Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,669)

Search Parameters:
Keywords = cell population model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2466 KB  
Article
Single-Cell Transcriptomics Reveals a Multi-Compartmental Cellular Cascade Underlying Elahere-Induced Ocular Toxicity in Rats
by Jialing Zhang, Meng Li, Yuxuan Yang, Peng Guo, Weiyu Li, Hongxin An, Yongfei Cui, Luyun Guo, Maoqin Duan, Ye Lu, Chuanfei Yu and Lan Wang
Pharmaceuticals 2025, 18(10), 1492; https://doi.org/10.3390/ph18101492 (registering DOI) - 4 Oct 2025
Abstract
Background: Antibody-drug conjugates (ADCs) have ushered in a new era of precision oncology by combining the targeting specificity of monoclonal antibodies with the potent cytotoxicity of chemotherapeutic drugs. However, the cellular and molecular mechanisms underlying their dose-limiting ocular toxicity remain unclear. Elahere™, the [...] Read more.
Background: Antibody-drug conjugates (ADCs) have ushered in a new era of precision oncology by combining the targeting specificity of monoclonal antibodies with the potent cytotoxicity of chemotherapeutic drugs. However, the cellular and molecular mechanisms underlying their dose-limiting ocular toxicity remain unclear. Elahere™, the first FDA-approved ADC targeting folate receptor α (FRα), demonstrates remarkable efficacy in platinum-resistant ovarian cancer but causes keratitis and other ocular toxicities in some patients. Notably, FRα is not expressed in the corneal epithelium—the primary site of damage—highlighting the urgent need to elucidate its underlying mechanisms. The aim of this study was to identify the cell-type-specific molecular mechanisms underlying Elahere-induced ocular toxicity. Methods: Sprague-Dawley rats were treated with intravenous Elahere (20 mg/kg) or vehicle weekly for five weeks. Ocular toxicity was determined by clinical examination and histopathology. Corneal single-cell suspensions were analyzed using the BD Rhapsody single-cell RNA sequencing (scRNA-seq) platform. Bioinformatic analyses to characterize changes in corneal cell populations, gene expression, and signaling pathways included cell clustering, differential gene expression, pseudotime trajectory inference, and cell-cell interaction modeling. Results: scRNA-seq profiling of 47,606 corneal cells revealed significant damage to the ocular surface and corneal epithelia in the Elahere group. Twenty distinct cell types were identified. Elahere depleted myeloid immune cells; in particular, homeostatic gene expression was suppressed in phagocytic macrophages. Progenitor populations (limbal stem cells and basal cells) accumulated (e.g., a ~2.6-fold expansion of limbal stem cells), while terminally differentiated cells decreased in corneal epithelium, indicating differentiation blockade. Endothelial cells exhibited signs of injury and inflammation, including reduced angiogenic subtypes and heightened stress responses. Folate receptor alpha, the target of Elahere, was expressed in endothelial and stromal cells, potentially driving stromal cells toward a pro-fibrotic phenotype. Fc receptor genes were predominantly expressed in myeloid cells, suggesting a potential mechanism underlying their depletion. Conclusions: Elahere induces complex, multi-compartmental ocular toxicity characterized by initial perturbations in vascular endothelial and immune cell populations followed by the arrest of epithelial differentiation and stromal remodeling. These findings reveal a cascade of cellular disruptions and provide mechanistic insights into mitigating Elahere-associated ocular side effects. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

