Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = cecal microbial community

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1400 KiB  
Article
From Farm to Slaughter: Tracing Antimicrobial Resistance in a Poultry Short Food Chain
by Andrea Laconi, Roberta Tolosi, Claudia Chirollo, Cristiana Penon, Giacomo Berto, Francesco Galuppo and Alessandra Piccirillo
Antibiotics 2025, 14(6), 604; https://doi.org/10.3390/antibiotics14060604 - 13 Jun 2025
Viewed by 700
Abstract
Background: Short food supply chains are commonly perceived as more sustainable and safer alternatives to conventional production systems, often linked to organic, free-range livestock practices. Materials and methods: This study investigates, for the first time, the distribution of antimicrobial resistance genes [...] Read more.
Background: Short food supply chains are commonly perceived as more sustainable and safer alternatives to conventional production systems, often linked to organic, free-range livestock practices. Materials and methods: This study investigates, for the first time, the distribution of antimicrobial resistance genes (ARGs) and characterizes the microbial communities’ composition, using 16S rRNA sequencing and real-time PCR, respectively. Eleven fecal, 76 slaughterhouse surface, 11 cecal, and 11 carcass samples, from 11 poultry farms belonging to the same short food chain, were analyzed in the study. Results: While cleaning and disinfection procedures appeared to reduce the bacterial load on slaughterhouse surfaces, diverse and potentially resistant bacteria, including genera such as Staphylococcus and Streptococcus, persisted both before and after slaughter. ARGs conferring resistance to high-priority critically important antimicrobials (HPCIAs), such as fluoroquinolones and third-generation cephalosporins, were frequently detected on carcasses, with qnrS (76.15%, 95%CI 68.02-84.28%) and blaCMY2 (57.8%, 95%CI 48.38-67.22%) being the most prevalent. The slaughtering process emerged as a critical step for ARG dissemination via intestinal bacteria, such as genus Lactobacillus. Additionally, the detection of mcr genes and blaNDM on carcasses but not in the bird gut samples suggests possible anthropogenic contamination. Discussion: These findings highlight that the evisceration process, slaughterhouse environment, and personnel are all contributing factors in ARG spread and underscore the need for enhanced hygiene protocols and reduced gut ARG carriage in domestic birds to mitigate the risk for the consumer. Full article
(This article belongs to the Special Issue Livestock Antibiotic Use and Resistance)
Show Figures

Figure 1

13 pages, 1912 KiB  
Article
Two Species of Long-Day Breeding Hamsters Exhibit Distinct Gut Microbial Responses to Photoperiodic Variations
by Chao Fan, Huiliang Xue, Jinhui Xu, Ming Wu, Lei Chen and Laixiang Xu
Animals 2025, 15(11), 1648; https://doi.org/10.3390/ani15111648 - 3 Jun 2025
Viewed by 319
Abstract
The relationship between the gut microbiota and photoperiod has received widespread attention, and it is necessary to explore the probable common mechanisms involved. We tested whether the gut microbiota of animals with similar light-regulated life history traits would also exhibit consistent responses to [...] Read more.
The relationship between the gut microbiota and photoperiod has received widespread attention, and it is necessary to explore the probable common mechanisms involved. We tested whether the gut microbiota of animals with similar light-regulated life history traits would also exhibit consistent responses to the photoperiod. Here, two species of long-day breeders, striped hamsters (Cricetulus barabensis) and Djungarian hamsters (Phodopus sungorus), were raised under different photoperiods (long daylight, LD; short daylight, SD), and their cecal contents were collected to assess the gut microbiota. There was no difference in the gut microbial diversity between the groups of striped hamsters; however, in the Djungarian hamsters, lower Chao and Shannon indices were observed in the LD group than in the SD group. The bacterial community variation in the striped hamsters was reflected mainly in the enrichment of the genera Enterorhabdus and Jeotgalicoccus in the LD group; meanwhile, more taxa with significant changes in relative abundance under different photoperiods were found in the Djungarian hamsters, such as the enrichment of the genera Lactobacillus and Faecalibaculum in the LD group and the enrichment of the genera Ruminococcus and Colidextribacter in the SD group. The LD conditions substantially reduced the complexity of the gut microbial network in the Djungarian hamsters and increased the R2 value of the striped hamster gut microbiota under fitting with a neutral community model. Moreover, the potential gut microbial functions in the striped hamsters were relatively stable, but variations were observed in multiple pathways between the groups of Djungarian hamsters. These results contribute to the understanding of host species specificity in the response of the gut microbiota to external changes. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

