Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = cattle hides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8859 KiB  
Article
Nesting Process Automation in the Footwear Industry: A Hybrid Approach to Minimize Material Waste
by Eliseo Aguilar-Tortosa, Eduard-Andrei Duta-Costache, Elías Vera-Brazal, José-Luis Sánchez-Romero, José Francisco Gómez-Hernández, Antonio Jimeno-Morenilla and Antonio Maciá-Lillo
Appl. Sci. 2025, 15(1), 320; https://doi.org/10.3390/app15010320 - 31 Dec 2024
Cited by 1 | Viewed by 1261
Abstract
In any industry, maximizing the use of raw materials is essential to reduce waste and costs, which also positively impacts the environment. In footwear production, components are typically derived from cutting processes, requiring optimized systems to maximize the use of different materials, minimize [...] Read more.
In any industry, maximizing the use of raw materials is essential to reduce waste and costs, which also positively impacts the environment. In footwear production, components are typically derived from cutting processes, requiring optimized systems to maximize the use of different materials, minimize waste, and accelerate production. In this context, nesting is a technique that arranges shapes within a confined space to maximize area utilization and reduce unused space. As this problem is classified as NP-Hard, only algorithmic approximations can be employed. This paper focuses on optimizing the cutting of leather parts for shoe manufacturing. Footwear parts are cut from cattle hides, which are not only irregular in shape but also vary in resistance and quality across different areas of the same piece of leather. This study proposes automated nesting methods that aim to compete with current manual approaches, which are conducted exclusively by experts with deep knowledge of the characteristics of both the pieces and the leather, making the manual process time-intensive. This research reviews current methods and introduces hybrid ones, achieving up to 38.4× acceleration and up to 10.18% increase in nested pieces over manual methods. Full article
(This article belongs to the Special Issue Digital Technologies Enabling Modern Industries)
Show Figures

Figure 1

13 pages, 2536 KiB  
Article
Relationship between Desiccation Tolerance and Biofilm Formation in Shiga Toxin-Producing Escherichia coli
by Muhammad Qasim Javed, Igor Kovalchuk, Dmytro Yevtushenko, Xianqin Yang and Kim Stanford
Microorganisms 2024, 12(2), 243; https://doi.org/10.3390/microorganisms12020243 - 24 Jan 2024
Cited by 2 | Viewed by 2515
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major concern in the food industry and requires effective control measures to prevent foodborne illnesses. Previous studies have demonstrated increased difficulty in the control of biofilm-forming STEC. Desiccation, achieved through osmotic stress and water removal, has [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) is a major concern in the food industry and requires effective control measures to prevent foodborne illnesses. Previous studies have demonstrated increased difficulty in the control of biofilm-forming STEC. Desiccation, achieved through osmotic stress and water removal, has emerged as a potential antimicrobial hurdle. This study focused on 254 genetically diverse E. coli strains collected from cattle, carcass hides, hide-off carcasses, and processing equipment. Of these, 141 (55.51%) were STEC and 113 (44.48%) were generic E. coli. The biofilm-forming capabilities of these isolates were assessed, and their desiccation tolerance was investigated to understand the relationships between growth temperature, relative humidity (RH), and bacterial survival. Only 28% of the STEC isolates had the ability to form biofilms, compared to 60% of the generic E. coli. Stainless steel surfaces were exposed to different combinations of temperature (0 °C or 35 °C) and relative humidity (75% or 100%), and the bacterial attachment and survival rates were measured over 72 h and compared to controls. The results revealed that all the strains exposed to 75% relative humidity (RH) at any temperature had reduced growth (p < 0.001). In contrast, 35 °C and 100% RH supported bacterial proliferation, except for isolates forming the strongest biofilms. The ability of E. coli to form a biofilm did not impact growth reduction at 75% RH. Therefore, desiccation treatment at 75% RH at temperatures of 0 °C or 35 °C holds promise as a novel antimicrobial hurdle for the removal of biofilm-forming E. coli from challenging-to-clean surfaces and equipment within food processing facilities. Full article
(This article belongs to the Special Issue Bacterial Biofilm Microenvironments: Their Interactions and Functions)
Show Figures