25 pages, 4779 KB  
Article
Decoding Salinity Tolerance in Salicornia europaea L.: Image-Based Oxidative Phenotyping and Histochemical Mapping of Pectin and Lignin
by Susana Dianey Gallegos Cerda, Aleksandra Orzło, José Jorge Chanona Pérez, Josué David Hernández Varela, Agnieszka Piernik and Stefany Cárdenas Pérez
Plants 2025, 14(19), 3055; https://doi.org/10.3390/plants14193055 - 2 Oct 2025
Abstract
Halophytes such as Salicornia europaea rely on biochemical and structural mechanisms to survive in saline environments. This study aimed to evaluate oxidative stress and structural defense responses in four inland populations—Poland (Inowrocław, Ciechocinek), Germany (Salzgraben-Salzdahlum, Salz), and Soltauquelle (Soltq)—subjected to 0, 200, 400, [...] Read more.
Halophytes such as Salicornia europaea rely on biochemical and structural mechanisms to survive in saline environments. This study aimed to evaluate oxidative stress and structural defense responses in four inland populations—Poland (Inowrocław, Ciechocinek), Germany (Salzgraben-Salzdahlum, Salz), and Soltauquelle (Soltq)—subjected to 0, 200, 400, and 1000 mM NaCl, using non-destructive, image-based approaches. Lipid peroxidation was assessed via malondialdehyde (MDA) detected with Schiff’s reagent, and hydrogen peroxide (H2O2) accumulation was visualized with 3,3′-diaminobenzidine (DAB). Roots and shoots were analyzed through colour image analysis and quantified using a computer vision system (CVS). MDA accumulation revealed population-specific differences, with Salz tending to exhibit lower peroxidation, characterized by lower L* ≈ 42–43 and higher b* ≈ 37–18 in shoots at 200–400 mM, which may reflect a potentially more effective salt-management strategy. Although H2O2 responses deviated from a direct salinity-dependent trend, particularly in the tolerant Salz and Soltq populations, both approaches effectively tracked population-specific adaptation, with German populations displaying detectable basal H2O2 levels, consistent with its multifunctional signalling role in salt management and growth regulation. Structural defences were further explored through histochemical mapping and image analysis of pectin and lignin distribution, which revealed population-specific patterns consistent with cell wall remodelling under stress. Non-destructive, image-based methods proved effective for detecting oxidative and structural responses in halophytes. Such a non-destructive, cost-efficient, and reproducible approach can accelerate the identification of salt-tolerant ecotypes for saline agriculture and reinforce S. europaea as a model species for elucidating salt-tolerance mechanisms. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
23 pages, 1571 KB  
Article
Valorization of Thyme Combined with Phytocannabinoids as Anti-Inflammatory Agents for Skin Diseases
by Daniela Hermosilha, Guilherme Trigo, Mariana Coelho, Inês Lehmann, Matteo Melosini, Ana Paula Serro, Catarina Pinto Reis, Maria Manuela Gaspar and Susana Santos
Pharmaceutics 2025, 17(10), 1291; https://doi.org/10.3390/pharmaceutics17101291 - 2 Oct 2025
Abstract
Background: Skin diseases of inflammatory origin, such as atopic dermatitis, psoriasis and acne, have a substantial prevalence in the world population. Natural products are particularly important at a topical level. Essential oils are examples of natural products and thyme in particular has been [...] Read more.
Background: Skin diseases of inflammatory origin, such as atopic dermatitis, psoriasis and acne, have a substantial prevalence in the world population. Natural products are particularly important at a topical level. Essential oils are examples of natural products and thyme in particular has been used for medicinal purposes due to its biological properties. Objectives: The aim of present work was to study the anti-inflammatory potential of Thymus mastichina essential oil, focusing on purified terpene-rich fractions. whose major compounds were thymol and linalool, eucalyptol and α-terpineol, and γ-terpinene and terpinolene, respectively. Additionally, a phytocannabinoid formulation containing cannabidiol (CBD) and cannabigerol (CBG) was evaluated to explore potential synergistic effects. Methods: Thymus mastichina essential oil was extracted and purified to obtain terpene-enriched fractions, which were used to develop three distinct formulations. These were screened for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and assessed for cytotoxicity in HaCaT human keratinocytes. Anti-inflammatory potential was evaluated via gene expression. Selected thyme formulations—alone or in combination with CBD/CBG—were also tested in vivo using a mouse model of acute skin inflammation. Results: The antioxidant activity of the three formulations showed a reduction in DPPH radicals. In addition, the formulations demonstrated to be safe in vitro in the human keratinocyte cell model HaCaT. Under PMA-induced inflammatory stress, the fractions modulated-inflammatory gene expression to varying degrees While terpene fractions alone showed moderate activity, their combination with CBD/CBG enhanced the anti-inflammatory response. In vivo, the gel formulations reduced oedema in a mouse model of acute inflammation. Conclusions: The data support the safe and effective use of Thymus mastichina-derived terpene fractions for topical anti-inflammatory applications. The synergistic effect observed with CBD and CBG suggests that combining essential oil terpenes with phytocannabinoids may offer a novel therapeutic strategy for managing inflammatory skin disorders. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems for the Treatment of Skin Disorders)
Show Figures

