Geologic Characteristics and Age of Beryllium Mineralization in the Jiulong Area, the Southeast Edge of the Western Kunlun–Songpan–Ganzi Rare Metal Metallogenic Belt
Abstract
:1. Introduction
2. Geologic Setting
3. Geologic Characteristics of Deposits
3.1. Daqianggou Lithium–Beryllium Deposit
3.2. Luomo Beryllium Deposit
3.3. Baitai Beryllium Deposit
4. Sampling and Analytical Methods
4.1. Sampling
4.2. Analytical Methods
4.2.1. Mineral Selection and Target Fabrication
4.2.2. U-Pb Dating of Cassiterite
4.2.3. U-Pb Dating of Columbite–Tantalite
5. Analytical Results
5.1. U-Pb Ages of Cassiterite
5.2. U-Pb Ages of Columbite–Tantalite
6. Discussion
6.1. Timing of Mineralization
6.2. Mineralization Characteristics
6.3. Regional Significance of Mineralization
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, C.; Wang, R.C.; Che, X.D.; Li, X.F.; Wang, Q.; Zhang, Z.Q.; Wu, R.Q. Metallogenic mechanism and prospect of key metal beryllium. Acta Petrol. Sin. 2022, 38, 1848–1860. [Google Scholar]
- Li, J.K.; Zou, T.R.; Wang, D.H.; Ding, X. A Review of beryllium metallogenic regularity in China. Miner. Depos. 2017, 36, 951–978. [Google Scholar]
- Zhang, S.; Ju, N.; Wu, Y.; Guo, C.L.; Ma, W.; Zhou, Y.H.; Zhang, Y.F. Distribution characteristics, main types and exploration and development status of beryllium deposit. Geol. China 2023, 50, 410–424. [Google Scholar]
- Deng, W.; Yan, S.Q.; Tan, H.Q.; Yang, Y.H.; Wang, C.L. General situation of beryllium ore resources and research status of mineral processing technology in China. Multipurp. Util. Miner. Resour. 2023, 44, 148–154. [Google Scholar]
- Chen, Z.Z.; Guo, R.Q.; Han, M.; Li, F.Q. Supply risk analysis of beryllium in China. Acta Geosci. Sin. 2023, 44, 369–377. [Google Scholar]
- Barton, M.D.; Young, S. Non-pegmatitic deposits of beryllium: Mineralogy, geology, phase equilibria and origin. Rev. Mineral. Geochem. 2002, 50, 591–691. [Google Scholar] [CrossRef]
- Wang, R.C.; Wu, F.Y.; Xie, L.; Liu, X.C.; Wang, J.M.; Yang, L.; Lai, W.; Liu, C. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Sci. China Earth Sci. 2017, 47, 871–880. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, Z.H.; Tang, Y. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang. Miner. Depos. 2019, 38, 792–841. [Google Scholar]
- Zhang, H.; Li, G.S. Metallogenic mechanism of the Koktokay pegmatite-type rare-metal deposit, Northwest China. Acta Petrol. Sin. 2024, 40, 2769–2785. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Zhu, W.B.; Zheng, B.H.; Shu, L.S.; Li, G.W.; Che, X.D.; Qin, Y.L. New energy strategyfor lithium resource and the continental dynamics research-celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University. Acta Geol. Sin. 2021, 95, 2937–2954. [Google Scholar]
- Li, J.K.; Li, P.; Yan, Q.G.; Wang, D.H.; Ren, G.L.; Ding, X. Geology and mineralization of the Songpan-Ganze-West Kunlun pegmatite-type rare-metal metallogenic belt in China: An overview and synthesis. Sci. China Earth Sci. 2023, 53, 1718–1740. [Google Scholar] [CrossRef]
- Li, J.K.; Yan, Q.G.; Li, P.; Jacobson, M.I. Formation of granitic pegmatites during orogenies: Indications from a case study of the pegmatites in China. Ore Geol. Rev. 2023, 156, 105391. [Google Scholar] [CrossRef]
- Hao, X.F.; Fu, X.F.; Liang, B.; Yuan, L.P.; Pan, M.; Tang, Y. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance. Miner. Depos. 2015, 34, 1199–1208. [Google Scholar]
- Yan, Q.G.; Li, J.K.; Li, C.; Chen, Z.Y.; Xiong, X. The geochemical characteristics and their geological significance of apatite from the Zhawulong-Caolong granitic pegmatite-hosted rare metal deposit in Sichuan and Qinghai provinces, West China. Acta Petrol. Sin. 2022, 38, 341–360. [Google Scholar]
- Li, W.F.; Li, S.Q.; Wang, B.Z.; Wang, C.T.; Liu, J.H.; Zhang, X.Y.; Cao, J.S.; Xu, C.B.; Liu, J.D.; Jin, T.T. Discovery of the (beryl-bearing) spodumene pegmatite in the Caolong area in the Sanjiang Northern segment in Qinghai: Implications for Li-Be mineralization. Geotecton. Metallog. 2023, 47, 895–913. [Google Scholar]
- Wang, H.; Li, P.; Ma, H.D.; Zhu, B.Y.; Qiu, L.; Zhang, X.Y.; Dong, R.; Zhou, K.L.; Wang, M.; Wang, Q.; et al. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication. Geotecton. Metallog. 2017, 41, 1053–1062. [Google Scholar]
- Wang, H.; Xu, Y.G.; Yan, Q.H.; Zhang, X.Y. Research progress on Bailongshan pegmatite type lithium deposit, Xiniiang. Acta Geol. Sin. 2021, 95, 3085–3098. [Google Scholar]
- Wang, H.; Gao, H.; Zhang, X.Y.; Yan, Q.H.; Xu, Y.G.; Zhou, K.L.; Dong, R.; Li, P. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare metal pegmatite deposit, West Kunlun Orogenic Belt, NW China. Lithos 2020, 360–361, 105449. [Google Scholar] [CrossRef]
- Tan, H.Q.; Zhu, Z.M.; Zhou, X.; Hu, J.L. Two periods rare metal mineralization of the pegmatite in Jiulong area, Western Sichuan. Multipurp. Util. Miner. Resour. 2022, 1, 18–28. [Google Scholar]