Graphical abstract

16 pages, 1273 KiB  
Article
Validation of a Bacteriophage Hide Application to Reduce STEC in the Lairage Area of Commercial Beef Cattle Operations
by Makenzie G. Flach, Onay B. Dogan, Mark F. Miller, Marcos X. Sanchez-Plata and Mindy M. Brashears
Foods 2023, 12(23), 4349; https://doi.org/10.3390/foods12234349 - 1 Dec 2023
Cited by 3 | Viewed by 1438
Abstract
Finalyse, a T4 bacteriophage, is a pre-harvest intervention that utilizes a combination of bacteriophages to reduce incoming Escherichia coli O157:H7 prevalence by destroying the bacteria on the hides of harvest-ready cattle entering commercial abattoirs. The objective of this study was to evaluate the [...] Read more.
Finalyse, a T4 bacteriophage, is a pre-harvest intervention that utilizes a combination of bacteriophages to reduce incoming Escherichia coli O157:H7 prevalence by destroying the bacteria on the hides of harvest-ready cattle entering commercial abattoirs. The objective of this study was to evaluate the efficacy of Finalyse, as a pre-harvest intervention, on the reduction in pathogens, specifically E. coli O157:H7, on the cattle hides and lairage environment to overall reduce incoming pathogen loads. Over 5 sampling events, a total of 300 composite hide samples were taken using 25 mL pre-hydrated Buffered Peptone Water (BPW) swabs, collected before and after the hide wash intervention, throughout the beginning, middle, and end of the production day (n = 10 swabs/sampling point/timepoint). A total of 171 boot swab samples were also simultaneously taken at the end of the production day by walking from the front to the back of the pen in a pre-determined ‘Z’ pattern to monitor the pen floor environment from 3 different locations in the lairage area. The prevalence of pathogens was analyzed using the BAX® System Real-Time PCR Assay. There were no significant reductions observed for Salmonella and/or any Shiga toxin-producing E. coli (STEC) on the hides after the bacteriophage application (p > 0.05). Escherichia coli O157:H7 and O111 hide prevalence was very low throughout the study; therefore, no further analysis was conducted. However, boot swab monitoring showed a significant reduction in E. coli O157:H7, O26, and O45 in the pen floor environment (p < 0.05). While using Finalyse as a pre-harvest intervention in the lairage areas of commercial beef processing facilities, this bacteriophage failed to reduce E. coli O157:H7 on the hides of beef cattle, as prevalence was low; however, some STECs were reduced in the lairage environment, where the bacteriophage was applied. Overall, an absolute conclusion was not formed on the effectiveness of Finalyse and its ability to reduce E. coli O157:H7 on the hides of beef cattle, as prevalence on the hides was low. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

24 pages, 4241 KiB  
Article
An Experimental Field Trial Investigating the Use of Bacteriophage and Manure Slurry Applications in Beef Cattle Feedlot Pens for Salmonella Mitigation
by Colette A. Nickodem, Ashley N. Arnold, Matthew R. Beck, K. Jack Bush, Kerri B. Gehring, Jason J. Gill, Tram Le, Jarret A. Proctor, John T. Richeson, H. Morgan Scott, Jason K. Smith, T. Matthew Taylor, Javier Vinasco and Keri N. Norman
Animals 2023, 13(20), 3170; https://doi.org/10.3390/ani13203170 - 11 Oct 2023
Cited by 2 | Viewed by 2029
Abstract
Post-harvest Salmonella mitigation techniques are insufficient at addressing Salmonella harbored in cattle lymph nodes, necessitating the exploration of pre-harvest alternatives that reduce Salmonella prior to dissemination to the lymph nodes. A 2 × 2, unbalanced experiment was conducted to determine the effectiveness of [...] Read more.
Post-harvest Salmonella mitigation techniques are insufficient at addressing Salmonella harbored in cattle lymph nodes, necessitating the exploration of pre-harvest alternatives that reduce Salmonella prior to dissemination to the lymph nodes. A 2 × 2, unbalanced experiment was conducted to determine the effectiveness of pre-harvest treatments applied to the pen surface for Salmonella mitigation in cattle. Treatments included manure slurry intended to mimic pen run-off water (n = 4 pens), a bacteriophage cocktail (n = 4), a combination of both treatments (n = 5), and a control group (n = 5) that received no treatment. Environment samples from 18 feedlot pens and fecal grabs, hide swabs, and subiliac lymph nodes from 178 cattle were collected and selectively enriched for Salmonella, and Salmonella isolates were sequenced. The combination treatment was most effective at reducing Salmonella, and the prevalence was significantly lower compared with the control group for rump swabs on Days 14 and 21. The treatment impact on Salmonella in the lymph nodes could not be determined due to low prevalence. The reduction on cattle hides suggests that bacteriophage or water treatments applied to the feedlot pen surface may reduce Salmonella populations in cattle during the pre-harvest period, resulting in reduced contamination during slaughter and processing. Full article
(This article belongs to the Special Issue Bacteriophages and Foodborne Pathogens in Animal Production)
Show Figures