Figure 1

16 pages, 4838 KB  
Article
Critical Requirement of Senescence-Associated CCN3 Expression in CD44-Positive Stem Cells for Osteoarthritis Progression
by Janvier Habumugisha, Ryuichiro Okuda, Kazuki Hirose, Miho Kuwahara, Ziyi Wang, Mitsuaki Ono, Hiroshi Kamioka, Satoshi Kubota and Takako Hattori
Int. J. Mol. Sci. 2025, 26(19), 9630; https://doi.org/10.3390/ijms26199630 - 2 Oct 2025
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage breakdown, synovial inflammation, and subchondral bone remodeling. Previous studies have shown that cellular communication network factor 3 (CCN3) expression increases with age in cartilage, and its overexpression promotes OA-like changes by inducing [...] Read more.
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage breakdown, synovial inflammation, and subchondral bone remodeling. Previous studies have shown that cellular communication network factor 3 (CCN3) expression increases with age in cartilage, and its overexpression promotes OA-like changes by inducing senescence-associated secretory phenotypes. This study aimed to investigate the effect of Ccn3 knockout (KO) on OA development using a murine OA model. Destabilization of the medial meniscus (DMM) surgery was performed in wild-type (WT) and Ccn3-KO mice. Histological scoring and staining were used to assess cartilage degeneration and proteoglycan loss. Gene and protein expressions of catabolic enzyme (Mmp9), hypertrophic chondrocyte marker (Col10a1), senescence marker, and cyclin-dependent kinase inhibitor 1A (Cdkn1a) were evaluated. Single-cell RNA sequencing (scRNA-seq) data from WT and Sox9-deficient cartilage were reanalyzed to identify Ccn3+ progenitor populations. Immunofluorescence staining assessed CD44 and Ki67 expression in articular cartilage. The effects of Ccn3 knockdown on IL-1β-induced Mmp13 and Adamts5 expression in chondrocytes were examined in vitro. Ccn3 KO mice exhibited reduced cartilage degradation and catabolic gene expression compared with WT mice post-DMM. scRNA-seq revealed enriched Ccn3-Cd44 double-positive cells in osteoblast progenitor, synovial mesenchymal stem cell, and mesenchymal stem cell clusters. Immunofluorescence showed increased CCN3+/CD44+ cells in femoral and tibial cartilage and meniscus. Ki67+ cells were significantly increased in DMM-treated Ccn3 KO cartilage, mostly CD44+. In vitro Ccn3 knockdown attenuated IL-1β-induced Mmp13 and Adamts5 expressions in chondrocytes. Ccn3 contributes to OA pathogenesis by promoting matrix degradation, inducing hypertrophic changes, and restricting progenitor cell proliferation, highlighting Ccn3 as a potential therapeutic target for OA. Full article
(This article belongs to the Special Issue Advanced Molecular Mechanism of Pathogenesis of Osteoarthritis)
Show Figures

Figure 1

44 pages, 9238 KB  
Article
SZOA: An Improved Synergistic Zebra Optimization Algorithm for Microgrid Scheduling and Management
by Lihong Cao and Qi Wei
Biomimetics 2025, 10(10), 664; https://doi.org/10.3390/biomimetics10100664 - 1 Oct 2025
Abstract
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with [...] Read more.
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover–mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs—including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties—and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30–40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (−20 to −30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of “economic efficiency and low-carbon operation”, offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling. Full article
Show Figures

