Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (785)

Search Parameters:
Keywords = cellulose modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2696 KB  
Article
Recycled Lignocellulosic Resources for Circular Bioeconomy Applications: Heat-Treated Eucalyptus Fibers in Polyester Composites
by Douglas Lamounier Faria, Tamires Galvão Tavares Pereira, Danillo Wisky Silva, Mário Vanoli Scatolino, Julio Soriano, Thiago de Paula Protásio and Lourival Marin Mendes
Recycling 2026, 11(2), 34; https://doi.org/10.3390/recycling11020034 - 3 Feb 2026
Viewed by 162
Abstract
The pursuit of alternatives to nonrenewable materials has stimulated the development of sustainable materials with improved performance, particularly polymer composites reinforced with plant-based fibers. In this study, eucalyptus fibers were thermally treated and evaluated as eco-friendly reinforcements for polyester composites, aiming to enhance [...] Read more.
The pursuit of alternatives to nonrenewable materials has stimulated the development of sustainable materials with improved performance, particularly polymer composites reinforced with plant-based fibers. In this study, eucalyptus fibers were thermally treated and evaluated as eco-friendly reinforcements for polyester composites, aiming to enhance their physical and mechanical properties. The fibers were subjected to heat treatments between 140 and 230 °C in a Macro-ATG oven, followed by analyses of anatomical characteristics and chemical composition. Composites containing 25% fiber reinforcement were produced using an orthophthalic unsaturated polyester matrix catalyzed with methyl ethyl ketone peroxide, with untreated fibers used as references. Thermal treatment induced significant modifications in fiber morphology and composition, including increases in cell wall fraction at 170 and 200 °C and higher cellulose contents at 140 and 170 °C. Mechanical performance was assessed through tensile, flexural (modulus of rupture—MOR), modulus of elasticity (EB), and impact tests. Composites reinforced with heat-treated fibers exhibited lower apparent density and, notably, those treated at 230 °C showed markedly reduced water absorption and enhanced tensile strength compared with the control. Overall, treatment at 230 °C proved most effective, highlighting the potential of thermally modified eucalyptus fibers as viable reinforcements for high-performance, bio-based polymer composites. Full article
Show Figures

Graphical abstract

28 pages, 7303 KB  
Article
Influence of Filler in the Form of Waste Wood Flour and Microcellulose on the Mechanical, Thermal, and Morphological Characteristics of Hierarchical Epoxy Composites
by Anna Sienkiewicz and Piotr Czub
Molecules 2026, 31(2), 363; https://doi.org/10.3390/molecules31020363 - 20 Jan 2026
Viewed by 277
Abstract
In response to growing interest in green additives derived from natural raw materials or post-production waste of natural origin, epoxy compositions containing the additive in the form of waste wood flour and microcellulose were prepared. The research involved the chemical modification of the [...] Read more.
In response to growing interest in green additives derived from natural raw materials or post-production waste of natural origin, epoxy compositions containing the additive in the form of waste wood flour and microcellulose were prepared. The research involved the chemical modification of the additive through a two-stage silanization process using 3-aminopropyltriethoxysilane. Followed by filler’s characterization using Fourier Transformed Infrared Spectroscopy (FT-IR) to analyze the modification in chemical structure, Wide Angle X-Ray Diffraction (WAXD) to detect differences in crystal structure, and Scanning Electron Microscopy (SEM) to observe morphological changes. Next, waste oak flour (WF) and microcrystalline cellulose (MCC) were used in unmodified and silanized form (sil-WF and sil-MCC, respectively) to prepare epoxy composites, followed by testing their influence on the mechanical (hardness, tensile strength, flexural strength, compressive strength, and impact strength), thermal, and morphological characteristics of epoxy composites based on Epidian 6. Comparing the effect of modification on the properties of the analyzed additives, it was found that silanization had a larger impact on increasing the interaction of the waste wood flour with the epoxy matrix than silanization of MCC due to a lesser tendency of the sil-WF than the sil-MCC to agglomerate. An enhanced interaction of sil-WF with the polymer resulted in improved mechanical properties. Composite EP/sil-WF (cured epoxy composite based on low-molecular-weight epoxy resin Epidian 6 filled with 5 wt.% of silanized wood flour) was characterized by improved flexural (61.97 MPa) and compressive properties (69.1 MPa) compared to both EP/WF (cured epoxy composite based on low-molecular-weight epoxy resin Epidian 6 filled with 5 wt.% of unmodified wood flour) (42.39 MPa and 61.0 MPa) and the unfilled reference composition (54.55 MPa and 67.4 MPa, respectively). Moreover, compositions containing a cellulosic additive were characterized by better impact properties than the reference composition. Full article
Show Figures