- Luo, L.P.; Hu, J.L.; Tan, H.Q.; Zhou, T. Mineralogical characteristics of the pegmatite type beryl in Shangjigong, Western Sichuan Province. Multipurp. Util. Miner. Resour. 2021, 1, 113–119. [Google Scholar]
- Hu, J.L.; Tan, H.Q.; Zhou, X.; Ni, Z.Y.; Zhou, Y. A study of mineralogy and mineral chemistry of ore-bearing pegmatites in the Daqianggou lithium-beryllium deposit, western Sichuan. Geol. Bull. China 2020, 39, 2013–2028. [Google Scholar]
- Hu, J.L.; Tan, H.Q.; Ni, Z.Y.; Zhou, J.Y.; Zhu, Z.M.; Zhou, X.; Luo, Z.H.; Yue, X.Y.; Niu, T.; Xu, L.; et al. Geochemical characteristics, zircon U-Pb ages and Hf isotopic compositons of Baitai granite in Jiulong area, western Sichuan, and their significance for rear metals mineralization. Geol. Rev. 2024, 70, 449–475. [Google Scholar]
- Yin, D. A Study on Geological Characteristies and Prospecting Potentialfor Lithium and Beryllium Deposit of Daqianggou in Jiulong County of Sichuan Province. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2017. [Google Scholar]
- He, C.L. Magmatic and Hydrothermal Evolution of the Daqianggou Li-Be Deposit, Western Sichuan, NW China. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2020. [Google Scholar]
- Hu, J.L. Geological-Geochemical, Geochronology and Resourcet Prospect Analysis for the Lithium and Beryllium Deposit in Daqianggou, Jiulong, Western Sichuan, China. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2020. [Google Scholar]
- Zhu, J.Y.; Zhu, W.B.; Xu, Z.Q.; Zhang, R.Q.; Che, X.D.; Zheng, B.H. The geochronology of pegmatites in the Jiajika lithium deposit, western Sichuan, China: Implications for multi-stage magmatic-hydrothermal events in the Songpan-Ganze rare metal metallogenic belt. Ore Geol. Rev. 2023, 159, 105582. [Google Scholar] [CrossRef]
- Wang, D.H.; Li, J.K.; Fu, X.F. 40Ar/39Ar dating for the Jiajika pegmatite-type rare metal depositin western Sichuan and its significance. Geochimica 2005, 34, 541–547. [Google Scholar]
- Dai, H.Z.; Wang, D.H.; Liu, L.J.; Yu, Y.; Dai, J.J. Geochronology and geochemistry of Li(Be)-bearing granitic pegmatites from the Jiajika superlarge Li-polymetallic deposit in western Sichuan, China. J. Earth Sci. 2019, 30, 707–727. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Y.; Sun, B.Y.; Tan, H.Q.; Yue, X.Y.; Zhu, Z.M. Cassiterite U-Pb dating of No. 134 pegmatite vein in the Jiajika rare metal deposit, western Sichuan and its geological significances. Rock Miner. Anal. 2021, 40, 156–164. [Google Scholar]
- Zheng, Y.L.; Xu, Z.Q.; Li, G.W.; Lian, D.Y.; Zhao, Z.B.; Ma, Z.L.; Gao, W.Q. Genesis of the Markam gneiss dome within the Songpan-Ganzi orogenic belt, eastern Tibetan Plateau. Lithos 2020, 362–363, 105475. [Google Scholar] [CrossRef]
- Zhu, H.P.; Fei, G.C.; Tan, H.; Cai, Y.H.; Chen, Z.P.; Luo, X.L.; Yuan, Y.W.; Li, T.R. Geological characteristics and metallogenic age of pegmatites in the central zone of the Dangba pegmatite-type rare-metal deposit in the Ke’eryin orefield, Sichuan province. Bull. Mineral. Petrol. Geochem. 2023, 42, 350–359. [Google Scholar]
- Fei, G.C.; Yang, Z.; Yang, J.Y.; Luo, W.; Deng, Y.; Lai, Y.T.; Tao, X.X.; Zheng, L.; Tang, W.C.; Li, J. New precise timing constraint for the Dangba granitic pegmatite type rare-metal deposit, Markam, Sichuan Province, evidence from cassiterite LA-MC-ICP-MS U-Pb dating. Acta Geol. Sin. 2020, 94, 836–849. [Google Scholar]
- Fei, G.C.; Menuge, J.F.; Li, Y.Q.; Yang, J.Y.; Deng, Y.; Chen, C.S.; Yang, Y.F.; Yang, Z.; Qin, L.Y.; Zheng, L.; et al. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions. Lithos 2020, 364–365, 105555. [Google Scholar] [CrossRef]
- Fei, G.C.; Tian, J.J.; Yang, J.Y.; Gao, J.G.; Tang, W.C.; Li, J.; Gu, S.H. New Zircon U-Pb Age of the Super-Large Lijiagou Spodumene Deposit in Songpan Garze Fold Belt, Eastern Tibet Implications for Early Jurassic Rare-Metal Polymetallic Event. Acta Geol. Sin. 2015, 92, 1274–1275. [Google Scholar] [CrossRef]
- Li, X.; Dai, H.Z.; Wang, D.H.; Liu, S.B.; Wang, G.H.; Wang, C.H.; Huang, F.; Zhu, H.Y. Geochronological and geochemical constraints on magmatic evolution and mineralization of the northeast Ke’eryin pluton and the newly discovered Jiada pegmatite-type lithium deposit, Western China. Ore Geol. Rev. 2022, 150, 105164. [Google Scholar] [CrossRef]
- Li, P.; Li, J.K.; Chou, I.M.; Wang, D.H.; Xiong, X. Mineralization epochs of granitic rare-metal pegmatite deposits in the Songpan–Ganzê orogenic belt and their implications for orogeny. Minerals 2019, 9, 280. [Google Scholar] [CrossRef]
- Gao, J.G.; Zhou, M.Z.; Zheng, B.H.; Li, G.W.; Jin, W.K.; Zhang, R.Q.; Zhu, W.B.; Xu, Z.Q. Geochemistry, monazite geochronology, and metallogenic relation of Kajiya two mica granite and rare metal pegmatite in Zhawulong deposit, western Sichuan Province, China. Acta Geol. Sin. 2024, 98, 1380–1402. [Google Scholar]