Figure 1

15 pages, 7193 KiB  
Article
The Efficient Extraction Method of Collagen from Deteriorated Leather Artifacts
by Li Li and Meng Zhang
Polymers 2023, 15(16), 3459; https://doi.org/10.3390/polym15163459 - 18 Aug 2023
Cited by 7 | Viewed by 2893
Abstract
Collagen is the most crucial component of leather artifacts and analyzing collagen can provide vital information for studying and conserving such artifacts. However, collagen in leather artifacts often faces challenges such as degradation, denaturation, and contamination, which make it difficult to achieve an [...] Read more.
Collagen is the most crucial component of leather artifacts and analyzing collagen can provide vital information for studying and conserving such artifacts. However, collagen in leather artifacts often faces challenges such as degradation, denaturation, and contamination, which make it difficult to achieve an ideal protein extract using traditional extraction methods. This study aimed to find an efficient collagen extraction strategy for aging leather by comparing and improving commonly used methods. The results of comparing different extraction methods indicated that a NaOH solution was highly effective in extracting collagen from aged leather. To determine the optimal conditions for collagen extraction from the NaOH solution, we conducted orthogonal experiments. The results revealed that a NaOH concentration of 0.05 mol/L, a dissolution temperature of 80 °C, and a dissolution time of 12 h were the most favorable conditions. To validate the effectiveness of this method, we performed SDS-PAGE and biological mass spectrometry tests on collagen extracts from leather samples with varying degrees of aging. All collagen extracts exhibited distinct bands in the gel, and the molecular weight of collagen in each sample exceeded 20 kDa. Furthermore, even with a reduced sample mass of 1 mg (micro-destructive sampling), biological mass spectrometry identified 124 peptides in the protein extract. Notably, four of these peptides were unique to cattle hide collagen and were not present in the collagen of pig, sheep, horse, deer, or human skins. These experimental findings confirm the efficacy of the NaOH solution for extracting collagen from aging leather, suggesting that it can serve as a significant method for collagen identification and analysis in leather artifacts. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

15 pages, 2505 KiB  
Review
An Extensive Examination of the Warning Signs, Symptoms, Diagnosis, Available Therapies, and Prognosis for Lumpy Skin Disease
by Bharti Datten, Anis Ahmad Chaudhary, Shalini Sharma, Lokender Singh, Krishna Dutta Rawat, Mohammad Saquib Ashraf, Lina M. Alneghery, Malak O. Aladwani, Hassan Ahmad Rudayni, Deen Dayal, Sanjay Kumar and Kundan Kumar Chaubey
Viruses 2023, 15(3), 604; https://doi.org/10.3390/v15030604 - 22 Feb 2023
Cited by 30 | Viewed by 6797
Abstract
The lumpy skin disease virus (LSDV) infects cattle and buffalo and causes lumpy skin disease (LSD). It affects the lymph nodes of the sick animals, causing them to enlarge and appear as lumps (cutaneous nodules) that are 2–5 cm in diameter on their [...] Read more.
The lumpy skin disease virus (LSDV) infects cattle and buffalo and causes lumpy skin disease (LSD). It affects the lymph nodes of the sick animals, causing them to enlarge and appear as lumps (cutaneous nodules) that are 2–5 cm in diameter on their heads, necks, limbs, udders, genitalia, and perinea. A high temperature, a sharp drop in milk supply, discharge from the eyes and nose, salivation, a loss of appetite, depression, damaged hides, and emaciation are further warning signs and symptoms. As per the Food and Agriculture Organization (FAO), the incubation period, or the time between an infection and symptoms, is approximately 28 days. Infected animals can transfer the virus by direct contact with the vectors, direct virus secretion from mouth or nose, shared feeding and watering troughs, and even artificial insemination. The World Organization for Animal Health (WOAH) and the FAO both warn that the spread of illnesses could lead to serious economic losses. This illness reduces cow’s milk production because oral ulcers make the animal weak and lead them to lose their appetite. There are many diagnostics available for LSDV. However, very few tests yield accurate findings. The best methods for preventing and controlling the lumpy skin condition include vaccination and movement restrictions. As a specific cure is not available, the only available treatment for this illness is supportive care for cattle. Recently, India has developed a homologous, live-attenuated vaccine, Lumpi-ProVacInd, which is specifically intended to protect animals against the LSD virus. This study’s primary goal is to accumulate data on symptoms, the most accurate method of diagnosis, treatments, and controls to stop infections from spreading as well as to explore future possibilities for the management of LSDV. Full article
Show Figures