Figure 1

18 pages, 3377 KB  
Article
Enhancing Osmotic Power Generation and Water Conservation with High-Performance Thin-Film Nanocomposite Membranes for the Mining Industry
by Sara Pakdaman and Catherine N. Mulligan
Water 2026, 18(2), 248; https://doi.org/10.3390/w18020248 - 17 Jan 2026
Viewed by 244
Abstract
Recycling water offers a powerful way to lower the environmental water impact of mining activities. Pressure-retarded osmosis (PRO) represents a promising pathway for simultaneous water reuse and clean energy generation from salinity gradients. In this study, the performance of a thin-film nanocomposite (TFN) [...] Read more.
Recycling water offers a powerful way to lower the environmental water impact of mining activities. Pressure-retarded osmosis (PRO) represents a promising pathway for simultaneous water reuse and clean energy generation from salinity gradients. In this study, the performance of a thin-film nanocomposite (TFN) membrane containing functionalized multi-walled carbon nanotubes (fMWCNTs) within a polyacrylonitrile (PAN) support layer, followed by polydopamine (PDA) surface modification, was investigated under a PRO operation using pretreated gold mining wastewater as the feed solution. Unlike most previous studies that rely on synthetic feeds, this work evaluates the membrane performance under a PRO operation using a real mining wastewater stream. The membrane with fMWCNTs and PDA exhibited a maximum power density of 25.22 W/m2 at 12 bar, representing performance improvements of 23% and 68% compared with the pristine thin-film composite (TFC) and commercial cellulose triacetate (CTA) membranes, respectively. A high water flux of 75.6 L·m−2·h−1 was also obtained, attributed to enhanced membrane hydrophilicity and reduced internal concentration polarization. The optimized membrane, containing 0.3 wt% fMWCNTs in the support layer and a PDA coating on the active layer, produced a synergistic enhancement in the PRO performance, resulting in a lower reverse salt flux and an improved flux–selectivity trade-off. Furthermore, the ultrafiltration (UF) and nanofiltration (NF) pretreatment effectively reduced the hardness and ionic content, enabling a stable PRO operation with real mining wastewater over a longer period of time. Overall, this study demonstrates the feasibility of achieving both reusable water and enhanced osmotic power generation using modified TFN membranes under realistic mining wastewater conditions. Full article
Show Figures

Figure 1

20 pages, 4718 KB  
Article
Forward Osmosis for Produced Water Treatment: Comparative Performance Evaluation of Fabricated and Commercial Membranes
by Sunith B. Madduri and Raghava R. Kommalapati
Polymers 2026, 18(2), 197; https://doi.org/10.3390/polym18020197 - 10 Jan 2026
Viewed by 408
Abstract
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) [...] Read more.
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) membrane and a fabricated electrospun nanofibrous membrane, both modified with a zwitterionic sulfobetaine methacrylate/polydopamine (SBMA/PDA) coating. Fourier Transform Infrared Spectroscopy (FTIR) spectra verified the successful incorporation of SBMA and PDA through the appearance of characteristic sulfonate, quaternary ammonium, and catechol/amine-related vibrations. Scanning electron microscopy (SEM) imaging revealed the intrinsic dense surface of the CTA membrane and the highly porous nanofibrous architecture of the electrospun membrane, with both materials showing uniform coating coverage after modification. Complementary analyses supported these observations: X-ray Photoelectron Spectroscopy (XPS) confirmed the presence of nitrogen, sulfur, and chlorine containing functionalities associated with the zwitterionic layer; Thermogravimetric Analysis (TGA) demonstrated that surface modification did not compromise the thermal stability of either membrane; and contact-angle measurements showed substantial increases in surface hydrophilicity following modification. Gas chromatography–mass spectrometry (GC–MS) analysis of the Permian Basin PW revealed a chemically complex mixture dominated by light hydrocarbons, alkylated aromatics, and heavy semi-volatile organic compounds. FO experiments using hypersaline PW demonstrated that the fabricated membrane consistently outperformed the commercial membrane under both MgCl2 and Na3PO4 draw conditions, achieving up to ~40% higher initial water flux and total solids rejection as high as ~62% when operated with 2.5 M Na3PO4. The improved performance is attributed to the nanofibrous architecture and zwitterionic surface chemistry, which together reduced fouling and reverse solute transport. These findings highlight the potential of engineered zwitterionic nanofibrous membranes as robust alternatives to commercial FO membranes for sustainable produced water treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

