Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,087)

Search Parameters:
Keywords = cement industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3724 KiB  
Article
Performance Study on Preparation of Mine Backfill Materials Using Industrial Solid Waste in Combination with Construction Waste
by Yang Cai, Qiumei Liu, Fufei Wu, Shuangkuai Dong, Qiuyue Zhang, Jing Wang, Pengfei Luo and Xin Yang
Materials 2025, 18(15), 3716; https://doi.org/10.3390/ma18153716 - 7 Aug 2025
Abstract
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast [...] Read more.
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF), phosphorus slag (PS), fly ash–phosphorus slag–phosphogypsum composite (FA-PS-PG), and fly ash–phosphorus slag–β-phosphogypsum composite (FA-PS-βPG)—under different substitution rates (50%, 55%, 60%) as control parameters. A total of 19 mix proportions were investigated, evaluating their slump, dry density, compressive strength, uniaxial compressive stress–strain relationship, micromorphology, and phase composition. The results indicate that, compared to backfill materials prepared with pure cement, the incorporation of industrial solid wastes improves the fluidity of the backfill materials. At 56 days, the constitutive model parameter a increased to varying degrees, while parameter b decreased, indicating enhanced ductility. The compressive strength was consistently higher with PS at all substitution rates. The FA-PS-PG mixture with a 50% substitution rate achieved the highest 56-day compressive strength of 8.02 MPa. These findings can facilitate the application of construction waste and industrial solid waste in mine backfilling projects, delivering economic, environmental, and resource-related benefits. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 5284 KiB  
Article
Hydration, Soundness, and Strength of Low Carbon LC3 Mortar Using Waste Brick Powder as a Source of Calcined Clay
by Saugat Humagain, Gaurab Shrestha, Mini K. Madhavan and Prabir Kumar Sarker
Materials 2025, 18(15), 3697; https://doi.org/10.3390/ma18153697 - 6 Aug 2025
Abstract
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker [...] Read more.
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker with calcined clay and limestone. This study investigated the use of waste clay brick powder (WBP), a waste material, as a source of calcined clay in LC3 formulations, addressing both environmental concerns and SCM scarcity. Two LC3 mixtures containing 15% limestone, 5% gypsum, and either 15% or 30% WBP, corresponding to clinker contents of 65% (LC3-65) or 50% (LC3-50), were evaluated against general purpose (GP) cement mortar. Tests included setting time, flowability, soundness, compressive and flexural strengths, drying shrinkage, isothermal calorimetry, and scanning electron microscopy (SEM). Isothermal calorimetry showed peak heat flow reductions of 26% and 49% for LC3-65 and LC3-50, respectively, indicating a slower reactivity of LC3. The initial and final setting times of the LC3 mixtures were 10–30 min and 30–60 min longer, respectively, due to the slower hydration kinetics caused by the reduced clinker content. Flowability increased in LC3-50, which is attributed to the lower clinker content and higher water availability. At 7 days, LC3-65 retained 98% of the control’s compressive strength, while LC3-50 showed a 47% reduction. At 28 days, the compressive strengths of mixtures LC3-65 and LC3-50 were 7% and 46% lower than the control, with flexural strength reductions being 8% and 40%, respectively. The porosity calculated from the SEM images was found to be 7%, 11%, and 15% in the control, LC3-65, and LC3-50, respectively. Thus, the reduction in strength is attributed to the slower reaction rate and increased porosity associated with the reduced clinker content in LC3 mixtures. However, the results indicate that the performance of LC3-65 was close to that of the control mix, supporting the viability of WBP as a low-carbon partial replacement of clinker in LC3. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete—Second Edition)
Show Figures

Figure 1

21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

23 pages, 10836 KiB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 - 5 Aug 2025
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