Figure 1

13 pages, 993 KiB  
Article
Core Genome Sequencing Analysis of E. coli O157:H7 Unravelling Genetic Relatedness among Strains from Cattle, Beef, and Humans in Bishoftu, Ethiopia
by Fanta D. Gutema, Lieven De Zutter, Denis Piérard, Bruno Hinckel, Hideo Imamura, Geertrui Rasschaert, Reta D. Abdi, Getahun E. Agga and Florence Crombé
Microbiol. Res. 2023, 14(1), 148-160; https://doi.org/10.3390/microbiolres14010013 - 25 Jan 2023
Cited by 3 | Viewed by 3130
Abstract
E. coli O157:H7 is a known Shiga toxin-producing Escherichia coli (STEC), causing foodborne disease globally. Cattle are the main reservoir and consumption of beef and beef products contaminated with E. coli O157:H7 is an important source of STEC infections in humans. To emphasize [...] Read more.
E. coli O157:H7 is a known Shiga toxin-producing Escherichia coli (STEC), causing foodborne disease globally. Cattle are the main reservoir and consumption of beef and beef products contaminated with E. coli O157:H7 is an important source of STEC infections in humans. To emphasize the cattle-to-human transmission through the consumption of contaminated beef in Bishoftu, Ethiopia, whole-genome sequencing (WGS) was performed on E. coli O157 strains isolated from three sources (cattle, beef, and humans). Forty-four E. coli O157:H7 isolates originating from 23 cattle rectal contents, three cattle hides, five beef carcasses, seven beef cuts at retail shops, and six human stools in Bishoftu between June 2017 and May 2019 were included. This study identified six clusters of closely related E. coli O157:H7 isolates based on core genome multilocus sequence typing (cgMLST) by targeting 2513 loci. A genetic linkage was observed among the isolate genomes from the cattle rectal contents, cattle hides, beef carcasses at slaughterhouses, beef at retail shops, and human stool within a time frame of 20 months. All the strains carried practically the same repertoire of virulence genes except for the stx2 gene, which was present in all but eight of the closely related isolates. All the strains carried the mdfA gene, encoding for the MdfA multi-drug efflux pump. CgMLST analysis revealed genetically linked E. coli O157:H7 isolates circulating in the area, with a potential transmission from cattle to humans through the consumption of contaminated beef and beef products. Full article
Show Figures

