Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = cassiterite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 14491 KiB  
Article
Catalytically Active Oxidized PtOx Species on SnO2 Supports Synthesized via Anion Exchange Reaction for 4-Nitrophenol Reduction
by Izabela Ðurasović, Robert Peter, Goran Dražić, Fabio Faraguna, Rafael Anelić, Marijan Marciuš, Tanja Jurkin, Vlasta Mohaček Grošev, Maria Gracheva, Zoltán Klencsár, Mile Ivanda, Goran Štefanić and Marijan Gotić
Nanomaterials 2025, 15(15), 1159; https://doi.org/10.3390/nano15151159 - 28 Jul 2025
Viewed by 252
Abstract
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room [...] Read more.
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room temperature), SnB (hydrothermally treated at 180 °C), and SnC (annealed at 600 °C), are systematically investigated, all loaded with 1 mol% Pt from H2PtCl6 under identical mild conditions. The chloride ions from the SnCl4 precursors were efficiently removed via a strong-base anion exchange reaction, resulting in highly dispersed, crystalline ~5 nm cassiterite SnO2 particles. All Pt/SnO2 composites displayed mesoporous structures with type IVa isotherms and H2-type hysteresis, with SP1a (Pt on SnA) exhibiting the largest surface area (122.6 m2/g) and the smallest pores (~3.5 nm). STEM-HAADF imaging revealed well-dispersed PtOx domains (~0.85 nm), while XPS confirmed the dominant Pt4+ and Pt2+ species, with ~25% Pt0 likely resulting from photoreduction and/or interactions with Sn–OH surface groups. Raman spectroscopy revealed three new bands (260–360 cm−1) that were clearly visible in the sample with 10 mol% Pt and were due to the vibrational modes of the PtOx species and Pt-Cl bonds introduced due the addition and hydrolysis of H2PtCl6 precursor. TGA/DSC analysis revealed the highest mass loss for SP1a (~7.3%), confirming the strong hydration of the PtOx domains. Despite the predominance of oxidized PtOx species, SP1a exhibited the highest catalytic activity (kapp = 1.27 × 10−2 s−1) and retained 84.5% activity for the reduction of 4-NP to 4-AP after 10 cycles. This chloride-free low-temperature synthesis route offers a promising and generalizable strategy for the preparation of noble metal-based nanocatalysts on oxide supports with high catalytic activity and reusability. Full article
Show Figures

Figure 1

15 pages, 3017 KiB  
Article
Strategies for the Recovery of Tungsten from Wolframite, Scheelite, or Wolframite–Scheelite Mixed Concentrates of Spanish Origin
by Francisco Jose Alguacil, Manuel Alonso, Luis Javier Lozano and Jose Ignacio Robla
Metals 2025, 15(8), 819; https://doi.org/10.3390/met15080819 - 22 Jul 2025
Viewed by 246
Abstract
Among the strategic materials considered by the EU, tungsten is included; thus, investigations about the recovery of this metal both from natural and recyclable sources are of interest. In this work, we presented an investigation about the recovery of tungsten based on the [...] Read more.
Among the strategic materials considered by the EU, tungsten is included; thus, investigations about the recovery of this metal both from natural and recyclable sources are of interest. In this work, we presented an investigation about the recovery of tungsten based on the treatment of three tungsten-bearing concentrates: scheelite (29% W), wolframite (50% W), and mixed scheelite–wolframite (29% W). All of these come from a cassiterite ore of Spanish origin. The characteristics of each concentrate pave the procedure to be followed in each case. In the case of the wolframite concentrate, the best results were derived from the leaching of the ore with NaOH solutions, whereas the treatment of the scheelite concentrate benefits from an acidic (HCl) leaching. The attack of the mixed concentrate is only possible by a previous roasting step (sodium carbonate and 700–800 °C) followed by a leaching step with water. In the acidic leaching, tungstic acid (H2WO4) was obtained, and the alkaline–water leaching produces Na2WO4 solutions from which pure synthesized scheelite is precipitated. Full article
Show Figures

Figure 1

17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 284
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

