contained 25% SSCS, 15% CH, and 19% OSBA with a Na2SiO3/OSBA ratio of 1.0, achieving a compressive strength of 24.12 MPa after 28 days of curing. GP E also showed the lowest porosity (19.54%), minimal water absorption (6.86%), and favorable thermal conductivity (0.688 W/mK). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed the formation of dense and homogeneous matrices. These results demonstrate the feasibility of manufacturing geopolymers using SSCS, CH, and OSBA as substitutes for traditional binders, promoting sustainable practices, reusing industrial by-products, and reducing carbon emissions in construction. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials)
Show Figures

Graphical abstract

27 pages, 8596 KiB  
Article
Eco-Friendly High-Strength Geopolymer Mortar from Construction and Demolition Wastes
by Osama Youssf, Donia Safaa Eldin and Ahmed M. Tahwia
Infrastructures 2025, 10(4), 76; https://doi.org/10.3390/infrastructures10040076 - 27 Mar 2025
Cited by 3 | Viewed by 818
Abstract
Geopolymer mortar is an eco-friendly type of mortar that is mainly made of fly ash, slag, and sand as common precursors. Recently, the availability of these materials has become limited due to the huge increase in geopolymer constructions. This is aligned with the [...] Read more.
Geopolymer mortar is an eco-friendly type of mortar that is mainly made of fly ash, slag, and sand as common precursors. Recently, the availability of these materials has become limited due to the huge increase in geopolymer constructions. This is aligned with the recent demand for recycling construction and demolition waste (CDW). In this study, brick waste (BW), ceramic tile waste (CTW), roof tile waste (RTW), and glass waste (GW) extracted from CDW were prepared in the following two sizes: one equivalent to the traditional geopolymer mortar binder (fly ash and slag) size and the other one equivalent to the sand size. The prepared CDW was used to partially replace the binder or sand to produce high-strength geopolymer mortar (HSGM). The replacements were carried out at rates of 25% and 50% by volume. The variety of mechanical and durability characteristics were measured, including workability, compressive strength, freezing/thawing resistance, sulfate attack, water sorptivity, and water absorption. Three curing conditions were applied for the proposed HSGM in this study, namely, water, heat followed by water, and heat followed by air. The results showed that the compressive strength of all HSGM mixes containing CDW ranged from 24 to 104 MPa. HSGM mixes cured in heat followed by water showed the highest 28-day compressive strengths of 104 MPa (when using 25% BW binder), 84.5 MPa (when using 25% BW fine aggregate), 91.3 MPa (when using 50% BW fine aggregate), 84 MPa (when using 25% CTW binder), and 94 MPa (when using 25% CTW fine aggregate). The findings demonstrated that using BW provided good resistance to freezing/thawing and sulfate attack. The water absorption of HSGM increased by 57.8% when using 50% CTW fine aggregate and decreased by 26.5% when using 50% GW fine aggregate. The highest water sorptivity of HSGM was recorded when 50% CTW fine aggregate was used. The use of CDW in HSGM helps reduce the depletion of natural resources and minimizes waste accumulation, enhancing environmental sustainability. These benefits make HSGM an eco-friendly alternative that promotes circular economy practices. Full article
Show Figures