Figure 1

11 pages, 294 KiB  
Article
Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile
by Edyta Kaczorek-Łukowska, Joanna Małaczewska, Patrycja Sowińska, Marta Szymańska, Ewelina Agnieszka Wójcik and Andrzej Krzysztof Siwicki
Pathogens 2022, 11(12), 1404; https://doi.org/10.3390/pathogens11121404 - 23 Nov 2022
Cited by 14 | Viewed by 3776
Abstract
Bovine mastitis is a common disease worldwide, and staphylococci are one of the most important etiological factors of this disease. Staphylococcus aureus show adaptability to new conditions, by which monitoring their virulence and antibiotic resistance mechanisms is extremely important, as it can lead [...] Read more.
Bovine mastitis is a common disease worldwide, and staphylococci are one of the most important etiological factors of this disease. Staphylococcus aureus show adaptability to new conditions, by which monitoring their virulence and antibiotic resistance mechanisms is extremely important, as it can lead to the development of new therapies and prevention programs. In this study, we analyzed Staphylococcus aureus (n = 28) obtained from dairy cattle with subclinical mastitis in Poland. The sensitivity of the isolated strains to antibiotics were confirmed by the disc diffusion method. Additionally, minimum inhibitory concentration values were determined for vancomycin, cefoxitin and oxacillin. Genotyping was performed by two methods: PCR melting profile and MLVF-PCR (multiple-locus variable-number tandem-repeat fingerprinting). Furthermore, the presence of antibiotic resistance and virulence genes were checked using PCR reactions. The analyzed strains showed the greatest resistance to penicillin (57%), oxytetracycline (25%) and tetracycline (18%). Among the analyzed staphylococci, the presence of 9 of 15 selected virulence-related genes was confirmed, of which the icaD, clfB and sea genes were confirmed in all staphylococci. Biofilm was observed in the great majority of the analyzed bacteria (at least 70%). In the case of genotyping among the analyzed staphylococci (combined analysis of results from two methods), 14 patterns were distinguished, of which type 2 was the dominant one (n = 10). This study provides new data that highlights the importance of the dominance of biofilm over antibiotic resistance among the analyzed strains. Full article
(This article belongs to the Section Bacterial Pathogens)
15 pages, 4077 KiB  
Article
Qualitative and Quantitative Analysis of Ejiao-Related Animal Gelatins through Peptide Markers Using LC-QTOF-MS/MS and Scheduled Multiple Reaction Monitoring (MRM) by LC-QQQ-MS/MS
by Wen-Jie Wu, Li-Feng Li, Hau-Yee Fung, Hui-Yuan Cheng, Hau-Yee Kong, Tin-Long Wong, Quan-Wei Zhang, Man Liu, Wan-Rong Bao, Chu-Ying Huo, Shangwei Guo, Haibin Liu, Xiangshan Zhou, Deng-Feng Gao and Quan-Bin Han
Molecules 2022, 27(14), 4643; https://doi.org/10.3390/molecules27144643 - 21 Jul 2022
Cited by 11 | Viewed by 4245
Abstract
Donkey-hide gelatin, also called Ejiao (colla corii asini), is commonly used as a food health supplement and valuable Chinese medicine. Its growing popular demand and short supply make it a target for fraud, and many other animal gelatins can be found as adulterants. [...] Read more.
Donkey-hide gelatin, also called Ejiao (colla corii asini), is commonly used as a food health supplement and valuable Chinese medicine. Its growing popular demand and short supply make it a target for fraud, and many other animal gelatins can be found as adulterants. Authentication remains a quality concern. Peptide markers were developed by searching the protein database. However, donkeys and horses share the same database, and there is no specific marker for donkeys. Here, solutions are sought following a database-independent strategy. The peptide profiles of authentic samples of different animal gelatins were compared using LC-QTOF-MS/MS. Fourteen specific markers, including four donkey-specific, one horse-specific, three cattle-specific, and six pig-specific peptides, were successfully found. As these donkey-specific peptides are not included in the current proteomics database, their sequences were determined by de novo sequencing. A quantitative LC-QQQ multiple reaction monitoring (MRM) method was further developed to achieve highly sensitive and selective analysis. The specificity and applicability of these markers were confirmed by testing multiple authentic samples and 110 batches of commercial Ejiao products, 57 of which were found to be unqualified. These results suggest that these markers are specific and accurate for authentication purposes. Full article
Show Figures