39 pages, 4702 KB  
Review
Biopolymer-Based Active and Intelligent Food Packaging: Recent Advances in Materials, Technologies, and Applications
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Jaewoong Lee
Polymers 2026, 18(2), 196; https://doi.org/10.3390/polym18020196 - 10 Jan 2026
Viewed by 803
Abstract
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing [...] Read more.
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing natural biopolymers including polysaccharides, proteins, and their composites. The integration of antimicrobial agents, natural colorimetric indicators, nanofillers, and advanced fabrication techniques has enabled the creation of multifunctional packaging materials capable of extending shelf life, monitoring food quality in real-time, and reducing environmental impact. This review organizes the current research on starch, chitosan-, cellulose-, pectin-, bacterial cellulose-, pullulan-, gelatin-, zein-, and dextran-based packaging systems, with particular emphasis on their physicochemical properties, functional performance, and practical applications for preserving various food products, including meat, fish, fruits, and other perishables. The challenges associated with mechanical strength, water resistance, scalability, and commercial viability are critically evaluated alongside emerging solutions involving chemical modifications, nanocomposite formulations, and innovative processing technologies. Future perspectives highlight the need for standardization, life cycle assessments, regulatory frameworks, and consumer acceptance studies to facilitate the transition from laboratory innovations to industrial-scale implementation of sustainable biopolymer packaging solutions. Full article
Show Figures

Figure 1

24 pages, 6834 KB  
Article
Flame-Retardant and Hydrophobic Cotton via Alkoxysilyl-Functionalized Polysiloxanes, Cyclosiloxanes, and POSS with Surface Thiol-Ene Dithiophosphate Grafting
by Marcin Przybylak, Anna Szymańska, Weronika Gieparda, Mariusz Szołyga, Agnieszka Dutkiewicz and Hieronim Maciejewski
Materials 2026, 19(2), 265; https://doi.org/10.3390/ma19020265 - 8 Jan 2026
Viewed by 332
Abstract
In this work, a multifunctional surface engineering strategy was developed to impart both flame-retardant and hydrophobic properties to cotton fabrics. In the first stage, cellulose fibers were modified with poly(methylvinyl)siloxane containing trimethoxysilyl groups, 2,4,6,8-tetramethyl-divinyl-bis(trimethoxysilylpropyltioethyl)cyclotetrasiloxane, or tetrakis(vinyldimethylsiloxy)tetrakis(trimethoxysilylpropyltioethyl)octasilsesquioxane (POSS). All modifiers contained alkoxysilyl groups capable [...] Read more.
In this work, a multifunctional surface engineering strategy was developed to impart both flame-retardant and hydrophobic properties to cotton fabrics. In the first stage, cellulose fibers were modified with poly(methylvinyl)siloxane containing trimethoxysilyl groups, 2,4,6,8-tetramethyl-divinyl-bis(trimethoxysilylpropyltioethyl)cyclotetrasiloxane, or tetrakis(vinyldimethylsiloxy)tetrakis(trimethoxysilylpropyltioethyl)octasilsesquioxane (POSS). All modifiers contained alkoxysilyl groups capable of forming covalent bonds with cellulose hydroxyl groups. The modification was performed using a dip-coating process followed by thermal curing. This procedure enabled the formation of Si-O-C linkages and the generation of a reactive organosilicon layer on the cotton surface. In the second step, O,O′-diethyl dithiophosphate was grafted directly onto the vinyl-functionalized fabrics via a thiol-ene click reaction. This process resulted in the formation of a phosphorus- and sulfur-containing protective layer anchored within the siloxane-based network. The obtained hybrid coatings were characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and SEM-EDS. These analyses confirmed the presence and uniform distribution of the modifiers on the fiber surface. Microscale combustion calorimetry demonstrated a substantial reduction in the heat release rate. Thermogravimetric analysis (TG/DTG) revealed increased char formation and altered thermal degradation pathways. The limiting oxygen index (LOI) increased for all modified fabrics, confirming enhanced flame resistance. Water contact angle measurements showed values above 130°, indicating effective hydrophobicity. As a result, multifunctional textile surfaces were obtained. In addition, the modified fabrics exhibited partial durability toward laundering and retained measurable flame-retardant and hydrophobic performance after repeated washing cycles. Full article
Show Figures