- Liu, J.H.; Wang, Q.; Li, W.F.; Wang, B.Z.; Wyman, D.A.; Ding, L.; Wang, H.; Xu, C.B.; Li, S.P.; Wang, C.T.; et al. Origins and evolution of two types of Late Triassic granitic magmas in the Caolong-Xiangkariwa area of central-eastern Songpan-Ganze terrane, Northern Tibet: Implications for pegmatite lithium mineralization. GSA Bull. 2023, 136, 2543–2557. [Google Scholar] [CrossRef]
- Li, W.F.; Liu, J.H.; Li, S.P.; Jia, C.X.; Wang, C.W.; Zhuo, J.S.; Wang, C.T.; Xu, C.B.; Tan, S.X.; Hu, J.C.; et al. Discovery and Mineralization Significance of Early Jurassic (Beryl- and Lepidolite-) Spodumene-bearing Pegmatites in the Gaduo-Zaduo Area of the Yushu Region, Northeastern Tibet. Geotecton. Metallog. 2022, 46, 924–950. [Google Scholar]
- Yan, Q.H.; Qiu, Z.W.; Wang, H.; Wang, M.; Wei, X.P.; Li, P.; Zhang, R.Q.; Li, C.Y.; Liu, J.P. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA–ICP–MS U–Pb dating of columbite-(Fe) and cassiterite. Ore Geol. Rev. 2018, 100, 561–573. [Google Scholar] [CrossRef]
- Kong, H.L.; Ren, G.L.; Li, W.Y.; Li, K.; Zhao, X.J.; Zhang, J.W.; Li, W. Geochronology, geochemistry and their geological significances of spodumene pegmatite veins in the Dahongliutandong deposit, western Kunlun, China. Northwestern Geol. 2023, 56, 61–79. [Google Scholar]
- Zhou, K.L. Pegmatite Evolution Characteristics and Constraints Ongenesis of Bailongshan Lithium Deposit, West-Kunlun, China. Ph.D. Thesis, Guangzhou Institute of Geochemistry Chinese Academy of Sciences, Guangzhou, China, 2021. [Google Scholar]
- Zhou, K.L.; Wang, H.; Yan, Q.H.; Zhang, X.Y.; Gao, H.; Wang, Z.H.; Zhu, B.Z.; Bai, H.Y.; Dong, R. Geological characteristics and metallogenic age of the rare metal pegmatite deposit in Bailongshan, West Kunlun. Geotecton. Metallog. 2024, 48, 380–393. [Google Scholar]
- Yan, Q.H.; Wang, H.; Chi, G.Z.; Wang, Q.; Hu, H.; Zhou, K.L.; Zhang, X.Y. Recognition of a 600-KM-LONG late triassic rare metal (Li-Rb-Be-Nb-Ta) pegmatite belt in the Western Kunlun orogenic belt, Western China. Econ. Geol. 2022, 117, 213–236. [Google Scholar] [CrossRef]
- Bai, H.Y.; Wang, H.; Yan, Q.H.; Wang, S.M.; Wang, Z.H.; Zhang, X.Y.; Gao, H.; Qin, Y. Columbite-tantalite and cassiterite ages of Xuefengling lithium deposit in West Kunlun, Xinjiang and their geological significancein. Acta Petrol. Sin. 2022, 38, 2139–2152. [Google Scholar]
- Tan, H.Q.; Lü, F.Q.; Li, C.; Zhou, X.; Zhou, Y.; Liu, Y.D.; Hu, J.L.; Zhu, Z.M. Genetic linking with pegmatite-type veined molybdenum deposit and Dichishan highly differentiated granite in western Sichuan. Earth Sci. 2023, 48, 3978–3994. [Google Scholar]
- Klootwijk, C. Middle-late Paleozoic Australia-Asia convergence and tectonic extrusion of Australia. Gondwana Res. 2013, 24, 5–54. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.X.; Chung, S.L.; Wyman, D.A.; Sun, Y.L.; Zhao, Z.H.; Zhu, Y.T.; Qiu, H.N. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos 2011, 126, 54–67. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Ding, L.; Pullen, A.; Xu, Q.; Liu, D.L.; Cai, F.L.; Kapp, P. Age and geochemistry of western Hoh-Xil–Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys Ocean. Lithos 2014, 190, 328–348. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Harrison geologic evolution of the Himalayan–Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Tan, H.Q.; Zhu, Z.M.; Luo, L.H.; Hu, J.L. Distribution of early Yanshanian granite and its constraints on the mineralization of rare metals in Luomo area, western Sichuan. Acta Geol. Sin. 2023, 97, 307–327. [Google Scholar]
- Wan, C.H. Mesozoic Granitoids of the Southern Part, Songpan-Garze Fold Belt: Petrology, Geochemical Composition and Petrogenesis. Master’s Thesis, China University of Geosciences, WuHan, China, 2020. [Google Scholar]
- Xu, L. Chronology, Geochemistry and Tectonic Significance of the Lanniba Granites in Jiulong, West Sichuan. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2023. [Google Scholar]
- Liu, L.; Dai, Y.; Lv, F.Q.; Jiang, H.; Yue, J.Z.; Yang, Y.D.; Fu, C.X. The geochronology and geochemistry of the Late Triassic Xinshangou A-type granite in the Songpan-Ganzi orogenic belt. Bull. Mineral. Petrol. Geochem. 2021, 40, 677–689. [Google Scholar]
- Liu, X.J.; Xu, Z.Q. Tectonic significance of Middle Jurassic granite in the Jianglang dome, southern Songpan-Ganzi orogen belt. Acta Geol. Sin. 2021, 95, 1754–1773. [Google Scholar]
- Zhu, Y.D.; Dai, Y.P.; Wang, L.L.; Li, T.Z.; Zhang, H.H.; Shen, Z.W. Petrogenesis and geological significance of the Wenjiaping granite in Jianglang dome, Southern rim of Songpan-Garze orogenic belt. Geoscience 2018, 32, 16–27. [Google Scholar]
- Dai, Y.P.; Zhu, Y.D.; Li, T.Z.; Zhang, H.H.; Tang, G.L.; Shen, Z.W. A crustal source for ca. 165 Ma post-collisional granites related to mineralization in the Jianglang dome of the Songpan-Ganzi Orogen, eastern Tiebtan Plateau. Geochemistry 2017, 77, 573–586. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Tan, H.Q.; Gong, D.X.; Zhu, Z.M.; Luo, L.P. Zircon LA-ICP-MS U-Pb dating and Hf isotopic composition of Xinhuoshan granite in the core of Jianglang dome, Western Sichuan, China. Miner. Pet. 2013, 33, 42–52. [Google Scholar]