28 pages, 5977 KiB  
Review
Advances in Flotation Reagents for Cassiterite Separation: Challenges and Sustainable Solutions
by Xianchen Wang, Hong Li, Xinhong Liu, Yuan Tang and Chenquan Ni
Molecules 2025, 30(11), 2380; https://doi.org/10.3390/molecules30112380 - 29 May 2025
Viewed by 628
Abstract
Tin is a crucial strategic metal, extensively employed in aerospace, new energy materials, and other advanced fields. However, with the progressive depletion of high-grade tin ores, the utilization of low-grade tin ores for metal tin production has emerged as a significant trend. Nonetheless, [...] Read more.
Tin is a crucial strategic metal, extensively employed in aerospace, new energy materials, and other advanced fields. However, with the progressive depletion of high-grade tin ores, the utilization of low-grade tin ores for metal tin production has emerged as a significant trend. Nonetheless, low-grade tin ores present inherent challenges that hinder their direct application in tin extraction. Flotation remains an effective method to enhance ore grade, yet issues such as fine particle dispersion and ore complexity persist. In light of this, the present study provides a comprehensive review of cassiterite resource characteristics, surface chemistry, flotation reagents, and relevant case studies. By delving into the physicochemical properties of cassiterite, this paper elucidates its floatability and the distinctions among various flotation reagents. Furthermore, it identifies critical challenges in cassiterite flotation and proposes targeted, feasible strategies to support the efficient exploitation of tin resources, thereby fostering the sustainable development of the tin industry. Full article
Show Figures

Figure 1

19 pages, 8020 KiB  
Article
Homrit Akarem Post-Collisional Intrusion, Southeastern Desert, Egypt: Petrogenesis of Greisen Formed in a Cupola Structure and Enrichment in Strategic Minerals
by Mokhles K. Azer, Adel A. Surour, Hilmy E. Moussa, Ayman E. Maurice, Mabrouk Sami, Moustafa A. Abou El Maaty, Adel I. M. Akarish, Mohamed Th. S. Heikal, Ahmed A. Elnazer, Mustafa A. Elsagheer, Heba S. Mubarak, Amany M. A. Seddik, Hadeer Sobhy and Mohamed O. Osama
Geosciences 2025, 15(6), 200; https://doi.org/10.3390/geosciences15060200 - 26 May 2025
Viewed by 456
Abstract
The greisens discussed in the present study are associated with the Homrit Akarem post-collisional granites, which are exposed near the western edge of the Egyptian Nubian Shield in the Southeastern Desert of Egypt. The Homrit Akarem granites intruded into Neoproterozoic country rocks, with [...] Read more.
The greisens discussed in the present study are associated with the Homrit Akarem post-collisional granites, which are exposed near the western edge of the Egyptian Nubian Shield in the Southeastern Desert of Egypt. The Homrit Akarem granites intruded into Neoproterozoic country rocks, with sharp intrusive contacts. The marginal parts of the Homrit Akarem intrusion underwent extensive post-magmatic metasomatism, resulting in the formation of albitized granite and greisens. The Homrit Akarem greisens occur as veins and stockworks, which can be classified into four types: muscovite-rich, cassiterite-rich, topaz-rich, and beryl-rich greisens. Based on petrographic inspection, we identified ore minerals (cassiterite, beryl, topaz, muscovite, Nb-Ta oxides, tourmaline, fluorite, and corundum) in the greisens using electron probe microanalysis. The Homrit Akarem mineralized greisens were formed in a magmatic cupola above A-type magma, where fluid–rock interactions played a significant role in their formation. The accumulation of residual volatile-rich melt and exsolved fluids in the apical part of the magma chamber produced albitized granite, greisens, and quartz veins that intruded into the peripheries of the granitic intrusion and its surrounding country rocks. The variation in the mineralogy of the studied greisens indicates the diverse chemical composition of both the hydrothermal/magmatic fluids and the host granites. The simultaneous decrease in temperature and pressure is considered a crucial factor that controlled mineralization in the apical parts of the magma chamber. The occurrence of cassiterite, beryl, topaz, tourmaline, muscovite, and Nb-Ta oxides in the studied greisens suggests a potential polymetallic deposit of industrial minerals. Full article
Show Figures