Figure 1

15 pages, 1642 KiB  
Article
Albedo and Thermal Ecology of White, Red, and Black Cows (Bos taurus) in a Cold Rangeland Environment
by John Derek Scasta
Animals 2021, 11(5), 1186; https://doi.org/10.3390/ani11051186 - 21 Apr 2021
Cited by 4 | Viewed by 3206
Abstract
Cattle in high-elevation rangelands experience cold and hot extremes. Given the increase in black hided cattle globally, thermoregulation options on rangelands, and hide color function affecting mammal thermal ecology, this study quantified winter albedo, external cattle temperatures (Tempcow), and differences (ΔT) [...] Read more.
Cattle in high-elevation rangelands experience cold and hot extremes. Given the increase in black hided cattle globally, thermoregulation options on rangelands, and hide color function affecting mammal thermal ecology, this study quantified winter albedo, external cattle temperatures (Tempcow), and differences (ΔT) between Tempcow and ambient air temperature (Tempamb), for different color cattle along a thermal gradient (≈−33 °C to +33 °C). From 2016 to 2018, I measured 638 individual Tempcow × Tempamb combinations for white (n = 183), red (n = 158), and black (n = 297) Bos taurus female cattle free roaming extensive Wyoming, USA rangelands. Pixel brightness of cow images relative to snow indicated mean (±standard error) albedo for white, red, and black cows (n = 3 of each) was 0.69 (±0.15), 0.16 (±0.04), and 0.04 (±0.01), respectively (p = 0.0027). Tempcow was explained by Tempamb (+), clear sky insolation index (+), and cow albedo (−). However, ΔT was explained by Tempamb (−), long-wave radiation (infrared; RadLW (−)), Tempcow (+), and cow albedo (+). Tempamb relative to ΔT was correlated for all hide colors (all p-values < 0.0001; all r2 values > 0.7)), yet slopes (m) were ~2× greater for red and black cows than white cows. Full article
(This article belongs to the Special Issue Impact and Management of Thermal Stressors on Cattle)
Show Figures

Figure 1

13 pages, 511 KiB  
Article
Assessment of Hygienic Practices in Beef Cattle Slaughterhouses and Retail Shops in Bishoftu, Ethiopia: Implications for Public Health
by Fanta D. Gutema, Getahun E. Agga, Reta D. Abdi, Alemnesh Jufare, Luc Duchateau, Lieven De Zutter and Sarah Gabriël
Int. J. Environ. Res. Public Health 2021, 18(5), 2729; https://doi.org/10.3390/ijerph18052729 - 8 Mar 2021
Cited by 27 | Viewed by 8022
Abstract
Understanding the potential drivers of microbial meat contamination along the entire meat supply chain is needed to identify targets for interventions to reduce the number of meatborne bacterial outbreaks. We assessed the hygienic practices in cattle slaughterhouses (28 employees) and retail shops (127 [...] Read more.
Understanding the potential drivers of microbial meat contamination along the entire meat supply chain is needed to identify targets for interventions to reduce the number of meatborne bacterial outbreaks. We assessed the hygienic practices in cattle slaughterhouses (28 employees) and retail shops (127 employees) through face-to-face interviews and direct personal observations. At the slaughterhouses, stunning, de-hiding and evisceration in vertical position, carcass washing and separate storage of offal were the identified good practices. Lack of hot water baths, absence of a chilling room, infrequent hand washing, insufficiently trained staff and irregular medical check-up were practices that lead to unhygienic handling of carcasses. At the retail shops, cleaning equipment using soap and hot water (81%), storing unsold meat in refrigerators (92%), concrete floors and white painted walls and ceilings were good practices. Adjacently displaying offal and meat (39%), lack of a cold chain, wrapping meat with plastic bags and newspapers, using a plastic or wooden cutting board (57%), infrequent washing of equipment and floors, and inadequately trained employees were practices that could result in unhygienic handling of beef. Our study identified unhygienic practices both at the slaughterhouses and retail shops that can predispose the public to meatborne infections, which could be improved through training and implementation of quality control systems. Full article
Show Figures

