Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Samples
2.2. Bacteriological Identification
2.3. Antimicrobial Susceptibility Testing—Disc Diffusion Method
2.4. Antimicrobial Susceptibility Testing—E-Test, Minimum Inhibitory Concentration (MIC)
2.5. Biofilm Formation
- Not a biofilm producer: OD ≤ ODc (all strains with OD values below 0.188),
- Weak biofilm producer: ODc < OD ≤ 2 × ODc (all strains with OD values above 0.188 and below 0.375),
- Moderate biofilm producer: 2 × ODc < OD ≤ 4 × ODc (all strains with OD values above 0.375 and below 0.752),
- Strong biofilm producer: OD > 4 × ODc (all strains with OD values above 0.752).
2.6. DNA Isolation
2.7. PCR MP (PCR Melting Profile)
2.8. MLVF-PCR
2.9. PCR Detection of Antimicrobial Resistance and Virulence Genes of Staphylococcus aureus
3. Results
3.1. Antimicrobial Susceptibility Testing—Phenotypic and Genotypic Assessments
3.2. Detection of Virulence Genes by PCR
3.3. Biofilm Formation
3.4. Genotyping
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Chen, Y.; Li, X.; Wang, X.; Li, H. Detection of Antibiotic Resistance, Virulence Gene, and Drug Resistance Gene of. Microbiol. Spectr. 2022, 10, e0047122. [Google Scholar] [CrossRef] [PubMed]
- Artursson, K.; Söderlund, R.; Liu, L.; Monecke, S.; Schelin, J. Genotyping of Staphylococcus aureus in bovine mastitis and correlation to phenotypic characteristics. Vet. Microbiol. 2016, 193, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Brahma, U.; Suresh, A.; Murthy, S.; Bhandari, V.; Sharma, P. Antibiotic Resistance and Molecular Profiling of the Clinical Isolates of. Microorganisms 2022, 10, 833. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, Z.; Yan, Z.; Wu, J.; Ali, T.; Li, J.; Lv, Y.; Han, B. Bovine mastitis Staphylococcus aureus: Antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China. Infect Genet Evol 2015, 31, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Campos, B.; Pickering, A.C.; Rocha, L.S.; Aguilar, A.P.; Fabres-Klein, M.H.; de Oliveira Mendes, T.A.; Fitzgerald, J.R.; de Oliveira Barros Ribon, A. Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: Current understanding and future perspectives. BMC Vet. Res. 2022, 18, 115. [Google Scholar] [CrossRef]
- Messina, J.A.; Thaden, J.T.; Sharma-Kuinkel, B.K.; Fowler, V.G. Impact of Bacterial and Human Genetic Variation on Staphylococcus aureus Infections. PLoS Pathog. 2016, 12, e1005330. [Google Scholar] [CrossRef] [Green Version]
- Dziva, F.; Wint, C.; Auguste, T.; Heeraman, C.; Dacon, C.; Yu, P.; Koma, L.M. First identification of methicillin-resistant Staphylococcus pseudintermedius strains among coagulase-positive staphylococci isolated from dogs with otitis externa in Trinidad, West Indies. Infect. Ecol. Epidemiol. 2015, 5, 29170. [Google Scholar] [CrossRef]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol, American Society for Microbiology. Available online: https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Protocol-pdf.pdf (accessed on 10 November 2022).