Figure 1

53 pages, 7076 KiB  
Article
The Diversity of Rare-Metal Pegmatites Associated with Albite-Enriched Granite in the World-Class Madeira Sn-Nb-Ta-Cryolite Deposit, Amazonas, Brazil: A Complex Magmatic-Hydrothermal Transition
by Ingrid W. Hadlich, Artur C. Bastos Neto, Vitor P. Pereira, Harald G. Dill and Nilson F. Botelho
Minerals 2025, 15(6), 559; https://doi.org/10.3390/min15060559 - 23 May 2025
Viewed by 983
Abstract
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched [...] Read more.
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched granite, miarolitic pegmatite, and pegmatite veins. The host rock itself has served as the source for the fluids that gave rise to all these pegmatites. Their mineral assemblages mirror the rare-metal-rich paragenesis of the host rock, including pyrochlore, cassiterite, riebeckite, polylithionite, zircon, thorite, xenotime, gagarinite-(Y), genthelvite, and cryolite. These pegmatites formed at the same crustal level as the host granite and record a progressive magmatic–hydrothermal evolution driven by various physicochemical processes, including tectonic decompressing, extreme fractionation, melt–melt immiscibility, and internal fluid exsolution. Border pegmatites crystallized early from a F-poor, K-Ca-Sr-Zr-Y-HREE-rich fluid exsolved during solidification of the pluton’s border and were emplaced in contraction fractures between the pluton and country rocks. Continued crystallization toward the pluton’s core produced a highly fractionated melt enriched in Sn, Nb, Ta, Rb, HREE, U, Th, and other HFSE, forming pegmatitic albite-enriched granite within centimetric fractures. A subsequent pressure quench—likely induced by reverse faulting—triggered the separation of a supercritical melt, further enriched in rare metals, which migrated into fractures and cavities to form amphibole-rich pegmatite veins and miarolitic pegmatites. A key process in this evolution was melt–melt immiscibility, which led to the partitioning of alkalis between two phases: a K-F-rich aluminosilicate melt (low in H2O), enriched in Y, Li, Be, and Zn; and a Na-F-rich aqueous melt (low in SiO2). These immiscible melts crystallized polylithionite-rich and cryolite-rich pegmatite veins, respectively. The magmatic–hydrothermal transition occurred independently in each pegmatite body upon H2O saturation, with the hydrothermal fluid composition controlled by the local degree of melt fractionation. These highly F-rich exsolved fluids caused intense autometasomatic alteration and secondary mineralization. The exceptional F content (up to 35 wt.% F in pegmatite veins), played a central role in concentrating strategic and critical metals such as Nb, Ta, REEs (notably HREE), Li, and Be. These findings establish the Madeira system as a reference for rare-metal magmatic–hydrothermal evolution in peralkaline granites. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

24 pages, 4411 KiB  
Article
Characterization of Historical Tailings Dam Materials for Li-Sn Recovery and Potential Use in Silicate Products—A Case Study of the Bielatal Tailings Dam, Eastern Erzgebirge, Saxony, Germany
by Kofi Moro, Nils Hoth, Marco Roscher, Fabian Kaulfuss, Johanes Maria Vianney and Carsten Drebenstedt
Sustainability 2025, 17(10), 4469; https://doi.org/10.3390/su17104469 - 14 May 2025
Cited by 1 | Viewed by 615
Abstract
The characterization of historical tailings bodies is crucial for optimizing environmental management and resource recovery efforts. This study investigated the Bielatal tailings dam (Altenberg, Germany), examining its internal structure, material distribution influenced by historical flushing technology, and the spatial distribution of valuable elements. [...] Read more.
The characterization of historical tailings bodies is crucial for optimizing environmental management and resource recovery efforts. This study investigated the Bielatal tailings dam (Altenberg, Germany), examining its internal structure, material distribution influenced by historical flushing technology, and the spatial distribution of valuable elements. To evaluate the tailings resource potential, drill core sampling was conducted at multiple points at a depth of 7 m. Subsequent analyses included geochemical characterization using sodium peroxide fusion, lithium borate fusion, X-ray fluorescence (XRF), and a scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX). Particle size distribution analysis via a laser particle size analyzer and wet sieving was conducted alongside milieu parameter (pH, Eh, EC) analysis. A theoretical assessment of the tailings’ potential for geopolymer applications was conducted by comparing them with other tailings used in geopolymer research and relevant European standards. The results indicated average concentrations of lithium (Li) of 0.1 wt%, primarily hosted in Li-mica phases, and concentrations of tin (Sn) of 0.12 wt%, predominantly occurring in cassiterite. Particle size analysis revealed that the tailings material is generally fine-grained, comprising approximately 60% silt, 32% fine sand, and 8% clay. These textural characteristics influenced the spatial distribution of elements, with Li and Sn enriched in fine-grained fractions predominantly concentrated in the dam’s central and western sections, while coarser material accumulated near injection points. Historical advancements in mineral processing, particularly flotation, had significantly influenced Sn distribution, with deeper layers showing higher Sn enrichment, except for the final operational years, which also exhibited elevated Sn concentrations. Due to the limitations of X-ray fluorescence (XRF) in detecting Li, a strong correlation between rubidium (Rb) and Li was established, allowing Li quantification via Rb measurements across varying particle sizes, redox conditions, and geological settings. This demonstrated that Rb can serve as a reliable proxy for Li quantification in diverse contexts. Geochemical and mineralogical analyses revealed a composition dominated by quartz, mica, topaz, and alkali feldspars. The weakly acidic to neutral conditions (pH 5.9–7.7) and reducing redox potential (Eh, 570 to 45 mV) of the tailings material indicated a minimal risk of acid mine drainage. Preliminary investigations into using Altenberg tailings as geopolymer materials suggested that their silicon-rich composition could serve as a substitute for coal fly ash in construction; however, pre-treatment would be needed to enhance reactivity. This study underscores the dual potential of tailings for element recovery and sustainable construction, emphasizing the importance of understanding historical processing techniques for informed resource utilization. Full article
(This article belongs to the Special Issue Geological Engineering and Sustainable Environment)
Show Figures