Figure 1

30 pages, 9447 KiB  
Article
Geopolymers Manufactured by the Alkali Activation of Mining and Ceramic Wastes Using a Potential Sustainable Activator from Olive Stone Bottom Ashes
by Raul Carrillo Beltran, Elena Picazo Camilo, Griselda Perea Toledo and Francisco Antonio Corpas Iglesias
Materials 2025, 18(3), 688; https://doi.org/10.3390/ma18030688 - 4 Feb 2025
Cited by 2 | Viewed by 996
Abstract
The reuse of by-products as alternative raw materials to traditional construction materials is required in order to ensure sustainable development in the construction sector and is a significant and important focus in the fields of materials science. This study developed geopolymers using by-products [...] Read more.
The reuse of by-products as alternative raw materials to traditional construction materials is required in order to ensure sustainable development in the construction sector and is a significant and important focus in the fields of materials science. This study developed geopolymers using by-products from mining, ceramics, and olive industries, including slate stone cutting sludge (SSCS) and chamotte (CH) as aluminosilicate sources, and olive biomass bottom ash (OSBA) as an alkaline activator with sodium silicate. A key novelty of the research lies in the use of SSCS, an underexplored by-product in geopolymerization studies, as a viable aluminosilicate source. The geopolymers were prepared with varying weight ratios of SSCS, CH, and OSBA/Na₂SiO₃ (1.7, 1.9, 2.2, and 2.4). Physical and mechanical tests determined the optimal formulation, while FTIR and SEM analyses revealed the material’s chemical and structural evolution. The FTIR analysis detected the quartz and carbonate phases, indicating incomplete quartz dissolution and carbonate formation during calcination. The SEM analysis revealed a dense microstructure with reduced porosity and enhanced geopolymerization in samples with higher OSBA content. The optimal geopolymer (60% OSBA, 30% CH, OSBA/Na₂SiO₃ ratio of 2.2) achieved a compressive strength of 33.1 MPa after 28 days. These findings demonstrate the feasibility of producing geopolymers using SSCS, CH, and OSBA, promoting the reuse of industrial by-products as sustainable alternatives to conventional binders. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials)
Show Figures

Figure 1

20 pages, 6177 KiB  
Article
Characterization of the Evolution with Temperature of the Structure and Properties of Geopolymer-Cordierite Composites
by Franklin Casarrubios, Alexandre Marlier, Charlotte Lang, Sandra Abdelouhab, Isabella Mastroianni, Geoffroy Bister and Maurice-François Gonon
Ceramics 2024, 7(4), 1513-1532; https://doi.org/10.3390/ceramics7040098 - 17 Oct 2024
Cited by 2 | Viewed by 1678
Abstract
This work is part of a research project aimed at producing ceramic-like materials, without the need for an initial sintering, for potential applications in catalysis or filtration at temperatures up to 1000 °C. In that context, cordierite-derived materials were prepared from recycled cordierite [...] Read more.
This work is part of a research project aimed at producing ceramic-like materials, without the need for an initial sintering, for potential applications in catalysis or filtration at temperatures up to 1000 °C. In that context, cordierite-derived materials were prepared from recycled cordierite powder (automotive industry waste) bonded with metakaolin-potassium silicate geopolymer. The principle is that these materials, prepared at temperatures below 100 °C, acquire their final properties during the high-temperature commissioning. The focus is on the influence of the K/Al ratio and cordierite fraction on the stability of the dimensions and porosity during heating at 1000 °C, and on the final Young’s modulus and coefficient of thermal expansion. Conventional and high-temperature XRD evidenced the absence of crystallization of the geopolymer binder and interaction with the cordierite filler during the heating stage when K/Al = 1 or 0.75. By contrast, crystallization of kalsilite and leucite, and diffusion of potassium ions in the structure of cordierite is evidenced for K/Al = 1.5 and 2.3. These differences strongly influence the shrinkage due to sintering and the final properties. It is shown that a K/Al ratio of 0.75 or 1 is favorable to the stability of the porosity, around 25 to 30%. Moreover, a low coefficient of thermal expansion of 4 to 4.5 × 10−6 K−1 and a Young’s modulus of 40 to 45 GPa is obtained. Full article
(This article belongs to the Special Issue Innovative Manufacturing Processes of Silicate Materials)
Show Figures

Figure 1

15 pages, 11176 KiB  
Article
Study on Calcination Characteristics of Diaspore-Kaolin Bauxite Based on Machine Vision
by Longjiang Li and Jun Liu
Molecules 2024, 29(16), 3813; https://doi.org/10.3390/molecules29163813 - 11 Aug 2024
Viewed by 1330
Abstract
D-K-type bauxite from Guizhou can be used as an unburned ceramic, adsorbent, and geopolymer after low-temperature calcination. It aims to solve the problem where the color of the D–K-type bauxite changes after calcination at different temperatures. Digital image processing technology was used to [...] Read more.
D-K-type bauxite from Guizhou can be used as an unburned ceramic, adsorbent, and geopolymer after low-temperature calcination. It aims to solve the problem where the color of the D–K-type bauxite changes after calcination at different temperatures. Digital image processing technology was used to extract the color characteristics of bauxite images after 10 min of calcination at various temperatures. Then, we analyzed changes in the chemical composition and micromorphology of bauxite before and after calcination and investigated the correlation between the color characteristics of images and composition changes after bauxite calcination. The test results indicated that after calcining bauxite at 500 °C to 1000 °C for 10 min, more obvious dehydration and decarburization reactions occurred. The main component gradually changed from diaspore to Al2O3, the chromaticity value of the image decreased from 0.0980 to 0.0515, the saturation value increased from 0.0161 to 0.2433, and the brightness value increased from 0.5890 to 0.7177. Studies have shown that changes in bauxite color characteristics are strongly correlated with changes in composition. This is important for directing bauxite calcination based on digital image processing from engineering viewpoints. Full article
(This article belongs to the Special Issue Molecular Structure of Minerals)
Show Figures