Figure 1

13 pages, 256 KB  
Review
Biologic Augmentation in Anterior Cruciate Ligament Reconstruction and Beyond: A Review of PRP and BMAC
by Grant M. Pham
J. Clin. Med. 2025, 14(19), 6959; https://doi.org/10.3390/jcm14196959 - 1 Oct 2025
Abstract
This narrative review synthesizes PubMed- and Scopus-indexed studies from 2020 to 2025, including preclinical animal models, prospective cohort studies, and level I and II randomized trials, to compare two leading biologic augmentation strategies: platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC). The [...] Read more.
This narrative review synthesizes PubMed- and Scopus-indexed studies from 2020 to 2025, including preclinical animal models, prospective cohort studies, and level I and II randomized trials, to compare two leading biologic augmentation strategies: platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC). The review examines underlying mechanisms of action, delivery techniques, imaging biomarkers of graft maturation, patient-reported and functional outcomes, safety profiles, cost-effectiveness, and regulatory frameworks. PRP provides early anti-inflammatory and proangiogenic signaling, while BMAC delivers a concentrated population of mesenchymal stem cells and growth factors to the tendon–bone interface. Both modalities consistently enhance MRI-defined graft maturation, yet evidence of long-term functional or biomechanical superiority remains inconclusive. Emerging therapies such as peptide hydrogels, adipose-derived stem cells, and exosome delivery offer promising avenues for future research. Standardized protocols and large multicenter trials are needed to clarify comparative efficacy and inform personalized rehabilitation strategies. Full article
18 pages, 3832 KB  
Article
VSIG4 Is Dispensable for Tumor Growth and Metastasis in Murine Colorectal and Breast Cancer Models
by Els Lebegge, Neema Ahishakiye Jumapili, Jolien Van Craenenbroeck, Daliya Kancheva, Máté Kiss, Romina Mora Barthelmess, Ahmed E. I. Hamouda, Yvon Elkrim, Geert Raes, Éva Hadadi, Damya Laoui, Jo A. Van Ginderachter and Sana M. Arnouk
Cancers 2025, 17(19), 3207; https://doi.org/10.3390/cancers17193207 - 1 Oct 2025
Abstract
Background: Tumor-associated macrophages (TAMs) are important contributors to tumor progression and metastasis. Therefore, the identification of molecules that mediate these cells’ tumor-promoting functions is highly warranted. VSIG4 has been proposed as a macrophage immune checkpoint. Hence, we aim to investigate this marker in [...] Read more.
Background: Tumor-associated macrophages (TAMs) are important contributors to tumor progression and metastasis. Therefore, the identification of molecules that mediate these cells’ tumor-promoting functions is highly warranted. VSIG4 has been proposed as a macrophage immune checkpoint. Hence, we aim to investigate this marker in preclinical models. Methods: Publicly available scRNAseq datasets of human colorectal (CRC) and triple-negative breast (TNBC) carcinomas and their murine counterparts were reanalyzed to investigate the expression of VSIG4 in the different TAM populations. Moreover, tumors were grown in Vsig4-deficient mice to evaluate the effect on primary tumor characteristics. Finally, since liver Kupffer cells and large peritoneal macrophages are at least partly VSIG4-high, and are implicated in metastasis to those organs, the dissemination of CRC cancer cells to those sites was assessed in the Vsig4-deficient mice. Results: We demonstrate that VSIG4 expression in human CRC and TNBC is mostly restricted to TAMs, and that its expression correlates with a worse prognosis. However, a striking finding was that no Vsig4 mRNA nor protein could be detected in the microenvironment of primary CRC and TNBC murine tumors, resulting in a similar tumor growth in wild type versus Vsig4-deficient mice. Moreover, no major differences were observed in metastatic tumor load in the liver and peritoneal cavity, apart from a reduced metastasis to the omentum in Vsig4-deficient animals. Conclusions: Murine cancer models are not suitable to investigate the role of VSIG4 in primary tumors and VSIG4 deficiency did not alter liver nor peritoneal cavity metastasis in murine models, with the exception of the omentum. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

24 pages, 1469 KB  
Review
Applications of Multiparameter Flow Cytometry in the Diagnosis, Prognosis, and Monitoring of Multiple Myeloma Patients
by Dimitrios Leonardos, Leonidas Benetatos, Elisavet Apostolidou, Epameinondas Koumpis, Lefkothea Dova, Eleni Kapsali, Ioannis Kotsianidis and Eleftheria Hatzimichael
Diseases 2025, 13(10), 320; https://doi.org/10.3390/diseases13100320 - 1 Oct 2025
Abstract
Multiple myeloma (MM) is one of the most common hematological malignancies and remains incurable. However, the survival of multiple myeloma patients has significantly increased due to the implementation of novel therapies along with autologous stem cell transplantation, changing the natural history of the [...] Read more.
Multiple myeloma (MM) is one of the most common hematological malignancies and remains incurable. However, the survival of multiple myeloma patients has significantly increased due to the implementation of novel therapies along with autologous stem cell transplantation, changing the natural history of the disease. Consequently, there is an unmet need for more sensitive response assessment techniques capable of quantifying minimal tumor burden to identify patients at higher risk of early relapse. Multiparameter flow cytometry (MFC) is an essential tool for diagnosing and monitoring patients with various hematological conditions and has recently gained prominence in identifying, characterizing, and monitoring malignant plasma cells. The implementation of Next-Generation Flow (NGF) by EuroFlow aims to overcome the pitfalls of conventional MFC, including lack of standardization and lower sensitivity, by offering standardized and optimized protocols for evaluating response depth. Both MFC and NGF have wide-ranging applications in MM for diagnosis and measurable residual disease (MRD) monitoring. Plasma cell identification and clonality evaluation through MFC and NGF assist in diagnostic workup and are routinely used to assess therapeutic response through MRD analysis. Additionally, flow cytometry is applied for circulating tumor plasma cell (CTPC) enumeration, which has demonstrated significant prognostic value. Immune composition studies through MFC may provide better understanding of disease biology. Furthermore, MFC provides additional information about other bone marrow cell populations, assessing cellularity, immunophenotypic characteristics of plasma cells, and possible hemodilution. This review explores the applications of MFC and NGF in MM, highlighting their roles in diagnosis, response assessment, and prognosis. Beyond their established use in MRD monitoring, flow cytometry-derived immunophenotypic profiles show strong potential as cost-effective prognostic tools. We advocate for future studies to validate and integrate these markers into risk stratification models, complementing cytogenetic analyses and guiding individualized treatment strategies. Full article
Show Figures