Figure 1

22 pages, 4895 KiB  
Article
Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon
by Hanwen Xue, Keyong Wang, Qingfei Sun, Junchi Chen, Xue Wang and Haoming Li
Minerals 2025, 15(5), 518; https://doi.org/10.3390/min15050518 - 14 May 2025
Viewed by 500
Abstract
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. [...] Read more.
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. Six mineralization stages are identified: (I) anhydrous skarn, (II) hydrous skarn, (III) cassiterite-quartz-calcite, (IV) pyrite-arsenopyrite-quartz-fluorite, (V) polymetallic sulfides-quartz, and (VI) carbonate ones. Fluid inclusions (FIs) analysis reveals that Stage I garnet and Stage II–III quartz host liquid-rich (VL-type), vapor-rich two-phase (LV-type), and halite-bearing three-phase (SL-type) inclusions. Stage IV quartz and fluorite, along with Stage V quartz, are dominated by VL- and LV-type inclusions, while Stage VI calcite contains exclusively VL-type inclusions. The FIs in Stages I to VI homogenized at 392–513, 317–429, 272–418, 224–347, 201–281, and 163–213 °C, with corresponding salinities of 3.05–56.44, 2.56–47.77, 2.89–45.85, 1.39–12.42, 0.87–10.62, and 4.48–8.54 wt% NaCl equiv., respectively. The H–O–C isotopes data imply that fluids of the anhydrous skarn stage (δD = −101.2 to −91.4‰, δ18OH2O = 5.0 to 6.0‰) were of magmatic origin, the fluids of hydrous skarn and oxide stages (δD = −106.3 to −104.7‰, δ18OH2O = 4.3 to 4.9‰) were characterized by fluid mixing with minor meteoric water, while the fluids of sulfide stages (δD = −117.4 to −108.6‰, δ18OH2O = −3.4 to 0.3‰, δ13CV-PDB= −12.2 to −10.9‰, and δ18OV-SMOW = −2.2 to −0.7‰) were characterized by mixing of significant amount of meteoric water. The ore-forming fluids evolved from a high-temperature, high-salinity NaCl−H2O boiling system to a low-temperature, low-salinity NaCl−H2O mixing system. The garnet U-Pb dating constrains the formation of skarn to 132.1 ± 4.7 Ma (MSWD = 0.64), which aligns, within analytical uncertainty, with the weighted-mean U−Pb age of zircon grains in ore-related K-feldspar granite (132.6 ± 0.9 Ma; MSWD = 1.5). On the basis of these findings, the Huanggang deposit, formed in the Early Cretaceous, is a typical skarn-type system, in which ore precipitation was principally controlled by fluid boiling and mixing. Full article
Show Figures