29 pages, 790 KiB  
Article
Effect of Maternal Probiotic and Piglet Dietary Tryptophan Level on Performance and Piglet Intestinal Health Parameters Pre-Weaning
by Dillon P. Kiernan, John V. O’Doherty, Marion T. Ryan and Torres Sweeney
Microorganisms 2025, 13(6), 1264; https://doi.org/10.3390/microorganisms13061264 - 29 May 2025
Viewed by 550
Abstract
A 2 × 3 factorial design was used to examine the effects of maternal probiotic supplementation (Bacillus subtilis and Bacillus amyloliquefaciens) and/or piglet dietary Trp levels on sow performance and fecal microbiota composition, as well as offspring pre-weaning performance and intestinal [...] Read more.
A 2 × 3 factorial design was used to examine the effects of maternal probiotic supplementation (Bacillus subtilis and Bacillus amyloliquefaciens) and/or piglet dietary Trp levels on sow performance and fecal microbiota composition, as well as offspring pre-weaning performance and intestinal health parameters on the day of weaning. On day 83 of gestation, 48 sows were allocated to either: (1) control, or (2) control + probiotic (1.1 × 109 colony forming units/kg of feed). Their litters were assigned to 0.22, 0.27, or 0.33% standardized ileal digestible (SID) Trp diets (0.17, 0.21 and 0.25 SID ratio of Trp to lysine (Trp:Lys), SID lysine = 1.3%). At weaning, one piglet per litter was sacrificed for intestinal health analysis. Diet had no effect on sow reproductive or offspring growth performance pre-weaning (p > 0.05). Maternal probiotic supplementation led to distinct microbial communities in the sow feces on day 114 of gestation, increasing the relative abundance of Anaerocella and Sporobacter, while decreasing Lactobacillus, Ruminococcus, and Christensenella (p < 0.05). In the offspring colonic digesta, maternal probiotic supplementation increased Dorea, Sporobacter, and Anaerobacterium, while reducing the potentially harmful phylum Proteobacteria, specifically the family Enterobacteriaceae (p < 0.05), with a tendency for a reduction in the genus Escherichia (p < 0.1). Maternal probiotic supplementation enhanced duodenal morphology and modulated the expression of genes in the ileum, including a downregulation of certain immune and barrier defense genes (p < 0.05). Piglets from probiotic sows had reduced branch chain fatty acids (BCFA) in the cecal digesta and an increase in the total VFA and acetate in the colonic digesta (p < 0.05). There were limited effects of Trp level in the offspring’s creep diet or maternal × creep interactions, though this analysis was likely confounded by the low creep feed intake (total of ~0.83 kg/litter). Full article
(This article belongs to the Special Issue Probiotics, Prebiotics, and Gut Microbes—Second Edition)
Show Figures

Figure 1

15 pages, 6407 KiB  
Article
Effects of Lactic Acid and Glyceryl Lactate on Growth Performance, Antioxidant Capacity, and Intestinal Health of Piglets
by Shuaiju Guo, Huiling Chu, Bangwang Peng, Junlong Niu, Xiaopeng Yang, Yongpeng Guo, Zhixiang Wang and Wei Zhang
Antioxidants 2025, 14(4), 391; https://doi.org/10.3390/antiox14040391 - 26 Mar 2025
Viewed by 627
Abstract
The aim of this study was to evaluate the effects of lactic acid and glyceryl lactate on growth performance, antioxidant capacity, and intestinal health in piglets. This study included 240 castrated male piglets (initial body weight: 7.50 ± 0.54 kg) assigned to four [...] Read more.
The aim of this study was to evaluate the effects of lactic acid and glyceryl lactate on growth performance, antioxidant capacity, and intestinal health in piglets. This study included 240 castrated male piglets (initial body weight: 7.50 ± 0.54 kg) assigned to four groups: CON (basal diet), LA (basal diet + 0.5% lactic acid), GL (basal diet + 0.5% glyceryl lactate), and LG (basal diet + 0.5% lactic acid + 0.5% glyceryl lactate). Each group had six replicates of 10 piglets. The trial lasted 28 days. Compared with the control group, the GL and LG groups showed enhanced growth performance and reduced diarrhea rate in piglets. The LA and LG groups showed decreased intestinal chyme pH and increased digestive enzyme activities. Moreover, the GL and LG groups displayed elevated jejunal mRNA levels of the tight junction protein occludin and mucin MUC2, enhanced expression levels of Nrf2 signaling pathway genes, increased activities of the antioxidant enzymes GPX and CAT, and reduced MDA content. Acidifier supplementation also modulated cecal bacterial abundance and short-chain fatty acid (SCFA) content. Genera such as Faecalibaculum, Nocardiopsis, Collinsella, CAG269, Allobaculum, and Enterococcus were affected. In conclusion, glyceryl lactate and its combination with lactic acid improved piglet growth performance by enhancing intestinal barrier function, antioxidant capacity, microbial community structure, and SCFA production. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