Graphical abstract

21 pages, 2849 KB  
Review
Biodegradable Innovations: Harnessing Agriculture for Eco-Friendly Plastics
by Komal Pandey, Baljeet Singh Saharan, Yogender Singh, Pardeep Kumar Sadh, Joginder Singh Duhan and Dilfuza Jabborova
J. Xenobiot. 2026, 16(1), 8; https://doi.org/10.3390/jox16010008 - 6 Jan 2026
Viewed by 593
Abstract
Agricultural biomass has potential as a renewable and versatile carbon feedstock for developing eco-friendly and biodegradable polymers capable of replacing conventional petrochemical plastics. To address the growing environmental concerns associated with plastic waste and carbon emissions, lignocellulosic residues, edible crop by-products, and algal [...] Read more.
Agricultural biomass has potential as a renewable and versatile carbon feedstock for developing eco-friendly and biodegradable polymers capable of replacing conventional petrochemical plastics. To address the growing environmental concerns associated with plastic waste and carbon emissions, lignocellulosic residues, edible crop by-products, and algal biomass were utilized as sustainable raw materials. These biomasses provided carbohydrate-, lipid-, and lignin-rich fractions that were deconstructed through optimised physical, chemical, and enzymatic pretreatments to yield fermentable intermediates, such as reducing sugars, organic acids, and fatty acids. The intermediates were subsequently converted through tailored microbial fermentation processes into biopolymer precursors, primarily polyhydroxyalkanoates (PHAs) and lactate-based monomers. The resulting monomers underwent polymerization via polycondensation and ring-opening reactions to produce high-performance biodegradable plastics with tunable structural and mechanical properties. Additionally, the direct extraction and modification of naturally occurring polymers, such as starch, cellulose, and lignin, were explored to develop blended and functionalized bioplastic formulations. Comparative evaluation revealed that these biomass-derived polymers possess favourable physical strength, thermal stability, and biodegradability under composting conditions. Life-cycle evaluation further indicated a significant reduction in greenhouse gas emissions and improved carbon recycling compared to fossil-derived counterparts. The study demonstrates that integrating agricultural residues into bioplastic production not only enhances waste valorization and rural bioeconomy but also supports sustainable material innovation for packaging, farming, and consumer goods industries. These findings position agriculture-based biodegradable polymers as a critical component of circular bioeconomy strategies, contributing to reduced plastic pollution and improved environmental sustainability. Full article
Show Figures