Figure 1

36 pages, 14723 KiB  
Article
Late Neoproterozoic Rare-Metal Pegmatites with Mixed NYF-LCT Features: A Case Study from the Egyptian Nubian Shield
by Mustafa A. Elsagheer, Mokhles K. Azer, Hilmy E. Moussa, Ayman E. Maurice, Mabrouk Sami, Moustafa A. Abou El Maaty, Adel I. M. Akarish, Mohamed Th. S. Heikal, Mohamed Z. Khedr, Ahmed A. Elnazer, Heba S. Mubarak, Amany M. A. Seddik, Mohamed O. Ibrahim and Hadeer Sobhy
Minerals 2025, 15(5), 495; https://doi.org/10.3390/min15050495 - 7 May 2025
Viewed by 726
Abstract
The current work records for the first time the rare-metal pegmatites with mixed NYF-LCT located at Wadi Sikait, south Eastern Desert of the Egyptian Nubian Shield. Most of the Sikait pegmatites are associated with sheared granite and are surrounded by an alteration zone [...] Read more.
The current work records for the first time the rare-metal pegmatites with mixed NYF-LCT located at Wadi Sikait, south Eastern Desert of the Egyptian Nubian Shield. Most of the Sikait pegmatites are associated with sheared granite and are surrounded by an alteration zone cross-cutting through greisen bodies. Sikait pegmatites show zoned and complex types, where the outer wall zones are highly mineralized (Nb, Ta, Y, Th, Hf, REE, U) than the barren cores. They consist essentially of K-feldspar, quartz, micas (muscovite, lepidolite, and zinnwaldite), and less albite. They contain a wide range of accessory minerals, including garnet, columbite, fergusonite-(Y), cassiterite, allanite, monazite, bastnaesite (Y, Ce, Nd), thorite, zircon, beryl, topaz, apatite, and Fe-Ti oxides. In the present work, the discovery of Li-bearing minerals for the first time in the Wadi Sikait pegmatite is highly significant. Sikait pegmatites are highly mineralized and yield higher maximum concentrations of several metals than the associated sheared granite. They are strongly enriched in Li (900–1791 ppm), Nb (1181–1771 ppm), Ta (138–191 ppm), Y (626–998 ppm), Hf (201–303 ppm), Th (413–685 ppm), Zr (2592–4429 ppm), U (224–699 ppm), and ∑REE (830–1711 ppm). The pegmatites and associated sheared granite represent highly differentiated peraluminous rocks that are typical of post-collisional rare-metal bearing granites. They show parallel chondrite-normalized REE patterns, enriched in HREE relative to LREE [(La/Lu)n = 0.04–0.12] and strongly negative Eu anomalies [(Eu/Eu*) = 0.03–0.10]. The REE patterns show an M-type tetrad effect, usually observed in granites that are strongly differentiated and ascribed to hydrothermal fluid exchange. The pegmatite has mineralogical and geochemical characteristics of the mixed NYF-LCT family and shows non-CHARAC behavior due to a hydrothermal effect. Late-stage metasomatism processes caused redistribution, concentrated on the primary rare metals, and drove the development of greisen and quartz veins along the fracture systems. The genetic relationship between the Sikait pegmatite and the surrounding sheared granite was demonstrated by the similarities in their geochemical properties. The source magmas were mostly derived from the juvenile continental crust of the Nubian Shield through partial melting and subsequently subjected to a high fractional crystallization degree. During the late hydrothermal stage, the exsolution of F-rich fluids transported some elements and locally increased their concentrations to the economic grades. The investigated pegmatite and sheared granite should be considered as a potential resource to warrant exploration for REEs and other rare metals. Full article
Show Figures