25 pages, 4475 KiB  
Article
Physical, Mechanical, and Durability Behavior of Sustainable Mortars with Construction and Demolition Waste as Supplementary Cementitious Material
by Sandra Cunha, Kubilay Kaptan, Erwan Hardy and José Aguiar
Buildings 2025, 15(15), 2757; https://doi.org/10.3390/buildings15152757 - 5 Aug 2025
Abstract
The construction industry plays a major role in the consumption of natural resources and the generation of waste. Construction and demolition waste (CDW) is produced in substantial volumes globally and is widely available. Its accumulation poses serious challenges related to storage and disposal, [...] Read more.
The construction industry plays a major role in the consumption of natural resources and the generation of waste. Construction and demolition waste (CDW) is produced in substantial volumes globally and is widely available. Its accumulation poses serious challenges related to storage and disposal, highlighting the need for effective strategies to mitigate the associated environmental impacts of the sector. This investigation intends to evaluate the influence of mixed CDW on the physical, mechanical, and durability properties of mortars with CDW partially replacing Portland cement, and allow performance comparisons with mortars produced with fly ash, a commonly used supplementary binder in cement-based materials. Thus, three mortar formulations were developed (reference mortar, mortar with 25% CDW, and mortars with 25% fly ash) and several characterization tests were carried out on the CDW powder and the developed mortars. The work’s principal findings revealed that through mechanical grinding processes, it was possible to obtain a CDW powder suitable for cement replacement and with good indicators of pozzolanic activity. The physical properties of the mortars revealed a decrease of about 10% in water absorption by immersion, which resulted in improved performance regarding durability, especially with regard to the lower carbonation depth (−1.1 mm), and a decrease of 51% in the chloride diffusion coefficient, even compared to mortars incorporating fly ash. However, the mechanical performance of the mortars incorporating CDW was reduced (25% in terms of flexural strength and 58% in terms of compressive strength), but their practical applicability was never compromised and their mechanical performance proved to be superior to that of mortars incorporating fly ash. Full article
(This article belongs to the Special Issue Research on Sustainable Materials in Building and Construction)
Show Figures

Figure 1

42 pages, 5770 KiB  
Review
Echoes from Below: A Systematic Review of Cement Bond Log Innovations Through Global Patent Analysis
by Lim Shing Wang, Muhammad Haarith Firdaous and Pg Emeroylariffion Abas
Inventions 2025, 10(4), 67; https://doi.org/10.3390/inventions10040067 - 2 Aug 2025
Viewed by 243
Abstract
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of [...] Read more.
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of CBL technologies, based on 3473 patent documents from the Lens.org database. After eliminating duplicates and irrelevant entries, 167 granted patents were selected for in-depth analysis. These were categorized by technology type (wave, electrical, radiation, neutron, and other tools) and by material focus (formation, casing, cement, and borehole fluid). The findings reveal a dominant focus on formation evaluation (59.9%) and a growing reliance on wave-based (22.2%) and other advanced tools (25.1%), indicating a shift toward high-precision diagnostics. Geographically, 75% of granted patents were filed through the U.S. Patent and Trademark Office, and 97.6% were held by companies, underscoring the dominance of corporate innovation and the minimal presence of academia and individuals. The review also identifies notable patents that reflect significant technical innovations and discusses their role in advancing diagnostic capabilities. These insights emphasize the need for broader collaboration and targeted research to advance well integrity technologies in line with industry goals for operational performance and safety. Full article
Show Figures

Figure 1

36 pages, 4554 KiB  
Review
Lithium Slag as a Supplementary Cementitious Material for Sustainable Concrete: A Review
by Sajad Razzazan, Nuha S. Mashaan and Themelina Paraskeva
Materials 2025, 18(15), 3641; https://doi.org/10.3390/ma18153641 - 2 Aug 2025
Viewed by 247
Abstract
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes [...] Read more.
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes experimental findings on LS replacement levels, fresh-state behavior, mechanical performance (compressive, tensile, and flexural strengths), time-dependent deformation (shrinkage and creep), and durability (sulfate, acid, abrasion, and thermal) of LS-modified concretes. Statistical analysis identifies an optimal LS dosage of 20–30% (average 24%) for maximizing compressive strength and long-term durability, with 40% as a practical upper limit for tensile and flexural performance. Fresh-state tests show that workability losses at high LS content can be mitigated via superplasticizers. Drying shrinkage and creep strains decrease in a dose-dependent manner with up to 30% LS. High-volume (40%) LS blends achieve up to an 18% gain in 180-day compressive strength and >30% reduction in permeability metrics. Under elevated temperatures, 20% LS mixes retain up to 50% more residual strength than controls. In advanced systems—autoclaved aerated concrete (AAC), one-part geopolymers, and recycled aggregate composites—LS further enhances both microstructural densification and durability. In particular, LS emerges as a versatile SCM that optimizes mechanical and durability performance, supports material circularity, and reduces the carbon footprint. Full article
Show Figures