Graphical abstract

18 pages, 5492 KB  
Article
Effect of Silane-Treated Pineapple Leaf Fibre and Hemp Fibre on Green Natural Rubber Composites: Interface and Mechanics
by Siriwan Jansinak, Kwanchai Buaksuntear, Arnaud Spangenberg, Antoine Le Duigou, Darshil U. Shah, Karine Mougin and Wirasak Smitthipong
Polymers 2026, 18(1), 47; https://doi.org/10.3390/polym18010047 - 24 Dec 2025
Viewed by 532
Abstract
This study developed a natural rubber (NR) composite reinforced with surface-modified pineapple leaf fibres (PALFs) and hemp fibres (HFs) using a layer-by-layer (sandwich-like) fabrication method. The objectives were to increase the utilisation of the natural fibres as reinforcing agents and to investigate the [...] Read more.
This study developed a natural rubber (NR) composite reinforced with surface-modified pineapple leaf fibres (PALFs) and hemp fibres (HFs) using a layer-by-layer (sandwich-like) fabrication method. The objectives were to increase the utilisation of the natural fibres as reinforcing agents and to investigate the impact of silane fibre surface modification on the properties of the sandwich composites. Fibre surface characterisation was performed using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) to confirm the presence of functional groups from silane and cellulose. The wettability and adhesion properties of the modified fibres were also evaluated. The mechanical properties were investigated via single-fibre tensile tests. Composites with 50 phr silane-treated PALF showed the best compromise in terms of interface adhesion (48.3 mJ/m2) and tensile strength (6 MPa). This result was also supported by scanning electron microscopy (SEM), which revealed the absence of voids between the fibres and the NR matrix. Furthermore, dynamic mechanical analysis showed that the PALF composite treated with silane at 50 phr exhibited the best viscoelastic behaviour. NR composites with 50 phr silane-treated PALF have mechanical properties suitable for potential applications in engineering products. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 4054 KB  
Article
A Mechanistic Investigation on Cation-Modified Cellulose Nanofibrils–Reinforced Cement Composite
by Wei Tang, Tengfei Fu, Mingming Guo, Xixian Ji, Wendi Liu, Renhui Qiu and Demei Yu
Materials 2026, 19(1), 67; https://doi.org/10.3390/ma19010067 - 23 Dec 2025
Viewed by 410
Abstract
Cellulose nanofibril (CNF), as a renewable biomass material, has the characteristics of low density, high strength, and high hydrophilicity. It can also overcome shortcomings of traditional inorganic nano materials, such as difficult dispersion, high cost, and high health risks. In this work, CNF [...] Read more.
Cellulose nanofibril (CNF), as a renewable biomass material, has the characteristics of low density, high strength, and high hydrophilicity. It can also overcome shortcomings of traditional inorganic nano materials, such as difficult dispersion, high cost, and high health risks. In this work, CNF was modified with a cationic surfactant to further enhance the compatibility with hydrating cement. The effects on cement paste were assessed via compressive and flexural strength, heat of hydration, and restrained ring cracking. The reinforcing mechanisms were analyzed by microhardness test, XRD, and BSE-SEM/EDS. Results showed that cation-modified CNF improved mechanical performance, with an optimal dosage of 0.15 wt.% (by binder). Restrained ring test showed that cation-modified CNF–cement composite delayed crack initiation. An isothermal calorimetry test revealed that cation-modified CNF can increase hydration rate in early age. Microstructural analysis confirmed promotion of denser hydration products. A comprehensive consideration of experimental results indicates internal curing and “short-circuit diffusion” are likely the enhancing mechanism. Full article
Show Figures