14 pages, 4070 KiB  
Article
Comparative Analysis of Gut Microbiota Diversity Across Different Digestive Tract Sites in Ningxiang Pigs
by Wangchang Li, Xianglin Zeng, Lu Wang, Lanmei Yin, Qiye Wang and Huansheng Yang
Animals 2025, 15(7), 936; https://doi.org/10.3390/ani15070936 - 25 Mar 2025
Cited by 4 | Viewed by 941
Abstract
Background: Microbial communities in the gastrointestinal tract play a critical role in nutrient absorption, metabolism, and overall health of animals. Understanding the structure and function of tissue-specific microbial communities in Ningxiang pigs is essential for optimizing their growth, development, and nutritional efficiency. However, [...] Read more.
Background: Microbial communities in the gastrointestinal tract play a critical role in nutrient absorption, metabolism, and overall health of animals. Understanding the structure and function of tissue-specific microbial communities in Ningxiang pigs is essential for optimizing their growth, development, and nutritional efficiency. However, the diversity and functional roles of microbiota in different nutrient absorption tissues remain underexplored. Methods: We collected samples from four key nutrient absorption tissues (NFC: Cecal Content, NFI: Ileal Content, NFL: Colonic Content, NFG: Gastric Content, N = 6) of Ningxiang pigs and performed 16S rRNA gene sequencing to analyze microbial community composition. Bioinformatics analyses included alpha and beta diversity assessments, linear discriminant analysis effect size (LEfSe) for biomarker identification, and PICRUSt2-based functional prediction. Comparative metabolic abundance analysis was conducted to explore functional differences among tissues. Results: Alpha diversity indices (ACE, Chao1, Simpson, and Shannon) revealed significant differences in microbial richness and evenness among the four tissues. At the phylum level, Firmicutes dominated the microbiota, while Bacteroidota was prominent in NFC and NFL. LEfSe analysis identified tissue-specific dominant microbial groups, such as f_Prevotellaceae in NFC, o_Lactobacillales in NFG, f_Clostridiaceae in NFI, and f_Muribaculaceae in NFL. Functional profiling using PICRUSt2 showed that the microbiota was primarily involved in organismal systems (e.g., aging, digestion), cellular processes (e.g., cell growth, transport), environmental information processing (e.g., signaling), genetic information processing (e.g., transcription, translation), and metabolic regulation (e.g., amino acid and carbohydrate metabolism). Comparative metabolic abundance analysis highlighted distinct functional profiles across tissues, with significant differences observed in pathways related to the immune system, energy metabolism, lipid metabolism, transcriptional and translational regulation, and aging. Conclusions: Our findings demonstrate that tissue-specific microbial communities in Ningxiang pigs exhibit distinct structural and functional characteristics, which are closely associated with nutrient absorption and metabolic regulation. These results provide valuable insights into the roles of microbiota in the growth and health of Ningxiang pigs and pave the way for future studies on microbe-mediated nutritional interventions. Full article
Show Figures

Figure 1

16 pages, 5005 KiB  
Article
Extracellular DNA in the Chicken Cecal Environment
by Deborah Olubanjo, Artur Zbikowski, Bishnu Adhikari, Tieshan Jiang, Pallavi Singh, Seong W. Kang and Young Min Kwon
Poultry 2025, 4(1), 14; https://doi.org/10.3390/poultry4010014 - 18 Mar 2025
Viewed by 619
Abstract
The presence and biological role of extracellular DNA (eDNA) have been explored in diverse microbial environments. Nonetheless, it has not been studied in the chicken gut microbiome. This study aims to investigate eDNA in the chicken cecum, analyzing cecal samples from broiler chickens [...] Read more.
The presence and biological role of extracellular DNA (eDNA) have been explored in diverse microbial environments. Nonetheless, it has not been studied in the chicken gut microbiome. This study aims to investigate eDNA in the chicken cecum, analyzing cecal samples from broiler chickens using three preparation methods: Whole Cecal Suspension (WCS), Washed Cell Pellets (WCP), and Cell-Free Supernatant (CFS). The 16S rRNA gene-based microbiota analysis revealed distinct microbial communities in CFS compared to WCS and WCP (p = 0.001). Notably, specific taxa, including Anaerofilum, Anaerotruncus, Oscillospira, Syntrophomonas, and Delftia, were enriched in CFS. Confocal fluorescence microscopy, employing stains such as Propidium Iodide (PI), GelGreen, and SYTO 9, confirmed the presence of eDNA with filaments observed in WCS and CFS. Colocalization of PI and GelGreen™ validated the extracellular nature of eDNA, while DNase I treatment selectively degraded eDNA, further confirming its extracellular nature. Our findings in this study highlight the presence of eDNA in the chicken cecal microbiome, and the presence of eDNA associated with specific taxonomic groups suggest that it might play a specific role in the biological function of the cecal microbiome, which warrants further investigation in the future. Full article
Show Figures