Figure 1

22 pages, 1443 KB  
Article
Unveiling Metabolic Subtypes in Endometrial Cancer Cell Lines: Insights from Metabolomic Analysis Under Standard and Stress Conditions
by Lana McCaslin, Simon Lagies, Daniel A. Mohl, Dietmar A. Plattner, Markus Jäger, Claudia Nöthling, Matthias C. Huber, Ingolf Juhasz-Böss, Bernd Kammerer and Clara Backhaus
Int. J. Mol. Sci. 2025, 26(19), 9573; https://doi.org/10.3390/ijms26199573 - 30 Sep 2025
Abstract
Endometrial carcinoma (EC) is the most common malignancy of the female reproductive tract, with increasing incidence driven by aging populations and obesity. While molecular classification has improved diagnostic precision, the identification of clinically relevant metabolic biomarkers remains incomplete, and targeted therapies are not [...] Read more.
Endometrial carcinoma (EC) is the most common malignancy of the female reproductive tract, with increasing incidence driven by aging populations and obesity. While molecular classification has improved diagnostic precision, the identification of clinically relevant metabolic biomarkers remains incomplete, and targeted therapies are not yet standardized. In this study, we investigated metabolic alterations in four EC cell lines (AN3-CA, EFE-184, HEC-1B and MFE-296) compared to non-malignant controls under normoxic and stress conditions (hypoxia and lactic acidosis) to identify metabolomic differences with potential clinical relevance. Untargeted gas chromatography–mass spectrometry (GC/MS) and targeted liquid chromatography–mass spectrometry (LC/MS) profiling revealed two distinct metabolic subtypes of EC. Cells of metabolic subtype 1 (AN3-CA and EFE-184) exhibited high biosynthetic and energy demands, enhanced cholesterol and hexosyl-ceramides synthesis and increased RNA stability, consistent with classical cancer-associated metabolic reprogramming. Cells of metabolic subtype 2 (HEC-1B and MFE-296) displayed a phospholipid-dominant metabolic profile and greater hypoxia tolerance, suggesting enhanced tumor aggressiveness and metastatic potential. Key metabolic findings were validated via real-time quantitative PCR. This study identifies and characterizes distinct metabolic subtypes of EC within the investigated cancer cell lines, thereby contributing to a better understanding of tumor heterogeneity. The results provide a basis for potential diagnostic differentiation based on specific metabolic profiles and may support the identification of novel therapeutic targets. Further validation in three-dimensional culture models and ultimately patient-derived samples is required to assess clinical relevance and integration with current molecular classifications. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Cancer Metabolism)
21 pages, 11538 KB  
Article
Genomic Analysis Defines Increased Circulating, Leukemia-Induced Macrophages That Promote Immune Suppression in Mouse Models of FGFR1-Driven Leukemogenesis
by Ting Zhang, Atsuko Matsunaga, Xiaocui Lu, Hui Fang, Nandini Chatterjee, Ahmad Alimadadi, Stephanie F. Mori, Xuexiu Fang, Gavin Wang, Huidong Shi, Litao Zhang, Catherine C. Hedrick, Bo Cheng, Tianxiang Hu and John K. Cowell
Cells 2025, 14(19), 1533; https://doi.org/10.3390/cells14191533 - 30 Sep 2025
Abstract
The development of FGFR1-driven stem cell leukemia and lymphoma syndrome (SCLL) in mouse models is accompanied by an increase in highly heterogenous myeloid derived suppressor cells (MDSCs), which promote immune evasion. To dissect this heterogeneity, we used a combination of CyTOF and scRNA-Seq [...] Read more.
The development of FGFR1-driven stem cell leukemia and lymphoma syndrome (SCLL) in mouse models is accompanied by an increase in highly heterogenous myeloid derived suppressor cells (MDSCs), which promote immune evasion. To dissect this heterogeneity, we used a combination of CyTOF and scRNA-Seq to define the phenotypes and genotypes of these MDSCs. CyTOF demonstrated increased levels of circulating macrophages in the peripheral blood of leukemic mice, and flow cytometry demonstrated that these macrophages were derived from Ly6CHi M-MDSC as well as the Ly6CInt and Ly6CLow monocytic populations. Consistently, scRNA-Seq analysis demonstrated the accumulation of non-classical monocytes (ncMono) during leukemia progression, which also express macrophage markers. These leukemia-induced macrophages show continuous transcriptional reprogramming during leukemia progression, with the upregulation of cellular stress response genes Hspa1a and Hspa1b and inflammation-related gene Nfkbia. Trajectory analysis revealed a transition from classical monocytes (cMono) to ncMono, and potential genes orchestrating this transition process have been identified. Furthermore, T-cell suppression assays demonstrated the immune suppressive abilities of leukemia-induced circulatory macrophages. Targeting these macrophages with the GW2580 CSF1R inhibitor leads to restored immune surveillance and improved survival. Overall, we demonstrate that circulating macrophages are responsible, at least in part, for the immune suppression in SCLL leukemia models, and targeting macrophages in this system improves the survival of leukemic mice. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