Figure 1

18 pages, 2670 KB  
Article
Effects of Polysaccharide Coating on Cell-Surface Association and Endocytic Uptake of PLGA Nanomicelles in MCF-7 Cells
by Abdulkadir Bahadir Alkan, Esma Nur Develi Arslanhan, Fatemeh Bahadori, Muhammed Zahid Kasapoglu, Fahri Akbas, Seda Susgun, Zahra Eskandari and Ebru Toksoy Oner
Pharmaceutics 2026, 18(1), 17; https://doi.org/10.3390/pharmaceutics18010017 - 22 Dec 2025
Cited by 1 | Viewed by 529
Abstract
Background: Targeting cancer tumors using PLGA (Poly(D, L-lactide-co-glycolide)) nanoparticles (NPs) requires clathrin-mediated endocytosis (CME) and lysosomal degradation to provide release within cancer cells. However, Caveolae-mediated endocytosis (CavME) provides lysosomal escape, which is favorable in oral applications. Macropinocytosis (MPC) is a non-targeted way of [...] Read more.
Background: Targeting cancer tumors using PLGA (Poly(D, L-lactide-co-glycolide)) nanoparticles (NPs) requires clathrin-mediated endocytosis (CME) and lysosomal degradation to provide release within cancer cells. However, Caveolae-mediated endocytosis (CavME) provides lysosomal escape, which is favorable in oral applications. Macropinocytosis (MPC) is a non-targeted way of endocytosis, used by immune cells. Methods: In this proof-of-concept study, we investigated how polysaccharide surface coatings modulate the endocytic uptake of FITC-labeled PLGA nanomicelles (FPM) in MCF-7 breast cancer cells using spectrophotometry. This research involved the surface modification of FPM using polysaccharides: cellulose (FPCM) as a polyglucan and Halomonas Levan (FPLM) as a polyfructan, to modify the NP and cell-surface association. Results: MPC was found to be the major internalization pathway for the nanomicelles ~200 nm. However, after surface modification, FPCM and FPM remained highly MPC-dependent with additional CavME/CME involvement, whereas FPLM showed relatively reduced MPC dependence and a higher CME contribution. Conclusion: Overall, the results indicate that simple polysaccharide coatings can bias the relative use of MPC, CME, and CavME for PLGA nanomicelles in MCF-7 cells, providing a basis for pathway-oriented nanocarrier design. Validation by flow cytometry, studies in additional breast cancer cell lines, and transporter-level investigations will be needed to generalize and refine these findings. Full article
(This article belongs to the Special Issue PLGA Micro/Nanoparticles in Drug Delivery)
Show Figures

Graphical abstract

12 pages, 2090 KB  
Article
Molecular Weight Distribution of Cellulose from Thermally Modified Spruce Wood
by František Kačík and Danica Kačíková
Forests 2026, 17(1), 8; https://doi.org/10.3390/f17010008 - 19 Dec 2025
Viewed by 301
Abstract
The molecular weight distribution (MWD) of cellulose and its degree of polymerization (DP) have a significant influence on the strength properties of wood. The most widely used method for analyzing MWD and DP is size exclusion chromatography (SEC). In this study, we monitored [...] Read more.
The molecular weight distribution (MWD) of cellulose and its degree of polymerization (DP) have a significant influence on the strength properties of wood. The most widely used method for analyzing MWD and DP is size exclusion chromatography (SEC). In this study, we monitored changes in the MWD and DP of cellulose in spruce wood after thermal treatment at temperatures of up to 280 °C. We employed the two most prevalent SEC methods: after direct dissolution of cellulose in a solution of dimethylacetamide and lithium chloride, and after its derivatization to tricarbanilates (CTCs). Both methods yield comparable results that correlate well with each other, although CTCs yield approximately 15% higher absolute values of DP. Our results show that a drop in DP begins at 100 °C, particularly above 220 °C, where significant cellulose degradation occurs. Both methods are appropriate for analyzing cellulose in thermally degraded wood. CTCs have the advantage of greater sensitivity and are suitable for small sample quantities. Direct dissolution can also provide information on the aromatic compounds formed during the thermal treatment of wood when used in conjunction with a refractive index (RI) detector and an ultraviolet (UV) detector. There is a strong linear relationship between DP and the modulus of rupture (MOR), as well as between the modulus of elasticity (MOE) and DP. Full article
Show Figures