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Document VET01-S; CLSI: Pittsburgh, PA, USA, 2020. [Google Scholar]
- Ebrahimi, A.; Moatamedi, A.; Lotfalian, S.; Mirshokraei, P. Biofilm formation, hemolysin production and antimicrobial susceptibilities of Streptococcus agalactiae isolated from the mastitis milk of dairy cows in Shahrekord district, Iran. Vet. Res. Forum 2013, 4, 269–272. [Google Scholar]
- Stepanović, S.; Vuković, D.; Hola, V.; di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Sabat, A.; Krzyszton-Russjan, J.; Strzalka, W.; Filipek, R.; Kosowska, K.; Hryniewicz, W.; Travis, J.; Potempa, J. New method for typing Staphylococcus aureus strains: Multiple-locus variable-number tandem repeat analysis of polymorphism and genetic relationships of clinical isolates. J. Clin. Microbiol. 2003, 41, 1801–1804. [Google Scholar] [CrossRef] [Green Version]
- Phuc Nguyen, M.C.; Woerther, P.L.; Bouvet, M.; Andremont, A.; Leclercq, R.; Canu, A. Escherichia coli as reservoir for macrolide resistance genes. Emerg. Infect. Dis. 2009, 15, 1648–1650. [Google Scholar] [CrossRef]
- Shopsin, B.; Mathema, B.; Alcabes, P.; Said-Salim, B.; Lina, G.; Matsuka, A.; Martinez, J.; Kreiswirth, B.N. Prevalence of agr specificity groups among Staphylococcus aureus strains colonizing children and their guardians. J. Clin. Microbiol. 2003, 41, 456–459. [Google Scholar] [CrossRef] [Green Version]
- Khodabandeh, M.; Mohammadi, M.; Abdolsalehi, M.R.; Alvandimanesh, A.; Gholami, M.; Bibalan, M.H.; Pournajaf, A.; Kafshgari, R.; Rajabnia, R. Analysis of Resistance to Macrolide-Lincosamide-Streptogramin B Among. Osong Public Health Res. Perspect. 2019, 10, 25–31. [Google Scholar] [CrossRef]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef]
- Morvan, A.; Moubareck, C.; Leclercq, A.; Hervé-Bazin, M.; Bremont, S.; Lecuit, M.; Courvalin, P.; le Monnier, A. Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France. Antimicrob. Agents Chemother. 2010, 54, 2728–2731. [Google Scholar] [CrossRef] [Green Version]
- Poyart, C.; Celli, J.; Trieu-Cuot, P. Conjugative transposition of Tn916-related elements from Enterococcus faecalis to Escherichia coli and Pseudomonas fluorescens. Antimicrob. Agents Chemother. 1995, 39, 500–506. [Google Scholar] [CrossRef] [Green Version]
- Vesterholm-Nielsen, M.; Olhom Larsen, M.; Elmerdahl Olsen, J.; Moller Aarestrup, F. Occurrence of the blaZ gene in penicillin resistant Staphylococcus aureus isolated from bovine mastitis in Denmark. Acta. Vet. Scand. 1999, 40, 279–286. [Google Scholar] [CrossRef]
- Geha, D.J.; Uhl, J.R.; Gustaferro, C.A.; Persing, D.H. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J. Clin. Microbiol. 1994, 32, 1768–1772. [Google Scholar] [CrossRef] [Green Version]
- Adesiji, Y.O.; Deekshit, V.K.; Karunasagar, I. Antimicrobial-resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Sci. Nutr. 2014, 2, 436–442. [Google Scholar] [CrossRef]
- Noguchi, N.; Hase, M.; Kitta, M.; Sasatsu, M.; Deguchi, K.; Kono, M. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus. FEMS Microbiol. Lett. 1999, 172, 247–253. [Google Scholar] [CrossRef]
- Tsen, H.Y.; Chen, T.R. Use of the polymerase chain reaction for specific detection of type A, D and E enterotoxigenic Staphylococcus aureus in foods. Appl. Microbiol. Biotechnol. 1992, 37, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Ote, I.; Taminiau, B.; Duprez, J.N.; Dizier, I.; Mainil, J.G. Genotypic characterization by polymerase chain reaction of Staphylococcus aureus isolates associated with bovine mastitis. Vet. Microbiol. 2011, 153, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Stephan, R.; Annemüller, C.; Hassan, A.A.; Lämmler, C. Characterization of enterotoxigenic Staphylococcus aureus strains isolated from bovine mastitis in north-east Switzerland. Vet. Microbiol. 2001, 78, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Solati, S.M.; Tajbakhsh, E.; Khamesipour, F.; Gugnani, H.C. Prevalence of virulence genes of biofilm producing strains of Staphylococcus epidermidis isolated from clinical samples in Iran. AMB Express 2015, 5, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arciola, C.R.; Campoccia, D.; Gamberini, S.; Cervellati, M.; Donati, E.; Montanaro, L. Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials 2002, 23, 4233–4239. [Google Scholar] [CrossRef]