Figure 1

18 pages, 3606 KiB  
Article
Effect of Bio-Fermented Distillers Grain on Growth, Intestines, and Caecal Microbial Community in Broilers
by Ping Xu, Changsong Liu, Hongxia Ding, Pinpin Chen, Xin Fan, Xu Wang, Shijie Li, Jintao Peng, Zutao Zhou, Deshi Shi, Shengbo Cao and Yuncai Xiao
Fermentation 2025, 11(3), 118; https://doi.org/10.3390/fermentation11030118 - 3 Mar 2025
Viewed by 907
Abstract
The impact of nutritional enrichment with bio-fermented distillers grain (FDG) on broiler growth, intestines, and cecal microbial community were evaluated. A total of 240 five-day-old male chicks were randomly and evenly distributed into three treatment groups (each with eight biological replicates of 10 [...] Read more.
The impact of nutritional enrichment with bio-fermented distillers grain (FDG) on broiler growth, intestines, and cecal microbial community were evaluated. A total of 240 five-day-old male chicks were randomly and evenly distributed into three treatment groups (each with eight biological replicates of 10 chicks): 0% FDG (group A), 2.5% FDG (group B), and 5% FDG (group C). In this study, we observed that FDG caused no significant variations in the body weight and feed intake of broilers (p > 0.05). The FDG significantly enhanced villus height and the villus height/crypt depth ratio (VCR) of the small intestine compared with the control group (p < 0.05). Taxonomic composition of the gut microbiota revealed a higher relative abundance of Bacteroidetes in the cecal samples of broilers from groups B and C compared to the control group (p < 0.05). At the genus level, the relative abundances of Bacteroides and Phascolarctobacterium were increased with the addition of FDG to broiler diets, whereas the relative abundance of the Christensenellaceae_R-7_group was decreased. These results suggest that fermented feeds significantly influence the composition of cecal microbiome in broilers, potentially affecting growth performance, nutritional status, and intestinal health. Full article
(This article belongs to the Special Issue Effect of Bio-Fermented Feed on Livestock Health)
Show Figures

Figure 1

16 pages, 1203 KiB  
Article
Influence of Astragalus extract on Gut Microbiome Regulation and Ammonia Emission Mitigation in Laying Hens
by Shasha Xiao, Kunxian Feng, Shikai Li, Miao Li, Xiliang Yan, Yinbao Wu, Jiandui Mi, Xindi Liao and Yan Wang
Animals 2025, 15(5), 620; https://doi.org/10.3390/ani15050620 - 20 Feb 2025
Viewed by 941
Abstract
Astragalus extract plays a dual role in gut microbiome regulation and ammonia (NH3) emission mitigation in laying hens. This study explored its effects through feeding experiments, with a focus on gut microbial metabolic pathways and NH3 reduction mechanisms. To achieve [...] Read more.
Astragalus extract plays a dual role in gut microbiome regulation and ammonia (NH3) emission mitigation in laying hens. This study explored its effects through feeding experiments, with a focus on gut microbial metabolic pathways and NH3 reduction mechanisms. To achieve this, both in vitro fermentation experiments and in vivo feeding trials were conducted. In the in vitro study, cecal contents from laying hens were incubated with different concentrations of AE and Yucca extract (YE) to evaluate NH3 production, while in the feeding trial, 58-week-old Lohmann Pink laying hens were allocated into three groups (control, 0.1% YE, and 0.1% AE) and housed in controlled-environment respiration chambers for 21 days. Measurements included NH3 emissions, serum biochemical indices, immune parameters, gut physicochemical properties, and 16S rRNA-based microbiota analysis. Results showed that Astragalus extract reduced NH3 emissions by 29.3%, achieved by lowering urease and uricase activities and promoting the conversion of ammonium nitrogen to nitrate nitrogen. Additionally, it significantly enhanced gut immune function by increasing intestinal immunoglobulin levels. Microbial community analysis revealed an increased relative abundance of Bacteroides, Muribaculaceae, and Faecalibacterium, which are negatively correlated with NH3 emissions. These microbial shifts improved ammonium nitrogen utilization via the upregulation of CTP synthase and GMP synthase activities, contributing to higher NH3 reduction efficiency. This study highlights Astragalus extract as a cost-effective and sustainable strategy to regulate gut microbiota, optimize nitrogen metabolism, and mitigate NH3 emissions in laying hens. Full article
(This article belongs to the Special Issue Sanitation and Waste Control in Poultry Farming)
Show Figures