Figure 1

19 pages, 4089 KB  
Article
Improving the Strength of Eucalyptus Wood Joints Through Optimized Rotary Welding Conditions
by Jiankun Liang, Xiao Zhong, Yuqi Yang, Guifen Yang, Shuang Yin, Feiyan Gong, Chuchu Chen, Huali Li, Tong Meng, Yulan Jian, De Li, Caihong Long, Zhixian Song and Zhigang Wu
Materials 2025, 18(24), 5596; https://doi.org/10.3390/ma18245596 - 12 Dec 2025
Viewed by 350
Abstract
Conventional wood connections rely on adhesives and metal fasteners, causing environmental concerns. Wood rotary welding offers an adhesive-free alternative. This study systematically investigated rotary welding of eucalyptus wood, evaluating process parameters’ effects on joint performance. Chemical and microstructural transformations at the welding interface [...] Read more.
Conventional wood connections rely on adhesives and metal fasteners, causing environmental concerns. Wood rotary welding offers an adhesive-free alternative. This study systematically investigated rotary welding of eucalyptus wood, evaluating process parameters’ effects on joint performance. Chemical and microstructural transformations at the welding interface were characterized using FT-IR, XPS, XRD, SEM, and TGA. Optimal parameters significantly enhanced connection strength compared to unwelded specimens. The welding process induced partial degradation of hemicellulose and cellulose, forming new chemical bonds and increasing carbonyl compounds. XRD revealed increased wood crystallinity, while SEM showed tighter interfaces with enhanced mechanical interlocking. TGA confirmed improved thermal stability at the welded interface. The findings demonstrate that rotary welding improves eucalyptus wood joint strength through combined chemical, thermal, and structural modifications, providing guidance for optimizing welding protocols in sustainable wood manufacturing. Full article
Show Figures

Figure 1

28 pages, 3383 KB  
Review
Evaluation of Biomass Softwood Composites: Structural Features and Functional Properties of Advanced Engineered Wood
by Ria Aniza, Anelie Petrissans, Mathieu Petrissans, Erlan Rosyadi, Hana Nabila Anindita, Tyas Puspita Rini, Zulaicha Dwi Hastuti, Nurdiah Rahmawati, Bralin Dwiratna, Ena Marlina, Akhmad Faruq Alhikami and I Dewa Ayu Agung Warmadewanthi
Forests 2025, 16(12), 1823; https://doi.org/10.3390/f16121823 - 5 Dec 2025
Viewed by 815
Abstract
Softwood-based composites are increasingly used in structural and nonstructural applications owing to their renewability, cost-effectiveness, and favorable strength-to-weight performance. This study applies a systematic literature review and comparative analysis, drawing on approximately 140 sources, to synthesize current knowledge on the physicochemical, mechanical, thermal, [...] Read more.
Softwood-based composites are increasingly used in structural and nonstructural applications owing to their renewability, cost-effectiveness, and favorable strength-to-weight performance. This study applies a systematic literature review and comparative analysis, drawing on approximately 140 sources, to synthesize current knowledge on the physicochemical, mechanical, thermal, and environmental characteristics of engineered wood products derived from softwood species. The intrinsic lignocellulosic composition of softwood, comprising roughly 40%–45% cellulose, 25%–30% hemicelluloses (with mannose as the predominant sugar), and 27%–30% lignin, strongly influences hydrophilicity, stiffness, and thermal behavior. Mechanical properties vary across engineered wood product classes; for example, plywood exhibits a modulus of rupture of 33.72–42.61 MPa and a modulus of elasticity of 6.96–8.55 GPa. Microstructural and spectroscopic analyses highlight the importance of fiber–matrix interactions, chemical bonding, and surface modifications in determining composite performance. Emerging advanced materials, such as scrimber, with densities of 800–1390 kg/m3, and fluorescent transparent wood, achieving optical transmittance above 70%–85%, demonstrate the expanding functional potential of softwood-based composites. Sustainability assessments indicate that coatings, flame-retardants, and adhesives may contribute to volatile organic compound emissions, emphasizing the need for lower-emission, bio-based alternatives. Overall, the findings of this systematic review show that softwood-based composites deliver robust, quantifiable performance advantages and hold strong potential to meet the rising demand for sustainable, low-carbon engineered materials. Full article
(This article belongs to the Special Issue Wood Testing, Processing and Modification)
Show Figures