19 pages, 514 KB  
Review
What Is the Impact of Glyphosate on the Thyroid? An Updated Review
by Lomesh Choudhary, Mathilda Monaghan, Rebecca Schweppe, Aime T. Franco, Whitney Goldner and Maaike van Gerwen
Biomedicines 2025, 13(10), 2402; https://doi.org/10.3390/biomedicines13102402 - 30 Sep 2025
Abstract
Background/Objectives: Thyroid dysfunction (hypo- and hyperthyroidism) and cancer incidence have increased over the past decades, possibly linked to environmental contributions from endocrine disrupting chemicals (EDCs). Glyphosate is one of the most widely used herbicides globally and has endocrine-disruptive properties. Because of the [...] Read more.
Background/Objectives: Thyroid dysfunction (hypo- and hyperthyroidism) and cancer incidence have increased over the past decades, possibly linked to environmental contributions from endocrine disrupting chemicals (EDCs). Glyphosate is one of the most widely used herbicides globally and has endocrine-disruptive properties. Because of the sensitivity of the thyroid gland to endocrine disruption and the increased glyphosate exposure worldwide, this comprehensive review aimed to summarize studies investigating the link between glyphosate/glyphosate-based herbicides (GBHs) and thyroid dysfunction in human, animal, and in vitro studies. Methods: PubMed, Scopus, and Embase were used to search for original studies assessing glyphosate or GBH exposure and thyroid-related outcomes through December 2024. Data were extracted on study design, population or model, exposure, and thyroid outcomes. A total of 28 studies, including 9 human, 3 in vitro, and 16 animal studies were included. Results: Human studies showed mixed findings with some suggesting associations between glyphosate exposure and altered thyroid hormone levels, while others found no significant effects. Animal studies, particularly in rodents and amphibians, showed thyroid hormone disruption and altered gene expression, especially after perinatal or developmental exposure. In vitro studies reported changes in thyroid-related gene transcription and cell viability, however at concentrations exceeding those seen in humans. Conclusions: While there is some evidence that glyphosate may disrupt thyroid function, differences in study populations, exposure assessment methods, species models, and exposure doses complicated the comparison and summarization of the results. Further mechanistic and longitudinal studies are needed to clarify the thyroid-specific risks of glyphosate exposure. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular and Translational Medicine in USA)
Show Figures