Graphical abstract

16 pages, 45159 KiB  
Article
Synergistic Effect of Blended Precursors and Silica Fume on Strength and High Temperature Resistance of Geopolymer
by Bosong Cao, Yi Li and Peipeng Li
Materials 2024, 17(12), 2975; https://doi.org/10.3390/ma17122975 - 18 Jun 2024
Cited by 14 | Viewed by 1236
Abstract
This paper investigates the high temperature resistance performance and mechanism of potassium-activated blended precursor geopolymer with silica fume. The failure morphology, volume, and mass loss, compressive strength deterioration, hydration production, and pore structure are measured and analyzed. The results show that introducing slag [...] Read more.
This paper investigates the high temperature resistance performance and mechanism of potassium-activated blended precursor geopolymer with silica fume. The failure morphology, volume, and mass loss, compressive strength deterioration, hydration production, and pore structure are measured and analyzed. The results show that introducing slag into fly ash-based geopolymer could greatly improve the 28 d compressive strength but reduce the thermal stability. In contrast, the partial substitution of fly ash by metakaolin contributes to excellent high temperature resistance with slightly enhanced 28 d compressive strength. After being exposed at 800 °C, the residual compressive strength of F7M3 remains at 37 MPa, almost 114% of the initial ambient-temperature strength. An appropriately enlarged silica fume content in geopolymer results in increased compressive strength and enhanced thermal stability. However, an excessive silica fume content is detrimental to the generation of alkali-aluminosilicate gels and ceramic-like phases and thus exacerbates the high temperature damage. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 7794 KiB  
Article
Effect of Water-Soluble Polymers on the Rheology and Microstructure of Polymer-Modified Geopolymer Glass-Ceramics
by John M. Migliore, Patrick Hewitt, Theo J. Dingemans, Davide L. Simone and William Jacob Monzel
Materials 2024, 17(12), 2856; https://doi.org/10.3390/ma17122856 - 11 Jun 2024
Cited by 1 | Viewed by 1851
Abstract
This work explores the effects of rigid (0.1, 0.25, and 0.5 wt. %) and semi-flexible (0.5, 1.0, and 2.5 wt. %) all-aromatic polyelectrolyte reinforcements as rheological and morphological modifiers for preparing phosphate geopolymer glass–ceramic composites. Polymer-modified aluminosilicate–phosphate geopolymer resins were prepared by high-shear [...] Read more.
This work explores the effects of rigid (0.1, 0.25, and 0.5 wt. %) and semi-flexible (0.5, 1.0, and 2.5 wt. %) all-aromatic polyelectrolyte reinforcements as rheological and morphological modifiers for preparing phosphate geopolymer glass–ceramic composites. Polymer-modified aluminosilicate–phosphate geopolymer resins were prepared by high-shear mixing of a metakaolin powder with 9M phosphoric acid and two all-aromatic, sulfonated polyamides. Polymer loadings between 0.5–2.5 wt. % exhibited gel-like behavior and an increase in the modulus of the geopolymer resin as a function of polymer concentration. The incorporation of a 0.5 wt. % rigid polymer resulted in a three-fold increase in viscosity relative to the control phosphate geopolymer resin. Hardening, dehydration, and crystallization of the geopolymer resins to glass-ceramics was achieved through mold casting, curing at 80 °C for 24 h, and a final heat treatment up to 260 °C. Scanning electron microscopy revealed a decrease in microstructure porosity in the range of 0.78 μm to 0.31 μm for geopolymer plaques containing loadings of 0.5 wt. % rigid polymer. Nano-porosity values of the composites were measured between 10–40 nm using nitrogen adsorption (Brunauer–Emmett–Teller method) and transmission electron microscopy. Nanoindentation studies revealed geopolymer composites with Young’s modulus values of 15–24 GPa and hardness values of 1–2 GPa, suggesting an increase in modulus and hardness with polymer incorporation. Additional structural and chemical analyses were performed via thermal gravimetric analysis, Fourier transform infrared radiation, X-ray diffraction, and energy dispersive spectroscopy. This work provides a fundamental understanding of the processing, microstructure, and mechanical behavior of water-soluble, high-performance polyelectrolyte-reinforced geopolymer composites. Full article
Show Figures