- Seo, Y.S.; Lee, D.Y.; Rayamahji, N.; Kang, M.L.; Yoo, H.S. Biofilm-forming associated genotypic and phenotypic characteristics of Staphylococcus spp. isolated from animals and air. Res. Vet. Sci. 2008, 85, 433–438. [Google Scholar] [CrossRef]
- Vautor, E.; Abadie, G.; Pont, A.; Thiery, R. Evaluation of the presence of the bap gene in Staphylococcus aureus isolates recovered from human and animals species. Vet. Microbiol. 2008, 127, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Kaczorek-Łukowska, E.; Małaczewska, J.; Wójcik, R.; Duk, K.; Blank, A.; Siwicki, A.K. Streptococci as the new dominant aetiological factors of mastitis in dairy cows in north-eastern Poland: Analysis of the results obtained in 2013–2019. Ir. Vet. J. 2021, 74, 2. [Google Scholar] [CrossRef]
- Kerro Dego, O.; van Dijk, J.E.; Nederbragt, H. Factors involved in the early pathogenesis of bovine Staphylococcus aureus mastitis with emphasis on bacterial adhesion and invasion. A review. Vet. Q. 2002, 24, 181–198. [Google Scholar] [CrossRef]
- Rainard, P.; Foucras, G.; Fitzgerald, J.R.; Watts, J.L.; Koop, G.; Middleton, J.R. Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transbound Emerg. Dis. 2018, 65 (Suppl. 1), 149–165. [Google Scholar] [CrossRef] [Green Version]
- Martini, C.L.; Lange, C.C.; Brito, M.A.; Ribeiro, J.B.; Mendonça, L.C.; Vaz, E.K. Characterisation of penicillin and tetracycline resistance in Staphylococcus aureus isolated from bovine milk samples in Minas Gerais, Brazil. J. Dairy Res. 2017, 84, 202–205. [Google Scholar] [CrossRef]
- Waage, S.; Bjorland, J.; Caugant, D.A.; Oppegaard, H.; Tollersrud, T.; Mørk, T.; Aarestrup, F.M. Spread of Staphylococcus aureus resistant to penicillin and tetracycline within and between dairy herds. Epidemiol. Infect. 2002, 129, 193–202. [Google Scholar] [CrossRef]
- Eidaroos, N.H.; Youssef, A.I.; El-Sebae, A.; Enany, M.E.; Farid, D.S. Genotyping of enterotoxigenic methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA) among commensal rodents in North Sinai, Egypt. J. Appl. Microbiol. 2022, 132, 2331–2341. [Google Scholar] [CrossRef]
- Tiwari, H.K.; Sen, M.R. Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect. Dis. 2006, 6, 156. [Google Scholar] [CrossRef] [Green Version]
- Doern, G.V.; Brecher, S.M. The Clinical Predictive Value (or Lack Thereof) of the Results of In Vitro Antimicrobial Susceptibility Tests. In. J. Clin. Microbiol. 2011, 49, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Barkema, H.W.; Green, M.J.; Bradley, A.J.; Zadoks, R.N. Invited review: The role of contagious disease in udder health. J. Dairy Sci. 2009, 92, 4717–4729. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Xie, S.; Lou, X.; Cheng, S.; Liu, X.; Zheng, W.; Zheng, Z.; Wang, H. Biofilm formation and prevalence of adhesion genes among Staphylococcus aureus isolates from different food sources. Microbiologyopen 2020, 9, e00946. [Google Scholar] [CrossRef] [Green Version]
- Gajewska, J.; Chajęcka-Wierzchowska, W. Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk. Pathogens 2020, 9, 654. [Google Scholar] [CrossRef]
- Kot, B.; Sytykiewicz, H.; Sprawka, I. Expression of the Biofilm-Associated Genes in Methicillin-Resistant. Int. J. Mol. Sci. 2018, 19, 3487. [Google Scholar] [CrossRef] [Green Version]
- Shivaee, A.; Rajabi, S.; Farahani, H.E.; Imani Fooladi, A.A. Effect of sub-lethal doses of nisin on Staphylococcus aureus toxin production and biofilm formation. Toxicon 2021, 197, 1–5. [Google Scholar] [CrossRef]
- Oliveira, M.; Nunes, S.F.; Carneiro, C.; Bexiga, R.; Bernardo, F.; Vilela, C.L. Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet. Microbiol. 2007, 124, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Kasela, M.; Malma, A.; Nowakowicz-Dębek, B.; Ossowski, M. Genotypic methods for epidemiological typing of Staphylococcus aureus. Postepy Hig. Med. Dosw. 2019, 73, 245–255. [Google Scholar] [CrossRef]
- Wakita, Y.; Shimizu, A.; Hájek, V.; Kawano, J.; Yamashita, K. Characterization of Staphylococcus intermedius from pigeons, dogs, foxes, mink, and horses by pulsed-field gel electrophoresis. J. Vet. Med. Sci. 2002, 64, 237–243. [Google Scholar] [CrossRef] [PubMed]
STRAIN ID/ANTIMICROBIAL | AMC | ENR | CL | TE | OT | E | CEQ | OB | N | P | PNV | MAR | SXT | EFT | CN | CFP | MA | B | RD | CPR | VAN | FOX | OX | CONFIRMED ANTIBIOTIC RESISTANCE GENES |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
287 | ND | |||||||||||||||||||||||