Figure 1

30 pages, 3330 KB  
Review
Translational Insights into NK Immunophenotyping: Comparative Surface Marker Analysis and Circulating Immune Cell Profiling in Cancer Immunotherapy
by Kirill K. Tsyplenkov, Arina A. Belousova, Marina V. Zinovyeva, Irina V. Alekseenko and Victor V. Pleshkan
Int. J. Mol. Sci. 2025, 26(19), 9547; https://doi.org/10.3390/ijms26199547 - 30 Sep 2025
Abstract
Cells of the innate immune system, particularly natural killer (NK) cells, serve as the first line of defense against tumor development and play a critical role in antitumor immunity. Characterizing the immune cell pool and its functional state is essential for understanding immunotherapy [...] Read more.
Cells of the innate immune system, particularly natural killer (NK) cells, serve as the first line of defense against tumor development and play a critical role in antitumor immunity. Characterizing the immune cell pool and its functional state is essential for understanding immunotherapy mechanisms and identifying key cellular players. However, defining NK cell populations in mice, the primary model for cancer immunotherapy, is challenging due to strain-specific marker variability and the absence of a universal NK cell marker, such as human CD56. This study evaluates surface markers of NK and other peripheral blood immune cells in both humans and mice, associating these markers with specific functional profiles. Bioinformatic approaches are employed to visualize these markers, enabling rapid immunoprofiling. We explore the translational relevance of these markers in assessing immunotherapy efficacy, including their gene associations, ligand interactions, and interspecies variations. Markers compatible with rapid flow-cytometry-based detection are prioritized to streamline experimental workflows. We propose a standardized immunoprofiling strategy for monitoring systemic immune status and evaluating the effectiveness of immunotherapy in preclinical and clinical settings. This approach facilitates the design of preclinical studies that aim to identify predictive biomarkers for immunotherapy outcomes by monitoring immune status. Full article
(This article belongs to the Special Issue Recent Advances in Immunosuppressive Therapy)
Show Figures