Figure 1

28 pages, 16980 KiB  
Article
Genesis of the Gongjuelong Sn Polymetallic Deposit in the Yidun Terrane, China: Constraints from the In Situ Geochemistry of Garnet, Cassiterite, and Quartz
by Yuchang Zhou, Yiwei Peng, Chang Liu, Jianji Tian, Zhi Wang, Mingwei Song and Yan Zhang
Minerals 2025, 15(3), 314; https://doi.org/10.3390/min15030314 - 18 Mar 2025
Viewed by 484
Abstract
Numerous skarn-type Sn and hydrothermal vein-type Pb–Zn–Ag deposits occur in the northern Yidun Terrane, China. The Gongjuelong skarn Sn polymetallic deposit, adjacent to the Haizishan granite, is situated in the central region of Yidun Terrane. The genesis of the Gongjuelong Sn deposit and [...] Read more.
Numerous skarn-type Sn and hydrothermal vein-type Pb–Zn–Ag deposits occur in the northern Yidun Terrane, China. The Gongjuelong skarn Sn polymetallic deposit, adjacent to the Haizishan granite, is situated in the central region of Yidun Terrane. The genesis of the Gongjuelong Sn deposit and its relationship with the adjacent Pb–Zn–Ag deposits remains controversial. The ore-forming process can be divided into three stages: the prograde stage (I), marked by the formation of garnet and pyroxene; the retrograde stage (II), which includes the epidote–actinolite sub-stage (II-1) and the quartz-cassiterite sub-stage (II-2); and the sulfide stage (III), consisting of the chalcopyrite–pyrrhotite sub-stage (III-1) and the arsenopyrite–sphalerite sub-stage (III-2). Two types of garnet (Grt-I and Grt-II) have been identified in stage I and both belong to the grossular–andradite solid solution. Grt-II (Gro52-73And25-45Spe+Pyr+Alm2-3) contains slightly more Fe than Grt-I (Gro64-76And20-28Spe+Pyr+Alm2-10). Grt-I is enriched in heavy rare-earth elements (HREEs) and depleted in light rare-earth elements (LREEs), whereas Grt-II is enriched in LREEs and depleted in HREEs. Grt-I has higher U contents and lower Th/U ratios than those of Grt II, indicating a lower oxygen fugacity for the earlier skarn alteration. In contrast to Grt-I, Grt-II shows a more significant negative Eu anomaly along with lower LREEs/HREEs. Therefore, Grt-I and Grt-II likely formed under mildly acidic and near-neutral conditions, respectively. The W (350–3015 ppm) and Fe (235–3740 ppm) contents and Zr/Hf ratios (18.7–49.4) of cassiterite from Gongjuelong are similar to those of cassiterite from the granite-related Sn deposits, as well as the Xiasai hydrothermal vein-type Pb–Zn–Ag deposit in the northern Yidun Terrane. The Ti/Ge ratio (0.06–1.13) and P contents (13.9–173 ppm) of quartz are also similar to those from the Xiasai Pb–Zn–Ag deposit, both of which resemble those of skarn-type deposits and Sn-associated quartz. Furthermore, the Ti/Zr ratio (average 33.2) of cassiterite at Gongjuelong are much higher than that of cassiterite at Xiasai (average 3.7), indicating that the Pb–Zn–Ag veins could represent the distal product of the “parent” granite. On the basis of combined evidence from geology, geochemistry, and published geochronology data, we propose that the proximal skarn-type Sn deposits and distal hydrothermal vein-type Pb–Zn–Ag±Sn deposits in the northern Yidun Terrane constitute an integrated ore system, which is genetically related to the late Cretaceous highly fractionated granites. This proposed hypothesis highlights the potential prospecting of Sn mineralization beneath the hydrothermal Pb–Zn–Ag veins, as well as the hydrothermal Pb–Zn–Ag veins controlled by faults/fractures within the strata around the Sn deposits and highly fractionated granites. Full article
Show Figures

Figure 1

13 pages, 3079 KiB  
Article
The Bio-Desulfurization of Cassiterite–Polymetallic Sulfide Ores Enhanced by a Consortium of Moderately Thermophilic Bacteria
by Mingwei Wang, Weimin Zeng, Zhen Yan, Li Shen, Runlan Yu, Xueling Wu, Jiaokun Li, Guanzhou Qiu, Wolfgang Streit and Yuandong Liu
Separations 2025, 12(3), 61; https://doi.org/10.3390/separations12030061 - 6 Mar 2025
Viewed by 540
Abstract
Sulfides should be removed before the recovery of cassiterite from tin-rich minerals due to their similarity in flotation properties. However, the traditional methods used have low selectivity. Therefore, moderately thermophilic microorganisms were used to desulfurize tin ore in this study, and the success [...] Read more.
Sulfides should be removed before the recovery of cassiterite from tin-rich minerals due to their similarity in flotation properties. However, the traditional methods used have low selectivity. Therefore, moderately thermophilic microorganisms were used to desulfurize tin ore in this study, and the success of the microbial community was investigated. The bio-desulfurization rate reached 90% on the 10th day using the mixed culture of Leptospirillum ferriphilum (L. ferriphilum), Sulfobacillus thermosulfidooxidans (S. thermosulfidooxidans), and Acidithiobacillus caldus (A. caldus), while the pure culture needs at least 14 days. The results of X-ray Diffraction (XRD) and Inductively Coupled Plasma show that the sulfides were nearly fully solubilized. XRD results showed no pyrite in the residue, indicating that pyrite was almost fully removed while cassiterite was enriched compared with the original minerals. The high-throughput sequencing analysis showed that S. thermosulfidooxidans were the predominant species during the early bioleaching period, and L. ferriphilum were the predominant species in the following period. A. caldus is consistently detected and accounts for 30–50% of the different growth stages. This study supplied a potentially practical application for the desulfurization in tin ore. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Figure 1