494 | tet(K), blaZ | |||||||||||||||||||||||
522 | tet(K), blaZ | |||||||||||||||||||||||
294 | blaZ | |||||||||||||||||||||||
292 | blaZ | |||||||||||||||||||||||
476 | tet(K), blaZ | |||||||||||||||||||||||
342 | tet(K), blaZ | |||||||||||||||||||||||
510 | tet(K), blaZ | |||||||||||||||||||||||
321 | tet(K), blaZ | |||||||||||||||||||||||
165 | blaZ | |||||||||||||||||||||||
398 | blaZ | |||||||||||||||||||||||
322 | tet(K), blaZ | |||||||||||||||||||||||
377 | tet(K), blaZ | |||||||||||||||||||||||
536 | tet(K), blaZ | |||||||||||||||||||||||
312 | tet(K), blaZ | |||||||||||||||||||||||
360 | blaZ | |||||||||||||||||||||||
399 | tet(K), blaZ | |||||||||||||||||||||||
493 | tet(K), blaZ | |||||||||||||||||||||||
535 | tet(K), blaZ | |||||||||||||||||||||||
390 | tet(K), blaZ | |||||||||||||||||||||||
509 | blaZ | |||||||||||||||||||||||
495 | tet(K), blaZ | |||||||||||||||||||||||
227 | blaZ | |||||||||||||||||||||||
397 | blaZ | |||||||||||||||||||||||
556 | tet(K), blaZ | |||||||||||||||||||||||
545 | blaZ | |||||||||||||||||||||||
544 | tet(K), blaZ | |||||||||||||||||||||||
228 | tet(K), blaZ | |||||||||||||||||||||||
R% | 0 | 0 | 0 | 18 | 25 | 0 | 0 | 0 | 0 | 57 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
I% | 0 | 50 | 4 | 0 | 46 | 7 | 14 | 0 | 0 | 0 | 75 | 4 | 0 | 4 | 0 | 7 | 0 | 0 | 11 | 0 | 0 | 0 | 0 |
Strain ID | 24 | 48 | 72 | CONFIRMED VIRULENCE GENES | MP PCR | MLVF | Combined |
---|---|---|---|---|---|---|---|
287 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 1 | 1 | |||
494 | lukM, lukD, clfA, icaD, clfB, sdrC eno | 4 | 2 | 2 | |||
522 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 1 | 1 | |||
294 | lukM, clfA, icaD, clfB, sdrC, eno | 4 | 6 | 3 | |||
292 | lukD, clfA, icaD, clfB, sdrC, eno | 4 | 1 | 1 | |||
476 | lukM, lukD, clfA, icaD, clfB, sdrC eno | 4 | 1 | 1 | |||
342 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 2 | 2 | 4 | |||
510 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 2 | 2 | |||
321 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 2 | 2 | |||
165 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 7 | 5 | |||
398 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 2 | 2 | |||
322 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 2 | 2 | |||
377 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 1 | 1 | 6 | |||
536 | lukM, lukD, clfA, icaD, clfB, sdrC, sea, seo, eno | 7 | 9 | 7 | |||
312 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 3 | 8 | |||
360 | lukM, lukD, clfA, icaD, clfB, eno | 2 | 1 | 9 | |||
399 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 2 | 2 | |||
493 | lukM, lukD, clfA, icaD, clfB, eno | 4 | 2 | 2 | |||
535 | seo, sen, LukM, lukD, clfA, icaD, clfB, eno | 7 | 9 | 7 | |||
390 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 4 | 10 | |||
509 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 2 | 2 | |||
495 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 2 | 2 | |||
227 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 5 | 5 | 11 | |||
397 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 2 | 2 | |||
556 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 9 | 2 | 12 | |||
545 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | 4 | 1 | 1 | |||
544 | clfA, icaD, clfB, sdrC, eno | 8 | 10 | 13 | |||
228 | lukM, lukD, clfA, icaD, clfB, sdrC, eno | ND | 8 | 14 | |||
no biofilm n [%] | 9 (30) | 4 (13) | 3 (10) | Number of pattern types | 9 | 10 | 14 |
Number of strains without a profile | 1 | 0 | 0 | ||||
weak biofilm | 16 (53) | 17 (57) | 13 (43) | ||||
moderate biofilm | 4 (13) | 5 (17) | 11 (37) | ||||
strong biofilm | 1 (3) | 3 (10) | 3 (10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczorek-Łukowska, E.; Małaczewska, J.; Sowińska, P.; Szymańska, M.; Wójcik, E.A.; Siwicki, A.K. Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile. Pathogens 2022, 11, 1404. https://doi.org/10.3390/pathogens11121404
Kaczorek-Łukowska E, Małaczewska J, Sowińska P, Szymańska M, Wójcik EA, Siwicki AK. Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile. Pathogens. 2022; 11(12):1404. https://doi.org/10.3390/pathogens11121404
Chicago/Turabian StyleKaczorek-Łukowska, Edyta, Joanna Małaczewska, Patrycja Sowińska, Marta Szymańska, Ewelina Agnieszka Wójcik, and Andrzej Krzysztof Siwicki. 2022. "Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile" Pathogens 11, no. 12: 1404. https://doi.org/10.3390/pathogens11121404