Figure 1

23 pages, 1211 KiB  
Review
Dealuminated Metakaolin in Supplementary Cementitious Material and Alkali-Activated Systems: A Review
by Mostafa Elsebaei, Maria Mavroulidou, Amany Micheal, Maria Astrid Centeno, Rabee Shamass and Ottavia Rispoli
Appl. Sci. 2025, 15(15), 8599; https://doi.org/10.3390/app15158599 - 2 Aug 2025
Viewed by 192
Abstract
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the [...] Read more.
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the context of waste valorisation in concrete, the review aims to establish a critical understanding of DK formation, properties, and reactivity, particularly its pozzolanic potential, to assess its suitability for use as a supplementary cementitious material (SCM), or as a precursor in alkali-activated cement (AAC) systems for concrete. A systematic methodology is used to extract and synthesise relevant data from existing literature concerning DK and its potential applications in cement and concrete. The collected information is organised into thematic sections exploring key aspects of DK, beginning with its formation from kaolinite ores, followed by studies on its pozzolanic reactivity. Applications of DK are then reviewed, focusing on its integration into SCMs and alkali-activated cement (AAC) systems. The review consolidates existing knowledge related to DK, identifying scientific gaps and practical challenges that limit its broader adoption for cement and concrete applications, and outlines future research directions to provide a solid foundation for future studies. Overall, this review highlights the potential of DK as a low-carbon, circular-economy material and promotes its integration into efforts to enhance the sustainability of construction practices. The findings aim to support researchers’ and industry stakeholders’ strategies to reduce cement clinker content and mitigate the environmental footprint of concrete in a circular-economy context. Full article
(This article belongs to the Special Issue Applications of Waste Materials and By-Products in Concrete)
Show Figures

Figure 1

27 pages, 4880 KiB  
Article
Multi-Objective Optimization of Steel Slag–Ceramsite Foam Concrete via Integrated Orthogonal Experimentation and Multivariate Analytics: A Synergistic Approach Combining Range–Variance Analyses with Partial Least Squares Regression
by Alipujiang Jierula, Haodong Li, Tae-Min Oh, Xiaolong Li, Jin Wu, Shiyi Zhao and Yang Chen
Appl. Sci. 2025, 15(15), 8591; https://doi.org/10.3390/app15158591 - 2 Aug 2025
Viewed by 195
Abstract
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal [...] Read more.
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal experimental design at a fixed density of 800 kg/m3, 12 mix proportions (including a control group) were investigated with the variables of water-to-cement (W/C) ratio, steel slag replacement ratio, and ceramsite replacement ratio. The governing mechanisms of the W/C ratio, steel slag replacement level, and ceramsite replacement proportion on the SSCFC’s fluidity and compressive strength (CS) were elucidated. The synergistic application of range analysis and analysis of variance (ANOVA) quantified the significance of factors on target properties, and partial least squares regression (PLSR)-based prediction models were established. The test results indicated the following significance hierarchy: steel slag replacement > W/C ratio > ceramsite replacement for fluidity. In contrast, W/C ratio > ceramsite replacement > steel slag replacement governed the compressive strength. Verification showed R2 values exceeding 65% for both fluidity and CS predictions versus experimental data, confirming model reliability. Multi-criteria optimization yielded optimal compressive performance and suitable fluidity at a W/C ratio of 0.4, 10% steel slag replacement, and 25% ceramsite replacement. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 4487 KiB  
Article
Recycling Volcanic Lapillus as a Supplementary Cementitious Material in Sustainable Mortars
by Fabiana Altimari, Luisa Barbieri, Andrea Saccani and Isabella Lancellotti
Recycling 2025, 10(4), 153; https://doi.org/10.3390/recycling10040153 - 1 Aug 2025
Viewed by 156
Abstract
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. [...] Read more.
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. Replacing clinker with SCMs, such as volcanic lapillus, can reduce the environmental impact while maintaining adequate mechanical properties. Experiments were conducted to replace up to 20 wt% of limestone Portland cement with volcanic lapillus. Workability, compressive strength, microstructure, resistance to alkali-silica reaction (ASR), sulfate, and chloride penetration were analyzed. The results showed that up to 10% replacement had a minimal effect on mechanical properties, while higher percentages resulted in reduced strength but still improved some durability features. The control sample cured 28 days showed a compressive strength of 43.05 MPa compared with 36.89 MPa for the sample containing 10% lapillus. After 90 days the respective values for the above samples were 44.76 MPa and 44.57 MPa. Scanning electron microscopy (SEM) revealed good gel–aggregate adhesion, and thermogravimetric analysis (TGA) confirmed reduced calcium hydroxide content, indicating pozzolanic activity. Overall, volcanic lapillus shows promise as a sustainable SCM, offering CO2 reduction and durability benefits, although higher replacement rates require further optimization. Full article
Show Figures