31 pages, 10269 KiB  
Article
Geologic Characteristics and Age of Beryllium Mineralization in the Jiulong Area, the Southeast Edge of the Western Kunlun–Songpan–Ganzi Rare Metal Metallogenic Belt
by Junliang Hu, Jiayun Zhou, Hongqi Tan, Zhiyao Ni, Zhimin Zhu, Teng Niu and Yingdong Liu
Minerals 2025, 15(3), 253; https://doi.org/10.3390/min15030253 - 28 Feb 2025
Viewed by 556
Abstract
Rare metals such as lithium and beryllium are strategic mineral resources that play a highly significant role in the national aerospace, defense, and new energy industries. The western Kunlun–Songpan–Ganzi metallogenic belt is an important rare metal metallogenic belt in China that mainly consists [...] Read more.
Rare metals such as lithium and beryllium are strategic mineral resources that play a highly significant role in the national aerospace, defense, and new energy industries. The western Kunlun–Songpan–Ganzi metallogenic belt is an important rare metal metallogenic belt in China that mainly consists of granite–pegmatite-type lithium–beryllium deposits with uncommon beryllium-only deposits. In the Jiulong area on the southeastern edge of this metallogenic belt, several deposits, including the Daqianggou lithium–beryllium, Luomo beryllium, Baitai beryllium, and Shangjigong beryllium deposits, have been identified. Unlike the northern areas of Jiajika, Ke’eryin, Zawulong, and the western regions of Dahongliutan and Bailongshan, this area contains beryllium-only deposits. In this paper, we examine representative beryllium deposits in the Jiulong area, including detailed petrographic observations and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb isotope dating of cassiterite and columbite–tantalite, to define the metallogenic age and summarize the spatiotemporal characteristics of the beryllium mineralization in this area. The research results show that the Daqianggou lithium–beryllium deposit is dominated by spodumene and beryl mineralization, while the Luomo and Baitai beryllium deposits primarily feature beryl mineralization. The dating results indicate that the U-Pb ages of the cassiterite and columbite–tantalite in the Daqianggou lithium–beryllium deposit are 157.3 ± 1.7 Ma and 164.1 ± 0.8 Ma, respectively. For the Luomo beryllium deposit, the U-Pb ages of the cassiterite and columbite–tantalite are 156.1 ± 1.5 Ma and 163.3 ± 0.8 Ma, respectively. For the Baitai beryllium deposit, the U-Pb age of the columbite–tantalite is 188.8 ± 1.1 Ma. Therefore, the Jiulong area experienced two pegmatite-type rare metal metallogenic events: a beryllium–niobium–tantalum–molybdenum event at 197~189 Ma and a lithium–beryllium–niobium–tantalum–rubidium event at 164~156 Ma. Based on the reported metallogenic ages, we suggest that the western Kunlun–Songpan–Ganzi rare metal metallogenic belt experienced three rare metal metallogenic events at 210~200 Ma, 200~180 Ma, and 170~150 Ma. Regarding exploration directions, early Yanshanian beryllium mineralization predominates in the Jiulong area along the southeastern edge of the belt, and deep exploration of the early Yanshanian rare metal mineralization within this belt should be strengthened to facilitate new breakthroughs. Full article
Show Figures

Figure 1

24 pages, 12593 KiB  
Article
Non-Invasive Raman and XRF Study of Mīnā’ī Decoration, the First Sophisticated Painted Enamels
by Philippe Colomban, Gulsu Simsek Franci, Anh-Tu Ngo and Xavier Gallet
Materials 2025, 18(3), 575; https://doi.org/10.3390/ma18030575 - 27 Jan 2025
Cited by 1 | Viewed by 965
Abstract
Mīnā’ī wares, crafted during the 12th–13th centuries, represent some of the earliest examples of sophisticated painted enamel decoration by potters. Due to the thinness of these enamel layers, their detailed characterization remains challenging, even with the use of advanced techniques, such as Proton-Induced [...] Read more.
Mīnā’ī wares, crafted during the 12th–13th centuries, represent some of the earliest examples of sophisticated painted enamel decoration by potters. Due to the thinness of these enamel layers, their detailed characterization remains challenging, even with the use of advanced techniques, such as Proton-Induced X-ray Emission (PIXE) analysis and Rutherford Backscattering Spectrometry (RBS). This study provides the first combined non-invasive analysis, using X-ray fluorescence (XRF) and Raman spectroscopy, of five shards attributed to mīnā’ī wares. For comparison, two İznik shards from the 17th century, which feature similarly styled but thicker enamel decorations, were also analyzed. Interestingly, the mīnā’ī paste was found to contain lead and tin, suggesting the use of a lead-rich frit in its composition. This finding was confirmed through micro-destructive analysis, using Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM–EDS). Elements, such as rubidium (Rb), strontium (Sr), yttrium (Y), and zirconium (Zr), produced significant XRF signals and effectively distinguished mīnā’ī wares from İznik wares. A uniform tin-rich glaze, measuring 300–500 µm in thickness, was used as a base layer for the much thinner painted mīnā’ī enamels. The colored areas (blue, turquoise, red, green, black, white, eggplant) revealed the presence of various coloring agents and phases, such as spinels, chromite, and ions like Cu2+ and Co2+, as well as opacifiers like cassiterite and lead–calcium/potassium arsenates. Two distinct cobalt sources were identified: one associated with arsenic and the other with manganese and nickel. These cobalt sources are comparable to those used in İznik pottery. For the first time, boron was detected in the blue enamel of mīnā’ī wares. Full article
Show Figures