Figure 1

13 pages, 2459 KiB  
Article
Application of mRNA-Seq and Metagenomic Sequencing to Study Salmonella pullorum Infections in Chickens
by Xiaohuan Chao, Zhexia Fan, Jiongwen Wu, Chutian Ye, Xiaomeng Wang, Ruina Li, Shuya Chen, Xiquan Zhang, Cheng Fang and Qingbin Luo
Int. J. Mol. Sci. 2025, 26(4), 1448; https://doi.org/10.3390/ijms26041448 - 9 Feb 2025
Viewed by 1012
Abstract
The disease caused by Salmonella pullorum has been demonstrated to exert a deleterious effect on the performance of poultry, giving rise to elevated mortality and considerable economic losses within the breeding industry. However, there is a paucity of research investigating the relationship between [...] Read more.
The disease caused by Salmonella pullorum has been demonstrated to exert a deleterious effect on the performance of poultry, giving rise to elevated mortality and considerable economic losses within the breeding industry. However, there is a paucity of research investigating the relationship between cecal gene expression and different isomer and Salmonella pullorum infection, and research on the relationship between intestinal microbiota and Salmonella pullorum infection is also limited. In this study, mRNA-Seq and metagenomic sequencing were performed on the cecal tissues and fresh feces of individuals who tested positive (n = 4) and negative (n = 4) for Salmonella pullorum, with the aim of exploring the chickens infected with Salmonella pullorum from two perspectives: the gene transcription level and the microbial level. The mRNA sequencing results revealed 1560 differentially expressed genes (DEGs), of which 380 genes were found to be up-regulated and 1180 genes were down-regulated. A number of genes were reported to be associated with immunity, including AQP8, SLC26A3, CBS, IFI6, DDX60, IL8L1 and IL8L2. Furthermore, a total of 1047 differentially expressed alternative splicings (DEASs) were identified through alternative splicing analysis, including CBS, SLC6A9, ILDR2, OCRL, etc. The joint analysis of DEGs and DEASs revealed 70 genes that exhibited both differentially expressed alternative splicings and differential expression, including CTNND1, TPM1, SPPL2A, etc. The results of metagenomic sequencing demonstrated that the abundances of Bacteroides, Firmicutes, and Verrucobacteria underwent a significant alteration subsequent to the infection of Salmonella pullorum. In summary, the present study conducted a preliminary exploration of the genetic basis of chickens infected with Salmonella pullorum. TPM1 and SPPL2A were found to be differentially expressed by mRNA-Seq, and differences in alternative splicing events. Furthermore, metagenomic sequencing revealed significant changes in the microbial communities of Bacteroidetes, Firmicutes, and Verrucobacteria during infection with Salmonella pullorum. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 4120 KiB  
Article
Dynamics of Intestinal Mucosa Microbiota in Juvenile Sika Deer During Early Growth
by Songze Li, Ruina Mu, Yunxi Zhang, Shaoying Wang, André-Denis G. Wright, Huazhe Si and Zhipeng Li
Int. J. Mol. Sci. 2025, 26(3), 892; https://doi.org/10.3390/ijms26030892 - 22 Jan 2025
Viewed by 1046
Abstract
The establishment of gut microbiota in young ruminants has a profound impact on their productive performance in adulthood. The microbial communities of ruminants differ significantly across the different regions of the digestive tract, as well as between the mucosa and lumen. In this [...] Read more.
The establishment of gut microbiota in young ruminants has a profound impact on their productive performance in adulthood. The microbial communities of ruminants differ significantly across the different regions of the digestive tract, as well as between the mucosa and lumen. In this study, we analyzed the characteristics of the microbiota of the small intestine (jejunum and ileum) and large intestine (cecum and colon) of sika deer on day 1 (birth), day 42 (transition period) and day 70 (rumination period) using 16S rRNA gene sequencing. The results showed that the microbial diversity of the mucosa in the jejunum, ileum, cecum and colon of sika deer was higher on day 70 than on day 1, and the diversity of the cecal mucosa was significantly higher than that in the small intestine. Principal coordinates analysis (PCoA) showed that the microbial community structures of the small and large intestinal mucosa were significantly different, and the microbial community structure of sika deer on day 1 was significantly different from that on days 42 and 70. The relative abundances of Methylobacterium–Methylorubrum, Pelagibacterium, Acinetobacter and Staphylococcus were higher in the small intestinal mucosa, while Alistipes, Prevotellaceae UCG-004, Eubacterium coprostanoligenes group and Lachnospiraceae unclassified were higher in the large intestinal mucosa. We also observed increased levels of specific microbiota in the small intestinal (Turicibacter and Cellulosilyticum) and large intestinal mucosa (Treponema, Romboutsia, Oscillospirales UCG-005 and Peptostreptococcaceae unclassified) with animal growth. A comparison of the predicted function showed that the microbiota of the small intestinal mucosa was enriched for replication and repair, while carbohydrate metabolism was enriched in the microbiota of the large intestinal mucosa. In addition, the relative abundances of amino acid and energy metabolism were significantly higher on days 42 and 70 than on day 1. Our results revealed that the microbial community composition and the dynamics of the intestinal mucosa from birth to rumination in juvenile sika deer, which may provide insights into similar processes in other juvenile ruminants. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Ruminants)
Show Figures