Figure 1

18 pages, 2487 KiB  
Article
Preparation of Geopolymeric Materials from Industrial Kaolins, with Variable Kaolinite Content and Alkali Silicates Precursors
by Sergio Martínez-Martínez, Karima Bouguermouh, Nedjima Bouzidi, Laila Mahtout, Pedro J. Sánchez-Soto and Luis Pérez-Villarejo
Materials 2024, 17(8), 1839; https://doi.org/10.3390/ma17081839 - 16 Apr 2024
Cited by 5 | Viewed by 1583
Abstract
In the present work, the development of geopolymeric materials with Na or K based on industrial kaolin samples, with variable kaolinite content and alkaline silicates, is studied. XRF, XRD, FTIR and SEM-EDS have been used as characterization techniques. Three ceramic kaolin samples, two [...] Read more.
In the present work, the development of geopolymeric materials with Na or K based on industrial kaolin samples, with variable kaolinite content and alkaline silicates, is studied. XRF, XRD, FTIR and SEM-EDS have been used as characterization techniques. Three ceramic kaolin samples, two from Algeria and one from Charente (France), have been considered. In particular, chemical and mineralogical characterization revealed elements distinct of Si and Al, and the content of pure kaolinite and secondary minerals. Metakaolinite was obtained by grinding and sieving raw kaolin at 80 μm and then by thermal activation at 750 °C for 1 h. This metakaolinite has been used as a base raw material to obtain geopolymers, using for this purpose different formulations of alkaline silicates with NaOH or KOH and variable Si/K molar ratios. The formation of geopolymeric materials by hydroxylation and polycondensation characterized with different Si/Al molar ratios, depending on the original metakaolinite content, has been demonstrated. Sodium carbonates have been detected by XRD and FTIR, and confirmed by SEM-EDS, in two of these geopolymer materials being products of NaOH carbonation. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials)
Show Figures

Figure 1

17 pages, 6289 KiB  
Article
Properties of Geopolymer Mixtures Incorporating Recycled Ceramic Fines
by Katarzyna Kalinowska-Wichrowska, Edyta Pawluczuk, Filip Chyliński, Hwa Kian Chai, Magdalena Joka Yildiz, Aleksandra Chuczun and Stanisław Łuniewski
Materials 2024, 17(8), 1740; https://doi.org/10.3390/ma17081740 - 10 Apr 2024
Cited by 2 | Viewed by 1378
Abstract
This research aimed to optimize the production conditions for geopolymer matrices by investigating the combination of heat curing conditions and the incorporation of recycled ceramic fines (CFs) as a partial replacement material for fly ash (FA). The obtained physical and mechanical properties of [...] Read more.
This research aimed to optimize the production conditions for geopolymer matrices by investigating the combination of heat curing conditions and the incorporation of recycled ceramic fines (CFs) as a partial replacement material for fly ash (FA). The obtained physical and mechanical properties of the composites confirmed the positive impact resulting from increasing the curing temperature from 65 °C to 85 °C and using CFs in the amount of 37.5% as a replacement for FA. The results were from laboratory tests performed to evaluate compressive strength, bending strength, bulk density, and water absorption of the geopolymer mixes. In addition, microscopic observations and porosity assessment were also performed, which confirmed that a further increase in the replacement of FA by CFs causes an increase in the porosity of the mixes and, thus, a decrease in all the assessed properties that are relevant to their practical use. Full article
(This article belongs to the Special Issue Environmentally Friendly Composites Incorporating Waste Materials)
Show Figures