Figure 1

2 pages, 793 KiB  
Extended Abstract
Topical RNAi for Sustainable Animal Health
by Karishma T. Mody, Bing Zhang, Xun Li, Ritesh Jain, Peng Li, Peter James, Timothy J. Mahony, Zhiping Xu and Neena Mitter
Proceedings 2019, 36(1), 170; https://doi.org/10.3390/proceedings2019036170 - 7 Apr 2020
Viewed by 2079
Abstract
Animal health measures mainly rely on vaccination or chemical control for major pests and pathogens, causing issues of residue, toxicity and development of resistance. For example, control of Sheep flystrike and lice-infestation affecting the Australia’s sheep/wool industry (>3.5 B) have developed resistance to [...] Read more.
Animal health measures mainly rely on vaccination or chemical control for major pests and pathogens, causing issues of residue, toxicity and development of resistance. For example, control of Sheep flystrike and lice-infestation affecting the Australia’s sheep/wool industry (>3.5 B) have developed resistance to nearly all control chemicals used in the past. Topicals RNAi provides an innovative clean-green, non-toxic, environmentally sustainable biological control solution. Biodegradable clay particles as carriers can be used to deliver double stranded RNA (dsRNA), the key trigger molecule of RNA interference pathway. As an early proof of concept, we investigated the stability dsRNA loaded on two types of Clay particles: Clay 1 (releases dsRNA under acidic conditions) and Clay 2 (releases dsRNA under alkaline conditions) on cattle hide. Cattle skin was treated with Cy3 labelled dsRNA alone and Cy3 labelled dsRNA loaded on Clay1 or Clay2. The skin samples treated with the Cy3 formulations were imaged using confocal microscopy. Once imaged, the skin samples were washed and stored at room temperature for 5 days, later the samples were re-imaged to detect the fluorescent signal (Figure 1). The dsRNA loaded on clay particles was stable unlike naked Cy3-dsRNA which degraded and was not visible after washing. This increased inherent stability of the dsRNA molecules, combined with the environmental stability afforded by the Clay particles, offers promise to provide a sustainable solution for animal health. Topical RNAi can reduce reliance on trade withholding periods of meat/wool without chemical residues, enhance animal welfare and increase production of premium quality meat/wool, improve export potential, competitiveness and long-term profitability of livestock industry. Full article
(This article belongs to the Proceedings of The Third International Tropical Agriculture Conference (TROPAG 2019))
Show Figures