Figure 1

16 pages, 3192 KiB  
Article
Probiotic Supplementation Alleviates Corticosterone-Induced Fatty Liver Disease by Regulating Hepatic Lipogenesis and Increasing Gut Microbiota Diversity in Broilers
by Yuyan Feng, Wenqing Mei, Qu Chen, Xiaojing Chen, Yingdong Ni, Mingming Lei and Jie Liu
Microorganisms 2025, 13(1), 200; https://doi.org/10.3390/microorganisms13010200 - 17 Jan 2025
Viewed by 1068
Abstract
Emerging evidence indicates a close relationship between gut microbiota and fatty liver disease. It has been suggested that gut microbiota modulation with probiotics ameliorates fatty liver disease in rodents and humans, yet it remains unclear whether the same results will also be obtained [...] Read more.
Emerging evidence indicates a close relationship between gut microbiota and fatty liver disease. It has been suggested that gut microbiota modulation with probiotics ameliorates fatty liver disease in rodents and humans, yet it remains unclear whether the same results will also be obtained in poultry. The aim of this study was to investigate whether a mixture of probiotics supplemented after hatching can prevent CORT-induced fatty liver disease in broilers, and to determine how such effects, if any, are associated with hepatic de novo lipogenesis and gut microbiota composition. Ninety-six one-day-old green-legged chickens were divided into a control group (CON) and probiotic group (PB). At 28 days of age, fatty liver was induced in 16 broilers that were randomly selected from the CON or PB group. At the end of the experiment, broilers from four groups, (i) the control group (CON), (ii) corticosterone group (CORT), (iii) probiotic group (PB), and (iv) PB plus CORT group (CORT&PB), were slaughtered for sampling and analysis. The results showed that probiotic administration significantly prevented CORT-induced body weight loss (p < 0.05) but did not alleviate the weight loss of immune organs caused by CORT. Compared to CON, the broilers in the CORT group exhibited a significant increase in triglyceride (TG) levels in plasma and liver (p < 0.01), as well as severe hepatocytic steatosis and hepatocellular ballooning, which was accompanied by the upregulation of hepatic lipogenesis gene expression. However, probiotic supplementation markedly decreased the intrahepatic lipid accumulation and steatosis histological score, which was associated with the downregulation of sterol regulatory element-binding protein-1 (SREBP1) and acetyl-CoA carboxylase (ACC) mRNA (p < 0.05) and the expression of its protein (p = 0.06). The cecal microbiota composition was determined by 16S rRNA high-throughput sequencing. The results showed that CORT treatment induced distinct gut microbiota alterations with a decrease in microbial diversity and an increase in Proteobacteria abundance (p < 0.05). In contrast, probiotic supplementation increased the beta diversity, the community richness, and the diversity index (p > 0.05), as well as the abundance of Intestinimonas (p < 0.05). Our results indicate that CORT treatment induced severe fatty liver disease and altered the gut microbiota composition in broilers. However, post-hatching probiotic supplementation had a beneficial effect on alleviating fatty liver disease by regulating lipogenic gene expression and increasing gut microbiota diversity and the abundance of beneficial bacteria. We demonstrate for the first time that the supplementation of probiotics to chicks had a beneficial effect on preventing fatty liver disease through regulating lipogenic gene expression and improving the gut microbial balance. Thus, our results indicate that probiotics are a potential nutritional agent for preventing fatty liver disease in chickens. Full article
(This article belongs to the Special Issue Beneficial Microbes: Food, Mood and Beyond, 2nd Edition)
Show Figures

Figure 1

15 pages, 3092 KiB  
Article
Effects of Red Clover Isoflavones on Growth Performance, Immune Function, and Cecal Microflora of Mice
by Rongrong Guo, Xuqin Song, Xiaodie Li, Cheng Zeng, Ying Chen, Chunjie Li, Jian Yang and Deyuan Ou
Animals 2025, 15(2), 150; https://doi.org/10.3390/ani15020150 - 9 Jan 2025
Viewed by 1561
Abstract
Isoflavone components extracted from red clover have anti-inflammatory, antioxidant and immune boosting effects. We hypothesize that red clover isoflavones (RCIs) achieve health-promoting effects via altering the gut microbiota. A total of 48 mice (20 ± 2 g) were randomly divided into a control [...] Read more.
Isoflavone components extracted from red clover have anti-inflammatory, antioxidant and immune boosting effects. We hypothesize that red clover isoflavones (RCIs) achieve health-promoting effects via altering the gut microbiota. A total of 48 mice (20 ± 2 g) were randomly divided into a control group, low-dose group (0.05% RCIs in feed), middle-dose group (0.1% RCIs in feed), and high-dose group (0.2% RCIs in feed) with 12 mice per group. The feeding period was 20 d. The results showed that RCIs can increase the daily gain and decrease the ratio of feed to gain in mice. The organ indexes and blood biochemical indexes of the mice in each RCI group were in the normal range, indicating that RCIs do not damage liver or kidney function. RCI supplementation increased serum immunity and altered the microbial community structure in the cecum of the mice. RCIs can increase the diversity of beneficial bacteria such as Bacteroidaceae, Muribaculaceae, and Akkermansiaceae, and reduced the pathogenic Staphylococcaceae. Therefore, supplementing the diet with RCIs results in improved growth performance and notable alterations in the cecal microbiota in mice, and has potential applications as a feed additive to improve livestock production. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