- Zhou, J.Y.; Tan, H.Q.; Gong, D.X.; Zhu, Z.M.; Luo, L.P. Wulaxi aluminous A-type granite in Western Sichuan, China: Recording Early Yanshanian lithospheric thermo-upwelling extension of Songpan-Garze orogenic belt. Geol. Bull. China 2014, 60, 348–362. [Google Scholar]
- Li, T.Z.; Dai, Y.P.; Ma, G.T.; Zhou, Q. SHRIMP Zircon U-Pb Dating of the Wulaxi granite in the western margin of the Yangtze Block and its geological significance. Bull. Mineral. Petrol. Geochem. 2016, 35, 743–749. [Google Scholar]
- Zhou, Q.; Li, W.C.; Zhang, H.H.; Li, T.Z.; Yuan, H.Y.; Feng, X.L.; Li, C.; Liao, Z.W.; Wang, S.W. Post-magmatic hydrothermal origin of late Jurassic Liwu copper polymetallic deposits, western China: Direct chalcopyrite Re-Os dating and Pb-B isotopic constraints. Ore Geol. Rev. 2017, 89, 526–543. [Google Scholar] [CrossRef]
- Yuan, J.; Xiao, L.; Wan, C.H.; Gao, R. Petrogenesis of Fangmaping-Sanyanlong granites in southern Songpan-Garze fold belt and its tectonic implication. Acta Geol. Sin. 2011, 85, 195–206. [Google Scholar]
- Liu, D.M. Geochemical Composition, Chronology and Tectonic Significances of Sanyanlong-Galazi Granites in the Southern Songpan-Garze Orogenic Belt. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2018. [Google Scholar]
- Zhan, Q.Y.; Zhu, D.C.; Wang, Q.; Weinberg, R.F.; Xie, J.C.; Li, S.M.; Zhang, L.L.; Zhao, Z.D. Source and pressure effects in the genesis of the Late Triassic high Sr/Y granites from the Songpan-Ganzi Fold Belt, eastern Tibetan Plateau. Lithos 2020, 368–369, 105584. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, H.F.; Clemens, J.D.; Wang, Q.W.; Kan, Z.Z.; Wang, K.M.; Ni, P.Z.; Liu, X.M. Late Triassic granitoids of, the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution. Lithos 2007, 96, 436–452. [Google Scholar] [CrossRef]
- Yang, S.; Tan, H.Q.; Li, Z.Q.; Hu, J.L.; Wang, X.Y.; Liu, D.M. Metallogenic chronology and prospecting indication of Tiechanghe granite and polymetallic molybdenum mineralization types in Jiulong area, western Sichuan, China. Minerals 2024, 14, 909. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, D.; Cheng, X.Y.; Zhang, W. Ziron U-Pb chronology and geochemistry of the Yangfanggou quartz diorite in the southeast Songpan-Ganzi orogenic zone. Miner. Explor. 2019, 10, 2475–2485. [Google Scholar]
- Tan, H.Q.; Zhu, Z.M.; Zhou, J.Y.; Zhou, X.; Hu, J.L.; Liu, Y.D. Early Yanshanian skarn W-Mo deposit in the southern margin of Songpan-Ganze terrane: Evidence from diagenetic and metallogenic chronology, zircon Hf isotopes in Daniuchang area. Miner. Depos. 2022, 41, 53–58. [Google Scholar]
- Xu, Z.Q.; Wang, R.C.; Zhao, Z.B.; Fu, X.F. On the structural backgrounds of the large-scale “hard rock type” lithium ore belts in China. Acta Geol. Sin. 2018, 92, 1091–1106. [Google Scholar]
- Xu, Z.Q.; Fu, X.F.; Wang, R.C.; Li, G.W.; Zheng, Y.L.; Zhao, Z.B.; Lian, D.Y. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos 2020, 354–355, 105281. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Hou, L.W.; Wang, Z.X.; Fu, X.F.; Huang, M.H. Orogenic Processes of the Songpan-Garze Orogenic Belt of China, 1st ed.; Geological Publishing House: Beijing, China, 1992; pp. 1–235. [Google Scholar]
- Deng, S.Q.; Wang, Y. The Indosinian granitoids of the Songpan–Garze–West Kunlun orogenic belt, China: Distribution, petrochemistry, and tectonic insights. Minerals 2024, 14, 1060. [Google Scholar] [CrossRef]
- Huang, C.X. Study on the Ore-Forming Fluid and Mineralization of the Hede Tungsten-Tin Deposit in Western Sichuan. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2024. [Google Scholar]
- Tan, H.Q. The Composition, Deformation-Metamorphic Characteristics and Metallogenic Response of the Dome Geological Bodies on the South Margin of Songpan-Garze Block. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2019. [Google Scholar]
- Liu, Y.D.; Xie, H.F.; Xu, L.; Ni, Z.Y.; Lü, F.Q.; Tan, H.Q. Sulfur isotopic geochemistry of the Zigangping Pb-Zn deposit, Jiulong County, Sichuan Province. Geol. Bull. China 2020, 39, 2029–2036. [Google Scholar]
- Carr, P.A.; Zink, S.; Bennett, V.C.; Norman, M.D.; Amelin, Y.; Blevin, P.L. A new method for U-Pb geochronology of cassiterite by ID-TIMS applied to the Mole Granite polymetallic system, eastern Australia. Chem. Geol. 2020, 539, 119539. [Google Scholar] [CrossRef]
- Tapster, S.; Bright, J.W. High-precision ID-TIMS cassiterite U-Pb systematics using a low-contamination hydrothermal decomposition: Implications for LA-ICP-MS and ore deposit geochronology. Geochronology 2020, 2, 425–441. [Google Scholar] [CrossRef]