Figure 1

25 pages, 5156 KiB  
Article
Enhancing the Mechanical Properties of Sulfur-Modified Fly Ash/Metakaolin Geopolymers with Polypropylene Fibers
by Sergey A. Stel’makh, Evgenii M. Shcherban’, Alexey N. Beskopylny, Levon R. Mailyan, Alexandr A. Shilov, Irina Razveeva, Samson Oganesyan, Anastasia Pogrebnyak, Andrei Chernil’nik and Diana Elshaeva
Polymers 2025, 17(15), 2119; https://doi.org/10.3390/polym17152119 - 31 Jul 2025
Viewed by 332
Abstract
High demand for sustainable solutions in the construction industry determines the significant relevance of developing new eco-friendly composites with a reduced carbon impact on the environment. The main aim of this study is to investigate the possibility and efficiency of using technical sulfur [...] Read more.
High demand for sustainable solutions in the construction industry determines the significant relevance of developing new eco-friendly composites with a reduced carbon impact on the environment. The main aim of this study is to investigate the possibility and efficiency of using technical sulfur (TS) as a modifying additive for geopolymer composites and to select the optimal content of polypropylene fiber (PF). To assess the potential of TS, experimental samples of geopolymer solutions based on metakaolin and fly ash were prepared. The TS content varied from 0% to 9% by weight of binder in 3% increments. In the first stage, the density, compressive and flexural strength, capillary water absorption and microstructure of hardened geopolymer composites were tested. The TS additive in an amount of 3% was the most effective and provided an increase in compressive strength by 12.6%, flexural strength by 12.8% and a decrease in capillary water absorption by 18.2%. At the second stage, the optimal PF content was selected, which was 0.75%. The maximum increases in strength properties were recorded for the composition with 3% TS and 0.75% PF: 8% for compression and 32.6% for bending. Capillary water absorption decreased by 12.9%. The geopolymer composition developed in this work, modified with TP and PF, has sufficient mechanical and physical properties and can be considered for further study in order to determine its competitiveness with cement composites in real construction practice. Full article
(This article belongs to the Special Issue Challenges and Trends in Polymer Composites—2nd Edition)
Show Figures