18 pages, 1303 KiB  
Article
Effect of Lactobacillus paracasei LK01 on Growth Performance, Antioxidant Capacity, Immunity, Intestinal Health, and Serum Biochemical Indices in Broilers
by Weixin Liu, Hong Cheng, Hao Zhang, Guozhen Liu, Xinyu Yin, Cheng Zhang, Runsheng Jiang, Zaigui Wang and Xiaoling Ding
Animals 2024, 14(23), 3474; https://doi.org/10.3390/ani14233474 - 1 Dec 2024
Cited by 3 | Viewed by 1225
Abstract
This study aimed to investigate the effects of adding L. paracasei LK01 to the diet on the growth performance, antioxidant capacity, immunity, intestinal health, and serum biochemical indicators of broilers. This study selected 1080 one-day-old broiler chickens with similar body weight, and randomly [...] Read more.
This study aimed to investigate the effects of adding L. paracasei LK01 to the diet on the growth performance, antioxidant capacity, immunity, intestinal health, and serum biochemical indicators of broilers. This study selected 1080 one-day-old broiler chickens with similar body weight, and randomly divided them into six groups, with six replicates in each group and 30 chicks in each replicate. The chicks were fed (1) the basal diet (CON), (2) the basal diet with 106 CFU/kg L. paracasei LK01(T1), (3) the basal diet with 107 CFU/kg L. paracasei LK01(T2), (4) the basal diet with 108 CFU/kg L. paracasei LK01(T3), (5) the basal diet with 109 CFU/kg L. paracasei LK01(T4), and (6) the basal diet with 1010 CFU/kg L. paracasei LK01(T5). The experiment lasted for 42 days. In this study, compared with the CON group, the diet supplemented with L. paracasei significantly increased body weight from 1 to 21 days (p < 0.05). In addition, the 106 CFU/kg L. paracasei LK01 group significantly reduced the activity of glutamic oxaloacetic transaminase and triglyceride levels; the 107 CFU/kg,108 CFU/kg, and 109 CFU/kg L. paracasei LK01 groups also reduced serum uric acid and total cholesterol levels (p < 0.05). The experimental groups all had lower serum levels of malondialdehyde and interleukin-1β (p < 0.01). Except for the 106 CFU/kg group, all experimental groups had significantly lower tumor necrosis factor-α, and the 106 and 107 CFU/kg groups had higher immunoglobulin M levels (p < 0.05). In addition, the 106 CFU/kg group significantly reduced the depth of the ileocecal crypts and increased the villus-to-crypt ratio (V/C) of the jejunum and ileum. In addition, dietary supplementation with L. paracasei LK01 did not change the α diversity of the microbial community in the cecum, but significantly increased the proportion of Bacteroides (phylum) (p < 0.05). The 106 CFU/kg group also significantly increased the abundance of beneficial bacteria such as Ruminococcaceae (genus), Lachnospiraceae (genus), and Faecalibacterium (genus) (p < 0.05). In summary, this study revealed that adding 106 CFU/kg of L. paracasei LKO1 to broiler diets can improve their production performance, serum biochemical indicators, antioxidant, and immune capabilities, as well as cecal flora. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

16 pages, 1185 KiB  
Article
Effects of Dietary Fiber and Copper on the Performance and Gut Microbiota of Finishing Pigs
by Bo Liu, Jun Yan, Houxu Hao, Feng Yong, Lianyu Yang, Wenyan Yang and Dongsheng Che
Animals 2024, 14(22), 3168; https://doi.org/10.3390/ani14223168 - 6 Nov 2024
Cited by 3 | Viewed by 2463
Abstract
This study aimed to investigate the effects of dietary fiber (DF) levels and copper concentrations on the production performance and cecal microbial diversity of finishing pigs. A 2 × 2 factorial experimental design was used, with different levels of dietary fiber (low [23% [...] Read more.
This study aimed to investigate the effects of dietary fiber (DF) levels and copper concentrations on the production performance and cecal microbial diversity of finishing pigs. A 2 × 2 factorial experimental design was used, with different levels of dietary fiber (low [23% DF]: L and high [30% DF]: H) and copper concentrations (normal [25 mg/kg]: N and supplemented [45 mg/kg]: S) resulting in four diets (LN, LS, HN, and HS). Forty-eight hybrid barrows (Duroc × Landrace × Yorkshire), with an initial body weight of 76 kg ± 1.5 kg, were randomly assigned to four groups: LN, LS, HN, and HS, with 12 replicates per group and one pig per replicate. There was a 7-day adaptation period followed by a 56-day feeding trial, after which all pigs were slaughtered for sampling. Results indicated that in finishing pigs, the low dietary fiber group exhibited a higher final weight, a higher average daily gain, and a lower feed-to-gain ratio compared to the high fiber group (p < 0.05). The LS group showed higher digestibility of dry matter, crude protein, crude fiber, ash, neutral detergent fiber, and DF than the HN and HS groups (p < 0.05). Blood total protein levels were higher in the high fiber group, whereas blood Cu levels were higher in the supplemented copper group (p < 0.05). High dietary fiber increased the activities of colonic carboxymethylcellulase and β-glucanase (p < 0.05). Concentrations of acetic acid, propionic acid, and total volatile fatty acids were elevated in the high fiber group (p < 0.05). Microbial α-diversity indices (observed species, Chao 1, and Shannon indices) increased with fiber but decreased with copper supplementation (p < 0.05). The Firmicutes/Bacteroidetes ratio increased with fiber levels, with a higher relative abundance of Lactobacillus in the LS group. In conclusion, appropriate copper supplementation in diets can mitigate the negative effects of high fiber levels on finishing pig production performance by enhancing nutrient digestibility, fiber-degrading enzyme activity, regulating the microbial community, and its metabolic products. Full article
(This article belongs to the Special Issue Exploration of Sustainable Feed Resources and Pig Dietary Strategies)
Show Figures