- Yang, M.; Romer, R.L.; Yang, Y.H.; Wu, S.T.; Wang, H.; Tu, J.R.; Zhou, H.Y.; Xie, L.W.; Huang, C.; Xu, L.; et al. U-Pb isotopic dating of cassiterite: Development of reference materials and in situ applications by LA-SF-ICP-MS. Chem. Geol. 2022, 593, 120754. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Gunther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhang, R.Q.; Ding, X.; Ling, M.X.; Fan, W.M.; Sun, W.D. Dating cassiterite using laser ablation ICP-MS. Ore Geol. Rev. 2016, 72, 313–322. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Lehmann, B.; Seltmann, R.; Sun, W.D.; Li, C.Y. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia). Geology 2017, 45, 1095–1098. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Lu, J.J.; Lehmann, B.; Li, C.Y.; Li, G.L.; Zhang, L.P.; Guo, J.; Sun, W.D. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China. Ore Geol. Rev. 2017, 82, 268–284. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Zhao, J.X.; He, C.T.; Qin, K.Z.; Shi, R.Z.; Liu, X.C.; Hu, F.Y.; Yu, K.L.; Sun, Z.H. Geochronology, source features and the characteristics of fractional crystallization pegmatite at the Qiongjiagang giant pegmatite type lithium deposit, Himalaya, Tibet. Acta Petrol. Sin. 2021, 37, 3325–3347. [Google Scholar]
- Melcher, F.; Graupner, T.; Gabler, H.E.; Sitnikova, M.; Henjes-Kunst, F.; Oberthir, T.; Gerdes, A.; Dewaele, S. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology. Ore Geol. Rev. 2015, 64, 667–719. [Google Scholar] [CrossRef]
- Che, X.D.; Wu, F.Y.; Wang, R.C.; Gerdes, A.; Ji, W.Q.; Zhao, Z.H.; Yang, J.H.; Zhu, Z.Y. In situ U-Pb isotopic dating of columbite- tantalite by LA-ICP-MS. Ore Geol. Rev. 2015, 65, 979–989. [Google Scholar] [CrossRef]
- London, D. The origin of primary textures in granitic pegmatites. Can. Mineral. 2009, 47, 697–724. [Google Scholar] [CrossRef]
- Geisler, T.; Pidgeon, R.T.; Bronswijk, W.; Kurtz, R. Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chem. Geol. 2002, 191, 141–154. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Che, X.D.; Wang, R.C.; Wu, F.Y.; Zhu, Z.Y.; Zhang, W.L.; Hu, H.; Xie, L.; Lu, J.J.; Zhang, D. Episodic Nb-Ta mineralisation in South China: Constraints from in situ LA-ICP-MS columbite-tantalite U-Pb dating. Ore Geol. Rev. 2019, 105, 71–85. [Google Scholar] [CrossRef]
- Wang, J.R.; Lv, Z.H.; Lv, X.B.; Lin, P.J. LA-ICP-MS U-Pb Age of columbite from the Daping granite porphyry-type rare metal deposit in Fujian Province and its geological significance. Bull. Mineral. Petrol. Geochem. 2020, 39, 637–645. [Google Scholar]
- Li, H.; Hong, T.; Yang, Z.Q.; Chen, J.Z.; Ke, Q.; Wang, X.H.; Niu, L.; Xu, X.W. Comparative studying on zircon cassiterite and coltan U-Pb dating and 40Ar/39Ar dating of muscovite rare-metal granitic pegmatites: A case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh. Acta Petrol. Sin. 2020, 36, 2869–2892. [Google Scholar]
- Wang, H.; Gao, H.; Wang, S.M.; Yan, Q.H.; Wang, Z.H.; Huang, L.; Qin, Y. Zircon and columbite-tantalite U-Pb geochronology of Li-Be rare metal pegmatite and its geological significance in Muji area, West Kunlun, China. Acta Petrol. Sin. 2022, 38, 1937–1951. [Google Scholar]
- Lv, S.J.; Dong, G.C.; Luo, Z.B.; Lv, Y.H.; Ling, J.L. Lithium mineralization characteristics and chronology of spodumene granite pegmatite in the northern Chaka Mountain, Qinghai Province. Acta Petrol. Mineral. 2023, 42, 350–364. [Google Scholar]
- Liu, X.X.; Zhang, J.; Li, X.L.; Yang, J.F.; Wang, M.; Wang, Y.X.; Zhang, X.Y. Metallogeny of the Longtangou-Huoyangou Sn deposit in North Qinling Orogeny: Geochronological and petrogeochemical evidence from Sn-bearing granite-pegmatite. Acta Petrol. Sin. 2023, 39, 1484–1500. [Google Scholar] [CrossRef]
- Gulson, B.L.; Jones, M.T. Cassiterite: Potential for direct dating of mineral deposits and a precise age for the Bushveld Complex granites. Geology 1992, 20, 355–358. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Yu, J.M.; Lu, J.J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: Implication for migmatitic-hydrothermal fluid evolution and ore genesis. Chem. Geol. 2004, 209, 193–213. [Google Scholar] [CrossRef]
- Zhang, H.; Lü, Z.H.; Tang, Y. A review of LCT pegmatite and its lithium ore genesis. Acta Geol. Sin. 2021, 95, 2955–2970. [Google Scholar]
- Matte, P.; Tapponnier, P.; Arnaud, N.; Bourjot, L.; Avouac, J.P.; Vidal, P.; Liu, O.; Pan, Y.; Wang, Y. Tectonics of western Tibet, between the Tarim and the Indus. Earth Planet. Sci. Lett. 1996, 142, 311–330. [Google Scholar] [CrossRef]
- Pan, Y.S. Geological Evolution of the Karakorum and Kunlun Mountains. Seismological Press: Beijing, China, 1996; pp. 235–263. [Google Scholar]
- Mattern, F.; Schneider, W. Suturing of the Proto- and Paleo-Tethys oceans in the Western Kunlun (Xinjiang, China). J. Asian Earth Sci. 2000, 18, 637–650. [Google Scholar] [CrossRef]
- Li, K.; Gao, Y.B.; Teng, J.X.; Jin, M.; Li, W. Metallogenic Geological characteristics, mineralization age and resource potential of the Granite Pegmatite Type rare metal deposits in Dahongliutan area, Hetian County, Xinjiang. North. Geol. 2019, 52, 206–221. [Google Scholar]