Figure 1

30 pages, 6425 KiB  
Article
Global Sn Isotope Compositions of Cassiterite Identify the Magmatic–Hydrothermal Evolution of Tin Ore Systems
by Ryan Mathur, Wayne Powell, Junming Yao, Frederico Guimaraes, Yanbo Cheng, Linda Godfrey, Fernando Tornos, David Killick, Jay Stephens, Jingwen Mao, Mingguang Sun and Bernd Lehmann
Geosciences 2025, 15(1), 28; https://doi.org/10.3390/geosciences15010028 - 15 Jan 2025
Cited by 1 | Viewed by 1327
Abstract
Published Sn isotope data along with 150 new analyses of cassiterite and four granite analyses constrain two major tin isotope fractionation steps associated with (1) separation of tin from the magma/orthomagmatic transitional environment and (2) hydrothermal activity. A distinct Sn isotope difference across [...] Read more.
Published Sn isotope data along with 150 new analyses of cassiterite and four granite analyses constrain two major tin isotope fractionation steps associated with (1) separation of tin from the magma/orthomagmatic transitional environment and (2) hydrothermal activity. A distinct Sn isotope difference across deposit type, geological host rocks, and time of ore deposit formation demonstrates that the difference in the mean δ124Sn value represents the operation of a unified process. The lower Sn isotope values present in both residual igneous rocks and pegmatite suggest that heavier Sn isotopes were extracted from the system during orthomagmatic fluid separation, likely by F ligands with Sn. Rayleigh distillation models this first F ligand-induced fractionation. The subsequent development of the hydrothermal system is characterized by heavier Sn isotope composition proximal to the intrusion, which persists in spite of Sn isotope fractionating towards isotopically lighter Sn during hydrothermal evolution. Full article
Show Figures

Figure 1

21 pages, 8676 KiB  
Article
Glazed Pottery Throughout the Middle and Modern Ages in Northern Spain
by Ainhoa Alonso-Olazabal, Juan Antonio Quirós Castillo, Maria Cruz Zuluaga and Luis Ángel Ortega
Heritage 2025, 8(1), 24; https://doi.org/10.3390/heritage8010024 - 10 Jan 2025
Viewed by 947
Abstract
A total of forty samples of medieval and modern glazed pottery from northern Spain were studied. Chemical and microstructural analyses of the glazes were performed by scanning electron microscopy coupled with electron dispersive spectroscopy (SEM-EDX), while the chemical composition of the pottery bodies [...] Read more.
A total of forty samples of medieval and modern glazed pottery from northern Spain were studied. Chemical and microstructural analyses of the glazes were performed by scanning electron microscopy coupled with electron dispersive spectroscopy (SEM-EDX), while the chemical composition of the pottery bodies and slips were determined by X-ray Fluorescence (XRF). The glazes studied come from the Santa Barbara Hill site (Tudela), the Treviño Castle site (Treviño), the Vega workshop (Burgos) and the Torrentejo village (Labastida) and correspond to transparent glazes and opaque white glazes. Transparent glazes were lead glazes with variable PbO content. Opaque white glazes were lead-tin and lead–alkaline–tin glazes. The glaze was mainly applied to a pre-fired body made of local clays, but the glazes of the Santa Barbara Hills pottery (Tudela) were applied to raw bodies. The microstructure of the interfaces indicates a single firing process for the glazed pottery from Tudela and a double firing process in the rest of the sites. Some correlation are identified between the use of specific clays to produce different glaze colours. White opaque glazes are applied to calcium-rich clays. Similarly, calcium-rich clays were used to produce dark green transparent glazes, while clays and slips aluminium–rich were used to produce light green and light honey glazes. Iron was also identified as the main colouring agent, although copper was also used. The white glazes were opacified by the addition of cassiterite and sometimes quartz and feldspar. The glazed pottery was mainly of local origin, but the identification of some non-local pottery at all sites suggests a pottery trade. Full article
Show Figures

Figure 1

Back to TopTop