Figure 1

2 pages, 142 KiB  
Abstract
Detection of Stephanofilaria (Nematoda: Filariidae) in Buffalo Fly Lesions
by Muhammad Noman Naseem, Ala Tabor, Ali Raza, Constantin Constantinoiu, Jess Morgan and Peter James
Proceedings 2019, 36(1), 108; https://doi.org/10.3390/proceedings2019036108 - 20 Feb 2020
Viewed by 1485
Abstract
Haematobia irritans exigua, commonly known as buffalo fly (BF), causes economic losses of about AUD $100 million per annum to the Australian cattle industry in terms of decreased production and costs of control. Lesions associated with BF infestation range from raised, dry, alopecic, [...] Read more.
Haematobia irritans exigua, commonly known as buffalo fly (BF), causes economic losses of about AUD $100 million per annum to the Australian cattle industry in terms of decreased production and costs of control. Lesions associated with BF infestation range from raised, dry, alopecic, hyperkeratotic or scab encrusted to severe hemorrhagic areas of ulceration which represent a major animal welfare concern. BF transmits a filarial nematode, Stephanofilaria sp., which has been speculatively associated with BF lesion development. The existing literature indicates that the sensitivity of currently used diagnostic techniques to detect Stephanofilaria in skin lesions is low and that there is currently no sequence for Stephanofilaria available on GenBank. Our objective is to develop a PCR method to detect Stephanofilaria in BF lesions. Skin biopsies were collected from 10 freshly slaughtered cattle hides having obvious BF eye lesions. Samples were collected from the center and the edge of the BF lesion as well as from adjacent normal tissue. Each skin punch was cut into 5-6 slices and immersed in normal saline before incubation overnight at 22°C. Eight nematodes were recovered from the saline by microscopic examination and preserved in ethanol. Nematode DNA will be extracted using conventional extraction methods. Specific primers will be used to amplify the ITS regions of rDNA and coxI region of the mtDNA and the amplified DNA will be sequenced. Primers will be designed from these regions to detect the presence of Stephanofilaria and used in PCR studies to clarify the etiology and epidemiology of BF lesions. Full article
(This article belongs to the Proceedings of The Third International Tropical Agriculture Conference (TROPAG 2019))
21 pages, 5004 KiB  
Article
Tetracycline Resistant Campylobacter jejuni Subtypes Emanating from Beef Cattle Administered Non-Therapeutic Chlortetracycline are Longitudinally Transmitted within the Production Continuum but are Not Detected in Ground Beef
by G. Douglas Inglis, Jenny F. Gusse, Kathaleen E. House, Tara G. Shelton and Eduardo N. Taboada
Microorganisms 2020, 8(1), 23; https://doi.org/10.3390/microorganisms8010023 - 21 Dec 2019
Cited by 10 | Viewed by 3024
Abstract
The impacts of the antimicrobial growth promoter (AGP), chlortetracycline with sulfamethazine (AS700), on the development of antimicrobial resistance and longitudinal transmission of Campylobacter jejuni within the beef production continuum were empirically determined. Carriage of tetracycline resistance determinants in the enteric bacterial community increased [...] Read more.
The impacts of the antimicrobial growth promoter (AGP), chlortetracycline with sulfamethazine (AS700), on the development of antimicrobial resistance and longitudinal transmission of Campylobacter jejuni within the beef production continuum were empirically determined. Carriage of tetracycline resistance determinants in the enteric bacterial community increased at a greater rate for AS700-treatment cattle. The majority of the bacteria from animals administered AS700 carried tetW. Densities of C. jejuni shed in feces increased over the confined feeding period, and the administration of AS700 did not conspicuously reduce C. jejuni densities in feces or within the intestine. The majority of C. jejuni isolates recovered were resistant to tetracycline, but the resistance rates to other antibiotics was low (≤20.1%). The richness of C. jejuni subtypes recovered from AS700-treated animals that were either resistant or susceptible to tetracycline was reduced, indicating selection pressure due to AGP administration. Moreover, a degree of subtype-specific resistance to tetracycline was observed. tetO was the primary tetracycline resistance determinant conferring resistance in C. jejuni isolates recovered from cattle and people. Clinically-relevant C. jejuni subtypes (subtypes that represent a risk to human health) that were resistant to tetracycline were isolated from cattle feces, digesta, hides, the abattoir environment, and carcasses, but not from ground beef. Thus, study findings indicate that clinically-relevant C. jejuni subtypes associated with beef cattle, including those resistant to antibiotics, do not represent a significant foodborne risk. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Livestock)
Show Figures

Figure 1

11 pages, 1183 KiB  
Communication
Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide
by Tamra N. Tolen, Yicheng Xie, Thomas B. Hairgrove, Jason J. Gill and T. Matthew Taylor
Foods 2018, 7(7), 114; https://doi.org/10.3390/foods7070114 - 16 Jul 2018
Cited by 21 | Viewed by 5353
Abstract
Microbiological safety of beef products can be protected by application of antimicrobial interventions throughout the beef chain. This study evaluated a commercial prototype antimicrobial intervention comprised of lytic bacteriophages formulated to reduce O157 and non-O157 Shiga-toxigenic Escherichia coli (STEC) on beef cattle hide [...] Read more.
Microbiological safety of beef products can be protected by application of antimicrobial interventions throughout the beef chain. This study evaluated a commercial prototype antimicrobial intervention comprised of lytic bacteriophages formulated to reduce O157 and non-O157 Shiga-toxigenic Escherichia coli (STEC) on beef cattle hide pieces, simulating commercial pre-harvest hide decontamination. STEC reduction in vitro by individual and cocktailed phages was determined by efficiency of plating (EOP). Following STEC inoculation onto hide pieces, the phage intervention was applied and hide pieces were analyzed to quantify reductions in STEC counts. Phage intervention treatment resulted in 0.4 to 0.7 log10 CFU/cm2 (p < 0.01) E. coli O157, O121, and O103 reduction. Conversely, E. coli O111 and O45 did not show any significant reduction after application of bacteriophage intervention (p > 0.05). Multiplicity of infection (MOI) evaluation indicated E. coli O157 and O121 isolates required the fewest numbers of phages per host cell to produce host lysis. STEC-attacking phages may be applied to assist in preventing STEC transmission to beef products. Full article
(This article belongs to the Special Issue Microbiology Research in Meat and Meat Production)
Show Figures

Figure 1

Back to TopTop