- Zhang, C.L.; Yu, H.F.; Wang, A.G.; Guo, K.Y. Dating of Triassic granites in the Western Kunlun Mountains and Its tectonic significane. Acta Geol. Sin. 2005, 79, 645–652. [Google Scholar]
- Jiang, Y.H.; Jia, R.Y.; Liu, Z.; Liao, S.Y.; Zhao, P.; Zhou, Q. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic micro-granular enclaves from the Western Kunlun orogen, northwest China: Arecord of the closure of Paleo-Tethys. Lithos 2013, 156, 13–30. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Y.H.; Jia, R.Y.; Zhao, P.; Zhou, Q. Origin of Late Triassic high-K calcalkaline granitoids and their potassic microgranular enclaves from the western Tibet Plateau. northwest China: Implications for Paleo-Tethys evolution. Gondwana Res. 2015, 27, 326–341. [Google Scholar] [CrossRef]
- Ding, K.; Ling, T.; Zhou, Y.; Feng, Y.G.; Zhang, Z.; Ding, L.; Li, K. Petrogenesis of Dahongliutan biotite monzogranite in Western Kunlun Orogen: Evidence from Zircon U-Pb age and Li-Hf isotope. North. Geol. 2020, 53, 24–34. [Google Scholar]
- Qiao, G.B.; Zhang, H.D.; Wu, Y.Z.; Jin, M.S.; Du, W.; Zhao, X.J.; Chen, D.H. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Constraints from SHRIMP Zircon U-Pb geochronology and geochemical characteristics. Acta Geol. Sin. 2015, 89, 1180–1194. [Google Scholar]
- Wei, X.P.; Wang, H.; Hu, J.; Mu, S.L.; Qiu, Z.W.; Yan, Q.H.; Li, P. Geochemistry and geochronology of the Dahongliutan two-mica granite in western Kunlun orogen: Geotectonic implications. Geochemistry 2017, 46, 66–80. [Google Scholar]
- Wei, X.P.; Wang, H.; Zang, X.H.; Dong, R.; Zhu, S.B.; Xing, C.H.; Li, P.; Yan, Q.H.; Zhou, K.L.; Yan, Q.H. Petrogenesis of Triassic high-Mg diorites in western Kunlun orogen and its tectonic implication. Geochimica 2018, 47, 363–379. [Google Scholar]
- Wang, W.; Liu, W.; Du, X.F.; Yao, Z.Q.; Gao, L.L.; Li, Y.; Chen, C.; Ma, H.D.; Chen, Z.L.; Wang, L.B. Genesis studies of Li–Rb deposits in pegmatites from Bailongshan, western China: Evidence from chronology, fluid inclusions, and H–O isotope analysis. Ore Geol. Rev. 2024, 173, 106255. [Google Scholar] [CrossRef]
- Wu, T. Early Mesozoic Magmatism and Tectonic Evolution of Yidun Arc Belt, Eastern Tibet Plateau. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2019. [Google Scholar]
- Li, J.K.; Wang, D.H.; Chen, Y.C. The Ore-forming Mechanism of the Jiajika Pegmatite-Type rare metal deposit in western Sichuan Province: Evidence from isotope dating. Acta Geol. Sin. Engl. Ed. 2013, 87, 91–101. [Google Scholar]
- Li, X.F.; Tian, S.H.; Wang, D.H.; Zhang, H.J.; Zhang, Y.J.; Fu, X.F.; Hao, X.F.; Hou, K.J.; Zhao, Y.; Qin, Y.; et al. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: Evidence from zircon U-Pb dating, Hf-O isotope and geochemistry. Miner. Depos. 2020, 39, 273–304. [Google Scholar]
- Zhao, Z.B.; Du, J.X.; Liang, F.H.; Wu, C.; Liu, X.J. Structure and metamorphism of Markam gneiss dome from the eastern Tibetan plateau and its implications for crustal thickening, metamorphism, and exhumation. Geochem. Geophys. Geosyst. 2019, 20, 24–45. [Google Scholar] [CrossRef]
- Shi, Z.L.; Zha, Z.F.; Cai, H.M. Petrogenesis of strongly peraluminous granites in Markan area, Songpan fold belt and its tectonic implication. Earth Sci. 2009, 34, 569–584. [Google Scholar]
- Yue, X.Y.; Yang, B.; Zhou, X.; Gong, D.X.; Ye, Y.K.; Tan, H.Q.; Zhou, Y.; Zhu, Z.M. Geochemical characteristics and U-Pb age of Redamen granites in Western Sichuan, China: Petrogenesis and tectonic significance. Geoscience 2019, 33, 1015–1024. [Google Scholar]
Ore Field | Location | Lithology | Dating Method | Age (Ma) | References |
---|---|---|---|---|---|
Western Kunlun rare metal pegmatite metallogenic belt | |||||
Kalawala-Mulinchang | Kalawala granite | Granite | Zircon U-Pb | 207.5 ± 1.1 | [94] |
Qiate granite | Granite | Zircon U-Pb | 206.8 ± 1.1 | [44] | |
Qiate granite | Granite | Zircon U-Pb | 205.9 ± 1.7 | [44] | |
Xiaoerbulong Be ore spot | Pegmatite | Zircon U-Pb | 204.8 ± 0.7 | [94] | |
Xiaoerbulong Be ore spot | Pegmatite | Columbite U-Pb | 204.7 ± 1.8 | [94] | |
Xiaoerbulong Be ore spot | Pegmatite | Columbite U-Pb | 204.6 ± 2.1 | [44] | |
Huoshitashi Li deposit | Pegmatite | Monazite U-Pb | 204.2 ± 0.8 | [44] | |
Huoshitashi Li deposit | Pegmatite | Columbite U-Pb | 205.7 ± 2.7 | [44] | |
Mulinchang granite | Granite | Zircon U-Pb | 208.4 ± 2.8 | [44] | |
Mulinchang Mica deposit | Pegmatite | Columbite U-Pb | 206.4 ± 2.0 | [44] | |
Dahongliutan | Dahongliutan granite | Granite | Zircon U-Pb | 214 ± 1.8 | [107] |
Dahongliutan granite | Granite | Zircon U-Pb | 220 ± 2.2~217.4 ± 2.2 | [108] | |
Dahongliutan granite | Granite | Zircon U-Pb | 209.6 ± 1.3 | [109] | |
Dahongliutan granite | Granite | Zircon U-Pb | 216.7 ± 1.8 | [109] | |
Dahongliutan Li deposit | Pegmatite | Columbite U-Pb | 211.9 ± 2.4 | [40] | |
Dahongliutan Li deposit | Pegmatite | Cassiterite U-Pb | 218 ± 12 | [40] | |
Dahongliutan Li deposit | Pegmatite | Muscovite Ar-Ar | 189.4 ± 1.1 | [36] | |