Figure 1

21 pages, 6735 KiB  
Article
Effects of Edible Grass (Rumex patientia L. × Rumex tianschanicus A. LOS) Leaf Powder on Growth Performance, Antioxidant Properties, Cecal Short-Chain Fatty Acids, and Microbial Community Levels in Broilers
by Xinyao Li, Hao Ling, Zengyang He, Zihui Yang, Tao Jiang, Peng Huang and Jianguo Zeng
Antioxidants 2024, 13(11), 1291; https://doi.org/10.3390/antiox13111291 - 25 Oct 2024
Cited by 2 | Viewed by 9054
Abstract
The hybrid plant edible grass (Rumex patientia L. × Rumex tianschanicus A. LOS), a member of the Rumex genus, presents a novel food source with a protein content of approximately 30–40%. By incorporating non-traditional feed sources, such as edible grass leaf powder [...] Read more.
The hybrid plant edible grass (Rumex patientia L. × Rumex tianschanicus A. LOS), a member of the Rumex genus, presents a novel food source with a protein content of approximately 30–40%. By incorporating non-traditional feed sources, such as edible grass leaf powder (EGLP), into broiler production, costs could be reduced. The experimental subjects of this study were Arbor Acres (AA) broilers. A total of 300 newly hatched broilers were randomly divided into to five groups, with each group consisting of six cages, housing 10 birds per cage. The control group was fed a basal diet composed of maize and soybean meal. In the experimental groups, varying percentages (3%, 6%, 9%, and 12%) of EGLP were substituted for the corn–soybean meal in the basal diet. In the diet, for days 1–21, the corn content was reduced from 1.90% to 8.20%, and the soybean meal content was lowered from 1.50% to 6.00%. Similarly, in the diet, for days 22–42, the corn content was decreased from 1.17% to 7.00%, while the soybean meal content was reduced by 1.50% to 6.00%. The experiment lasted 42 days and was divided into two phases: the brooding phase (days 1 to 21) and the finishing phase (days 22 to 42). The results show that substituting 3% and 6% EGLP for corn and soybean meal significantly increased the average daily gain (ADG) during the brooding period compared to the control group (p < 0.01). Additionally, the group with a 3% substitution rate exhibited a significant increase in the average daily feed intake (ADFI) during the brooding phase (p < 0.01). Throughout the 42-day experiment, substituting 3% and 6% of EGLP for maize and soybean meal did not significantly affect the overall growth performance of broilers (p > 0.05). However, a 6% supplementation notably reduced the feed conversion ratio (FCR) (p < 0.01). Both the 3% (EG3) EGLP and 6% (EG6) EGLP replacement meals significantly enhanced the antioxidant capacity of broiler chickens, as indicated by the increased levels of the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) (p < 0.01). Additionally, broilers supplemented with 3–12% showed a marked increase in cecal short-chain fatty acids (SCFAs) compared to the control group (p < 0.01). The 3% EGLP replacement diet also significantly boosted the prevalence of Lactobacillus in the cecum (p < 0.01). Furthermore, after EGLP supplementation, there was a higher abundance of SCFA-metabolizing bacteria, particularly Alistipes and Christensenellaceae_R-7, compared to pre-treatment (p < 0.05). The prevalence of Clostridium was significantly greater in the groups receiving 9% and 12% EGLP (p < 0.05), while Butyrivibrio levels were notably higher after supplementation with 12% EGLP (p < 0.05). Full article
(This article belongs to the Special Issue Oxidative Stress in Poultry Reproduction and Nutrition)
Show Figures

Figure 1

Back to TopTop