Graphical abstract

21 pages, 3341 KB  
Article
Facile Synthesis of Cellulose Whisker from Cotton Linter as Filler for the Polymer Electrolyte Membrane (PEM) of Fuel Cells
by Ronaldo P. Parreño, Reynaldo A. Badua, Jowin L. Rama and Apollo Victor O. Bawagan
J. Compos. Sci. 2025, 9(12), 670; https://doi.org/10.3390/jcs9120670 - 3 Dec 2025
Viewed by 541
Abstract
Hybrid membranes are promising alternatives for various applications, combining a continuous polymer phase with a dispersed filler phase to achieve synergistic functional benefits. The ideal fillers should possess well-defined structures and unique properties for multi-functionality, as well as being sourced from renewable, biodegradable [...] Read more.
Hybrid membranes are promising alternatives for various applications, combining a continuous polymer phase with a dispersed filler phase to achieve synergistic functional benefits. The ideal fillers should possess well-defined structures and unique properties for multi-functionality, as well as being sourced from renewable, biodegradable materials for sustainability purposes. This study explored the potential of using cellulose-based renewable materials as fillers for hybrid polymer electrolyte membranes (PEMs) in fuel cells. Cellulose whiskers (CWs), known for their high crystallinity and elastic modulus, were effectively synthesized via optimized sequential alkali treatment and acid hydrolysis. Subsequent functionalization with citric acid was performed to enhance their reinforcing properties and overall performance. Initial characterization using ATR-FTIR and XRD confirmed the CWs’ structural composition, high crystallinity, and the presence of reactive groups (sulfate and hydroxyl). The functionalization process introduced new carbonyl groups (C=O), which was verified by ATR-FTIR, while maintaining high hydrophilicity. Morphological analysis revealed that the crosslinked CWs created a denser and more compact microstructure within the membrane, leading to a significant enhancement in mechanical strength. The modifications to the cellulose whiskers not only improved structural integrity but also boosted the membrane’s ion exchange capacity (IEC) and proton conductivity compared to membranes with unmodified CWs. Initial experiments demonstrated CWs’ compatibility as a filler in a polysulfone (PSU) matrix, forming hybrid membranes suitable for fuel cell applications. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Graphical abstract

20 pages, 8179 KB  
Article
Fluoro-Functionalized Silsesquioxane Polymer-Based High Hydrophobic Coatings for Enhancing Properties of Kraft Paper
by Mark A. Stepanov, Yuliya I. Bolgova, Olga M. Trofimova and Alexander S. Pozdnyakov
Int. J. Mol. Sci. 2025, 26(23), 11719; https://doi.org/10.3390/ijms262311719 - 3 Dec 2025
Viewed by 429
Abstract
Paper plays an important role in the packaging industry due to its low cost, light weight, recyclability and biodegradability. However, the use of paper as a packaging material is severely limited due to its hydrophilicity caused by the hydroxyl groups of cellulose. This [...] Read more.
Paper plays an important role in the packaging industry due to its low cost, light weight, recyclability and biodegradability. However, the use of paper as a packaging material is severely limited due to its hydrophilicity caused by the hydroxyl groups of cellulose. This study reports a simple preparation of highly hydrophobic kraft paper by a one-step dip coating method using [3-(2,2,3,3-tetrafluoropropoxy)propyl]silsesquioxane, {3-[(2,2,3,3,4,4,5,5-octafluoropentyl)oxy]propyl}silsesquioxane or {3-[(2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl)oxy]propyl}silsesquioxane as hydrophobic agents. As a result of modification of kraft paper, a stable covalently bonded coating is formed on its surface. The coated kraft paper has demonstrated (1) high water resistance (the water contact angle (WCA) values were 124–141°, and the water absorption and the water vapor permeability (WVP) rates were significantly decreased), (2) excellent resistance to aggressive environments and temperature, (3) enhanced mechanical properties (tensile strength increased from 46.8 to 70.8 MPa), and (4) high wear resistance, as confirmed by sandpaper abrasion, bending, and finger-wipe tests. It was shown that the maximum contact angle values were achieved for kraft paper modified with a 5% polymer solution. The results of this study have great potential, given the simplicity of the modification method, for use in the production of paper-based packaging materials with water-repellent, enhanced mechanical and moisture-protective properties. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Graphical abstract

Back to TopTop