Dahongliutan Li deposit | Pegmatite | Muscovite Ar-Ar | 187.0 ± 1.1 | [36] | |
Eastern Dahongliutan Li deposit | Pegmatite | Zircon U-Pb | 205.2 ± 1.4 | [41] | |
Eastern Dahongliutan Li deposit | Pegmatite | Zircon U-Pb | 205.0 ± 2.6 | [41] | |
Bailongshan | Bailongshan granite | Granite | Zircon U-Pb | 212.3 ± 1.6 | [18] |
Bailongshan granite | Granite | Zircon U-Pb | 210.8 ± 1.7 | [44] | |
Bailongshan granite | Granite | Zircon U-Pb | 209.3 ± 1.3 | [44] | |
Bailongshan granite | Granite | Zircon U-Pb | 208.3 ± 1.5 | [44] | |
Bailongshan granite | Granite | Zircon U-Pb | 213.7 ± 2.0 | [110] | |
Bailongshan granite | Granite | Zircon U-Pb | 214.7 ± 2.0 | [42] | |
Bailongshan granite | Granite | Zircon U-Pb | 214.5 ± 2.8 | [42] | |
Bailongshan Li deposit | Pegmatite | Cassiterite U-Pb | 211 ± 4.2 | [43] | |
Bailongshan Li deposit | Pegmatite | Cassiterite U-Pb | 212.9 ± 3.6 | [43] | |
Bailongshan Li deposit | Pegmatite | Columbite U-Pb | 208.1 ± 1.5 | [18] | |
Bailongshan Li deposit | Pegmatite | Monazite U-Pb | 207.4 ± 0.6 | [44] | |
Bailongshan Li deposit | Pegmatite | Muscovite Ar-Ar | 171.36 ± 1.87 | [111] | |
Bailongshan Li deposit | Pegmatite | Biotite Ar-Ar | 172.39 ± 1.66 | [111] | |
Bailongshan Li deposit | Pegmatite | Columbite U-Pb | 212.3 ± 0.9 | [42] | |
Bailongshan Li deposit | Pegmatite | Columbite U-Pb | 213.7 ± 0.7 | [42] | |
Dahongliutan 505 Li deposit | Pegmatite | Cassiterite U-Pb | 223 ± 11 | [103] | |
Xuefenling Li deposit | Pegmatite | Columbite U-Pb | 208.4 ± 1.7 | [44] | |
Xuefenling Li deposit | Pegmatite | Columbite U-Pb | 208.2 ± 2.1 | [45] | |
Xuefenling Li deposit | Pegmatite | Cassiterite U-Pb | 208 ± 15 | [45] | |
Songpan–Ganzi rare metal pegmatite metallogenic belt | |||||
Zhawulong | Zhawulong granite | Granite | Zircon U-Pb | 211.6 ± 5.2 | [36] |
Zhawulong granite | Granite | Monazite U-Pb | 211.1 ± 0.46 | [37] | |
Zhawulong granite | Granite | Monazite U-Pb | 212.3 ± 0.39 | [37] | |
Zhawulong granite | Granite | Monazite U-Pb | 213.2 ± 0.23 | [37] | |
Zhawulong Li deposit | Pegmatite | Columbite U-Pb | 204.5 ± 1.8 | [36] | |
Zhawulong Li deposit | Pegmatite | Muscovite Ar-Ar | 179.6 ± 1 | [36] | |
Zhawulong Li deposit | Pegmatite | Muscovite Ar-Ar | 174.3 ± 0.9 | [36] | |
Zhawulong Li deposit | Pegmatite | Monazite U-Pb | 210.5 ± 0.3 | [37] | |
Zhawulong Li deposit | Pegmatite | Monazite U-Pb | 205.1 ± 1.4 | [37] | |
Caolong | Caolong granite | Granite | Zircon U-Pb | 205.0 ± 1.2 | [38] |
Caolong granite | Granite | Zircon U-Pb | 207.4 ± 1.9 | [38] | |
Caolong granite | Granite | Zircon U-Pb | 212.5 ± 1.1 | [38] | |
Caolong pegmatite | Pegmatite | Columbite U-Pb | 204.3 ± 1.8 | [38] | |
Caolong pegmatite | Pegmatite | Columbite U-Pb | 205.2 ± 7.2 | [38] | |
Caolong pegmatite | Pegmatite | Columbite U-Pb | 201.1 ± 2.3 | [38] | |
Caolong pegmatite | Pegmatite | Cassiterite U-Pb | 206.8 ± 3.4 | [38] | |
Caolong pegmatite | Pegmatite | Cassiterite U-Pb | 200.6 ± 2.2 | [38] | |
Caolong pegmatite | Pegmatite | Cassiterite U-Pb | 196.4 ± 2.2 | [38] | |
Caolong pegmatite | Pegmatite | Cassiterite U-Pb | 208.5 ± 3.1 | [38] | |
Caolong pegmatite | Pegmatite | Muscovite Ar-Ar | 169.9 ± 0.4 | [38] | |
Caolong pegmatite | Pegmatite | Muscovite Ar-Ar | 167.6 ± 0.4 | [38] | |
Caolong pegmatite | Pegmatite | Monazite U-Pb | 204.0 ± 0.7 | [39] | |
Caolong pegmatite | Pegmatite | Monazite U-Pb | 200.4 ± 0.9 | [39] | |
Gaduo-Zhaduo | Gaduo-Zhaduo granite | Granite | Zircon U-Pb | 212.2 ± 1.1 | [38] |
Gaduo-Zhaduo granite | Granite | Zircon U-Pb | 217.9 ± 1.0 | [38] | |
Gaduo-Zhaduo granite | Granite | Zircon U-Pb | 211.5 ± 1.2 | [38] | |
Gaduo-Zhaduo granite | Granite | Zircon U-Pb | 216.1 ± 1.3 | [38] | |
Gaduo-Zhaduo granite | Granite | Zircon U-Pb | 214.1 ± 1.0 | [38] | |
Gaduo-Zhaduo granite | Granite | Zircon U-Pb | 214.9 ± 1.3 | [38] | |
Gaduo-Zhaduo granite | Granite | Zircon U-Pb | 217.1 ± 0.8 | [38] | |
Gaduo-Zhaduo pegmatite | Pegmatite | Cassiterite U-Pb | 194 ± 2 | [39] | |
Gaduo-Zhaduo pegmatite | Pegmatite | Columbite U-Pb | 188 ± 1 | [39] | |
Gaduo-Zhaduo pegmatite | Pegmatite | Columbite U-Pb | 178 ± 1 | [39] | |
Gaduo-Zhaduo pegmatite | Pegmatite | Muscovite Ar-Ar | 153.6 ± 0.4 | [39] | |
Gaduo-Zhaduo pegmatite | Pegmatite | Cassiterite U-Pb | 185 ± 3 | [39] | |
Gaduo-Zhaduo pegmatite | Pegmatite | Columbite U-Pb | 188 ± 1 | [39] | |
Gaduo-Zhaduo pegmatite | Pegmatite | Muscovite Ar-Ar | 158.4 ± 1.2 | [39] | |
Keryin | Keryin granite | Granite | Zircon U-Pb | 212.5 ± 2.2 | [30] |
Keryin granite | Granite | Zircon U-Pb | 207.8 ± 1.5 | [30] | |
Keryin granite | Granite | Zircon U-Pb | 200.3 ± 2.7 | [30] | |
Keryin granite | Granite | Zircon U-Pb | 200.1 ± 1.2 | [30] | |
Keryin granite | Granite | Zircon U-Pb | 211.9 ± 2.4 | [30] | |
Keryin granite | Granite | Zircon U-Pb | 219.2 ± 2.3 | [33] | |
Keryin granite | Granite | Zircon U-Pb | 212.8 ± 1.1 | [35] | |
Keryin granite | Granite | Zircon U-Pb | 209.1 ± 0.7 | [35] | |
Keryin granite | Granite | Zircon U-Pb | 212 ± 2.8 | [115] | |