Figure 1

31 pages, 1058 KB  
Article
Interactions Between Monocarboxylate Transporter MCT1 Gene Variants and the Kinetics of Blood Lactate Production and Removal After High-Intensity Efforts: A Cross-Sectional Study
by Ewelina Maculewicz, Andrzej Mastalerz, Anna Mróz, Monika Johne, Katarzyna Krawczak-Wójcik, Agata Pabin, Aleksandra Garbacz, Katarzyna Komar, Myosotis Massidda, Petr Stastny and Aleksandra Bojarczuk
Genes 2025, 16(10), 1160; https://doi.org/10.3390/genes16101160 - 30 Sep 2025
Abstract
Background/Objectives: Lactate (LA) is a key metabolite in exercise metabolism, transported across cell membranes by monocarboxylate transporters (MCTs). Although genetic variation in MCT genes has been linked to LA kinetics, evidence in athletic populations remains limited. This study investigated nine MCT1 polymorphisms (rs4301628, [...] Read more.
Background/Objectives: Lactate (LA) is a key metabolite in exercise metabolism, transported across cell membranes by monocarboxylate transporters (MCTs). Although genetic variation in MCT genes has been linked to LA kinetics, evidence in athletic populations remains limited. This study investigated nine MCT1 polymorphisms (rs4301628, rs12028967, rs10857983, rs3789592, rs10776763, rs1049434, rs6537765, rs7556664, rs7169) in relation to LA metabolism. Methods: 337 Polish and Czech males (elite athletes, sub-elite competitors, physically active controls) performed two maximal Wingate tests. Buccal swabs were collected for DNA extraction and single nucleotide polymorphism (SNP) genotyping. LA was assessed before and after the tests. Results: Five variants (rs3789592, rs7556664, rs7169, rs1049434, rs6537765) remained significantly associated with LA measured 30 min after the second Wingate (LA30′) and delta clearance capacity (DCC) in elites (codominant and recessive models: p = 0.01–0.03; false discovery rate (FDR)-adjusted p = 0.02–0.04). Rs10776763 showed the broadest associations, surviving FDR for LA30′ in all models (p = 0.003–0.03; FDR-adjusted p = 0.01–0.03) and for LA accumulation capacity (ACC) in the recessive model (p = 0.01; FDR-adjusted p = 0.03). Rs12028967 also supported a clearance role, with LA30′ significant in elites (p = 0.004; FDR-adjusted p = 0.01) and DCC in the overall cohort (p = 0.02; FDR-adjusted p = 0.03). In contrast, rs4301628 and rs10857983 demonstrated isolated LA30′ effects in elites (p = 0.004–0.01; FDR-adjusted p = 0.01), and no production-phase endpoint other than rs10776763 survived FDR; ACC remained significant in the recessive model (p = 0.01; FDR-adjusted p = 0.03). Conclusions: The results suggest that MCT1 polymorphisms contribute to differences in LA metabolism and warrant replication in larger, more diverse cohorts. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 639 KB  
Article
The Interplay Between Immunological and Inflammatory Markers as Key Prognostic Indicators in Elderly Patients with COVID-19
by Corina Popazu, Violeta Diana Oprea, Alina-Maria Lescai, Aurelia Romila, Marius Petrea, Robert Marius Grosu, Adriana Liliana Vlad, Daniela-Ioanina Prisăcaru and Alexia Anastasia Ștefania Baltă
Healthcare 2025, 13(19), 2477; https://doi.org/10.3390/healthcare13192477 - 29 Sep 2025
Abstract
Background: The COVID-19 pandemic has disproportionately affected the elderly population, with inflammation and impaired immune response being key drivers of disease progression. Clinicians require predictive models integrating immunological and inflammatory biomarkers to optimize risk stratification in this vulnerable group. Methods: We retrospectively [...] Read more.
Background: The COVID-19 pandemic has disproportionately affected the elderly population, with inflammation and impaired immune response being key drivers of disease progression. Clinicians require predictive models integrating immunological and inflammatory biomarkers to optimize risk stratification in this vulnerable group. Methods: We retrospectively analyzed 1429 elderly patients (aged >60 years) admitted with COVID-19 between March 2020 and August 2022. Demographic, clinical, and laboratory data were collected at admission. Correlation and regression analyses were performed to assess the prognostic significance of hematological and inflammatory markers. Results: Lymphopenia and neutrophilia were predominant findings, frequently associated with elevated C-reactive protein levels. Correlation analyses revealed significant associations between inflammatory markers and discharge status or death, while lymphocytes exerted a protective effect, reducing mortality risk by 14.4%. Notably, a higher platelet-large cell ratio (PLCR) was linked to increased mortality, suggesting an important contribution of thrombosis to severe COVID-19. Conclusions: Our findings indicate that immunological and inflammatory markers may serve as significant predictors of outcomes in elderly COVID-19 patients. While the predictive power of the model remains limited, these biomarkers can contribute to a better understanding of patient trajectories and may inform therapeutic strategies. Full article
13 pages, 1961 KB  
Article
A CpG 1018S/QS-21-Adjuvanted HBsAg Therapeutic Vaccine as a Novel Strategy Against HBV
by Zixuan Wang, Jing Wu, Xiaohan Meng, He Weng, Qiang Li, Lin Li, Zhenhao Ma, Sirong Bi, Qiuju Han, Huajun Zhao, Cunbao Liu and Deping Meng
Vaccines 2025, 13(10), 1014; https://doi.org/10.3390/vaccines13101014 - 29 Sep 2025
Abstract
Chronic hepatitis B virus (HBV) infection remains a major global health challenge, substantially contributing to liver-related morbidity and mortality. Background/Objectives: Developing therapeutic strategies that overcome immune tolerance and achieve functional cures is an urgent priority. Methods: In this study, we report [...] Read more.
Chronic hepatitis B virus (HBV) infection remains a major global health challenge, substantially contributing to liver-related morbidity and mortality. Background/Objectives: Developing therapeutic strategies that overcome immune tolerance and achieve functional cures is an urgent priority. Methods: In this study, we report a therapeutic vaccine comprising hepatitis B surface antigen (HBsAg) formulated with the dual adjuvant system CpG 1018S and QS-21. The immunogenicity and therapeutic efficacy of this vaccine were systematically evaluated in an rAAV8-HBV1.3-established chronic HBV mouse model. Results: The vaccine elicited a robust Th1-skewed immune response, characterized by elevated anti-HBs IgG2b titers and an increased IgG2b/IgG1 ratio. Notably, immunized mice showed markedly reduced circulating HBsAg levels. Mechanistically, the CpG 1018S and QS-21 adjuvant system enhanced dendritic cell activation, maturation, and antigen presentation, expanded HBV-specific CD4+ and CD8+ T cell populations, and attenuated the expression of the exhaustion markers TIM-3 and TIGIT. Additionally, immunized mice exhibited restored T cell polyfunctionality, with an increased secretion of effector cytokines, including TNF-α and IL-21. These responses collectively contributed to the reversal of T cell exhaustion and breakdown of immune tolerance, facilitating sustained viral suppression. Conclusions: Our findings demonstrate that the CpG 1018S/QS-21-adjuvanted vaccine induces potent humoral and cellular immunity against chronic HBV infection and represents a promising candidate for clinical chronic HBV (CHB) treatment. Full article
(This article belongs to the Section Hepatitis Virus Vaccines)
Show Figures

Figure 1

Back to TopTop