Figure 1

26 pages, 3459 KiB  
Article
Compressive Behaviour of Sustainable Concrete-Filled Steel Tubes Using Waste Glass and Rubber Glove Fibres
by Zobaer Saleheen, Tatheer Zahra, Renga Rao Krishnamoorthy and Sabrina Fawzia
Buildings 2025, 15(15), 2708; https://doi.org/10.3390/buildings15152708 - 31 Jul 2025
Viewed by 130
Abstract
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in [...] Read more.
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in lower compressive strength compared to conventional concrete, limiting their application to non-structural elements. To overcome this limitation, this study adopts the concept of confined concrete by developing concrete-filled steel tube (CFST) stub columns. In total, twelve concrete mix variations were developed, with and without steel tube confinement. GP was utilised at replacement levels of 10–30% by weight of cement, while NR fibres were introduced at 0.5% and 1% by volume of concrete. The findings demonstrate that the incorporation of GP and NR fibres leads to a reduction in compressive strength, with a compounded effect observed when both materials are combined. Steel confinement within CFST columns effectively mitigated the strength reductions, restoring up to 17% of the lost capacity and significantly improving ductility and energy absorption capacity. All CFST columns exhibited consistent local outward buckling failure mode, irrespective of the concrete mix variations. A comparison with predictions from existing design codes and empirical models revealed discrepancies, underscoring the need for refined design approaches for CFST columns incorporating sustainable concrete infill. This study contributes valuable insights into the development of eco-friendly, high-performance structural systems, highlighting the potential of CFST technology in facilitating the adoption of waste materials in the construction sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 225
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

14 pages, 2462 KiB  
Article
Effects of Red Mud on Cement Mortar Based on Sodium Salt Type
by Suk-Pyo Kang, Sang-Jin Kim, Byoung-Ky Lee and Hye-Ju Kang
Materials 2025, 18(15), 3563; https://doi.org/10.3390/ma18153563 - 30 Jul 2025
Viewed by 249
Abstract
This study treated the NaOH component in red mud sludge, an industrial by-product generated at 300,000 tons annually in Korea, with sulfuric and nitric acids to produce NaSO4 and NaNO3, respectively. The effects of acid-treated liquid red mud (LRM) on [...] Read more.
This study treated the NaOH component in red mud sludge, an industrial by-product generated at 300,000 tons annually in Korea, with sulfuric and nitric acids to produce NaSO4 and NaNO3, respectively. The effects of acid-treated liquid red mud (LRM) on the hydration reactions and early strength development in cement mortar were investigated. Properties such as flow, setting time, hydration heat, and compressive strength were evaluated alongside hydration product analysis using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The neutralization of LRM stabilized the pH between 7 and 8. Mortars containing neutralized red mud (NRM) and sulfuric-treated red mud (SRM) exhibited shorter initial setting times and similar final setting times compared to untreated red mud (LM). After one day, XRD confirmed the presence of Ca(OH)2 in NRM and SRM but not in LM, while SEM revealed reduced pore sizes in NRM and SRM. Depending on dosage, the compressive strength of SRM increased by 35–60% compared to Plain mortar. These results demonstrate that LRM treated with nitric or sulfuric acid has significant potential as a setting accelerator for cement mortar. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

5 pages, 1385 KiB  
Proceeding Paper
Economic Evaluation of Novel C-Zero Processes for the Efficient Production of Energy, Chemicals, and Fuels
by Dimitris Ipsakis, Georgios Varvoutis, Athanasios Lampropoulos, Costas Athanasiou, Maria Lykaki, Evridiki Mandela, Theodoros Damartzis, Spiros Papaefthimiou, Michalis Konsolakis and George E. Marnellos
Proceedings 2025, 121(1), 13; https://doi.org/10.3390/proceedings2025121013 - 29 Jul 2025
Viewed by 163
Abstract
The aim of this study is to provide a comprehensive analysis of the outcome of two separate techno-economic studies that were conducted for the scaled-up and industrially relevant processes of a) synthetic natural gas (SNG) production from captured (cement-based) CO2 and green-H [...] Read more.
The aim of this study is to provide a comprehensive analysis of the outcome of two separate techno-economic studies that were conducted for the scaled-up and industrially relevant processes of a) synthetic natural gas (SNG) production from captured (cement-based) CO2 and green-H2 (via renewable-assisted electrolysis) and b) combined electricity and crude biofuel production through the integration of biomass pyrolysis, gasification, and solid oxide fuel cells. As was found, the SNG production process seems more feasible from an economic perspective as it can be comparable to current market values. Full article
Show Figures

Figure 1

Back to TopTop