Figure 1

20 pages, 24375 KiB  
Article
The Behavior of Ceramic Fiber Geopolymer Concrete under the Effect of High Temperature
by Aras Dalğıç and Berivan Yılmazer Polat
Appl. Sci. 2024, 14(4), 1607; https://doi.org/10.3390/app14041607 - 17 Feb 2024
Cited by 5 | Viewed by 2116
Abstract
Geopolymer concrete (GC), also known as green concrete, contains slag, silica fume, and fly ash as binders. The absence of cement in concrete is critical to protect the world from the environmental impacts of cement production. In addition, exposure to high temperatures is [...] Read more.
Geopolymer concrete (GC), also known as green concrete, contains slag, silica fume, and fly ash as binders. The absence of cement in concrete is critical to protect the world from the environmental impacts of cement production. In addition, exposure to high temperatures is a critical parameter that causes loss of strength in concrete. In this study, Geopolymer concrete samples were prepared with 10 different samples containing different proportions of slag, silica fume, and porous ash and subjected to various physical, mechanical, and optical tests. The sample (GS90) with optimum workability and compressive strength, which also showed high performance in water absorption, freeze-thaw, and UPV tests, was used in high-temperature tests. Portland cement concrete (PCC) was used as a control sample. This study investigated the effect of high temperatures on the physical and mechanical properties of fiber-free GCs containing 2%, 5%, and 10% by volume of ceramic fibers. Therefore, fiber-reinforced, fiber-free, and PCC specimens were subjected to high-temperature tests at 100, 300, 600, and 900 °C. As a result of the observation of crack growth, color changes, and compressive strength parameters in the samples subjected to high-temperature tests, the thermal resistance of the 10% ceramic fiber geopolymer concrete sample was 2.5% higher than other samples. There is no study in the literature that examines the behavior of ceramic fiber-reinforced geopolymer concrete at high temperatures. This research revealed an important finding by proving that ceramic fiber reinforcement increases the compressive strength of geopolymer concretes at a remarkable rate after high-temperature impact. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 6459 KiB  
Article
Acoustic Applications of a Foamed Geopolymeric-Architected Metamaterial
by Giuseppe Ciaburro, Gino Iannace, Laura Ricciotti, Antonio Apicella, Valeria Perrotta and Raffaella Aversa
Appl. Sci. 2024, 14(3), 1207; https://doi.org/10.3390/app14031207 - 31 Jan 2024
Cited by 8 | Viewed by 2013
Abstract
The paper compares and evaluates the influence of the presence of perforations on the sound absorption coefficient (SAC) of a negative stiffness metamaterial based on a foamed ceramic geopolymer. Chemical–physical, microstructural, dynamic–mechanical, and sound characterisations are presented. A rigid, lightweight geopolymeric porous material [...] Read more.
The paper compares and evaluates the influence of the presence of perforations on the sound absorption coefficient (SAC) of a negative stiffness metamaterial based on a foamed ceramic geopolymer. Chemical–physical, microstructural, dynamic–mechanical, and sound characterisations are presented. A rigid, lightweight geopolymeric porous material has been prepared using an inorganic/organic monomeric mixture containing oligomeric sialates and siloxanes foamed with aluminium powder. This process results in an amorphous rigid light foam with an apparent 180 Kg/m3 density and a 78% open-pore. The viscoelastic characterisation by dynamic mechanical analysis (DMA) carried out from 10−3 to 103 Hz indicates the behaviour of a mechanical metamaterial with negative stiffness enabling ultrahigh energy absorption at straining frequencies from 300 to 1000 Hz. The material loss factor (the ratio of dissipative/elastic shear moduli) is about 0.03 (essentially elastic behaviour) for frequencies up to 200 Hz to suddenly increase up to a value of six at 1000 Hz (highly dissipative behaviour). The corresponding storage and loss moduli were 8.2 MPa and 20 MPa, respectively. Impedance tube acoustic absorption measurements on perforated and unperforated specimens highlighted the role of perforation-resonant cavities in enhancing sound absorption efficiency, particularly within the specified frequency band where the mass of the negative stiffness foamed geopolymer matrix magnifies the dissipation effect. In the limits of a still exploratory and comparative study, we aimed to verify the technological transfer potentiality of using architected metamaterials in sustainable building practices. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

Back to TopTop