Keryin granite | Granite | Zircon U-Pb | 213 ± 2.7 | [115] | |
Keryin granite | Granite | Zircon U-Pb | 205 ± 4.5 | [115] | |
Keryin granite | Granite | Zircon U-Pb | 200 ± 2 | [116] | |
Keryin granite | Granite | Zircon U-Pb | 208 ± 2 | [116] | |
Redamen granite | Granite | Zircon U-Pb | 223.6 ± 2.2 | [30] | |
Redamen granite | Granite | Zircon U-Pb | 218.9 ± 8.6 | [30] | |
Redamen granite | Granite | Zircon U-Pb | 206.4 ± 1.4 | [117] | |
Taiyanghe granite | Granite | Zircon U-Pb | 206.7 ± 1.3 | [117] | |
Muzu granite | Granite | Zircon U-Pb | 219.5 ± 0.7 | [35] | |
Genze granite | Granite | Zircon U-Pb | 217 ± 2.8 | [33] | |
Feishuiyan granite | Granite | Zircon U-Pb | 226.6 ± 2.5 | [30] | |
Keryin pegmatite | Pegmatite | Zircon U-Pb | 210.1 ± 2.6 | [30] | |
Keryin pegmatite | Pegmatite | Zircon U-Pb | 209.4 ± 2.5 | [30] | |
Keryin pegmatite | Pegmatite | Zircon U-Pb | 198.6 ± 1.5 | [30] | |
Keryin pegmatite | Pegmatite | Zircon U-Pb | 197.7 ± 1.7 | [30] | |
Keryin pegmatite | Pegmatite | Zircon U-Pb | 196.3 ± 1.4 | [30] | |
Keryin pegmatite | Pegmatite | Zircon U-Pb | 194.0 ± 1.9 | [30] | |
Keryin pegmatite | Pegmatite | Zircon U-Pb | 190.8 ± 1.6 | [30] | |
Keryin pegmatite | Pegmatite | Zircon U-Pb | 190.1 ± 1.3 | [30] | |
Dangba Li deposit | Pegmatite | Columbite U-Pb | 213.5 ± 1.2 | [31] | |
Dangba Li deposit | Pegmatite | Cassiterite U-Pb | 208.1 ± 1.9 | [32] | |
Dangba Li deposit | Pegmatite | Cassiterite U-Pb | 199.3 ± 1.6 | [32] | |
Dangba Li deposit | Pegmatite | Muscovite Ar-Ar | 159 ± 1 | [36] | |
Lijiagou Li deposit | Pegmatite | Cassiterite U-Pb | 211.4 ± 3.3 | [33] | |
Lijiagou Li deposit | Pegmatite | Columbite U-Pb | 211.1 ± 1.0 | [33] | |
Lijiagou Li deposit | Pegmatite | Zircon U-Pb | 202 ± 4.9 | [33] | |
Lijiagou Li deposit | Pegmatite | Zircon U-Pb | 200.1 ± 4.6 | [33] | |
Lijiagou Li deposit | Pegmatite | Zircon U-Pb | 198 ± 3.4 | [33] | |
Jiada Li deposit | Pegmatite | Columbite U-Pb | 204.7 ± 1 | [35] | |
Jiajika | Majingzi granite | Granite | Zircon U-Pb | 223 ± 1 | [13] |
Majingzi granite | Granite | Zircon U-Pb | 208.4 ± 3.9 | [113] | |
Majingzi granite | Granite | Zircon U-Pb | 212.9 ± 5.9 | [114] | |
Majingzi granite | Granite | Zircon U-Pb | 206 ± 3.2 | [114] | |
Jiajika Li deposit | Pegmatite | Cassiterite U-Pb | 192.4 ± 7.3 | [26] | |
Jiajika Li deposit | Pegmatite | Cassiterite U-Pb | 199.4 ± 3.3 | [26] | |
Jiajika Li deposit | Pegmatite | Columbite U-Pb | 213.3 ± 1.9 | [26] | |
Jiajika Li deposit | Pegmatite | Cassiterite U-Pb | 198.1 ± 3.8 | [26] | |
Jiajika Li deposit | Pegmatite | Columbite U-Pb | 207.7 ± 1.5 | [26] | |
Jiajika Li deposit | Pegmatite | Cassiterite U-Pb | 195.0 ± 12.0 | [26] | |
Jiajika Li deposit | Pegmatite | Cassiterite U-Pb | 194.9 ± 4.1 | [26] | |
Jiajika Li deposit | Pegmatite | Columbite U-Pb | 208.2 ± 1.9 | [26] | |
Jiajika Li deposit | Pegmatite | Cassiterite U-Pb | 196.2 ± 2.4 | [26] | |
Jiajika Li deposit | Pegmatite | Cassiterite U-Pb | 197.8 ± 2.6 | [26] | |
Jiajika Li deposit | Pegmatite | Columbite U-Pb | 209.3 ± 1.7 | [26] | |
Jiajika Li deposit | Pegmatite | Zircon U-Pb | 216 ± 2 | [13] | |
Jiajika Li deposit | Pegmatite | Columbite U-Pb | 214 ± 2 | [13] | |
Jiajika Li deposit | Pegmatite | Muscovite Ar-Ar | 198.9 ± 0.4 | [27] | |
Jiajika Li deposit | Pegmatite | Muscovite Ar-Ar | 195.7 ± 0.1 | [27] | |
Jiajika Li deposit | Pegmatite | Zircon U-Pb | 217 ± 0.84 | [28] | |
Jiajika Li deposit | Pegmatite | Cassiterite U-Pb | 210.9 ± 4.6 | [28] | |
Jiajika Li deposit | Pegmatite | Cassiterite U-Pb | 198.4 ± 4.6 | [28] | |
Jiajika Li deposit | Pegmatite | Cassiterite U-Pb | 203.7 ± 4.6 | [29] | |
Jiajika Li deposit | Pegmatite | Zircon U-Pb | 186.7 | [114] | |
Jiajika Li deposit | Pegmatite | Muscovite Ar-Ar | 182.9 ± 1.7 | [113] | |
Jiajika Li deposit | Pegmatite | Biotite Ar-Ar | 169.9 ± 1.6 | [113] | |
Jiulong | Qiaopengzi granite | Granite | Zircon U-Pb | 168.2 ± 0.9 | [51] |
Shitizi granite | Granite | Monazite U-Pb | 154.6 ± 0.6 | [51] | |
Landiao granite | Granite | Zircon U-Pb | 157.1 ± 1.6 | [51] | |
Landiao granite | Granite | Monazite U-Pb | 152.5 ± 0.5 | [51] | |
Baitai granite | Granite | Zircon U-Pb | 212.6 ± 3.3 | [22] | |
Baitai granite | Granite | Zircon U-Pb | 213.5 ± 1.7 | [22] | |
Baitai granite | Granite | Zircon U-Pb | 212.6 ± 1.8 | [22] | |
Luomo Be deposit | Pegmatite | Cassiterite U-Pb | 156.1 ± 1.5 | This study | |
Luomo Be deposit | Pegmatite | Columbite U-Pb | 163.3 ± 0.8 | This study | |
Daqianggou Li-Be deposit | Pegmatite | Cassiterite U-Pb | 157.3 ± 1.7 | This study | |
Daqianggou Li-Be deposit | Pegmatite | Columbite U-Pb | 164.1 ± 0.8 | This study | |
Baitai Be deposit | Pegmatite | Columbite U-Pb | 188.8 ± 1.1 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zhou, J.; Tan, H.; Ni, Z.; Zhu, Z.; Niu, T.; Liu, Y. Geologic Characteristics and Age of Beryllium Mineralization in the Jiulong Area, the Southeast Edge of the Western Kunlun–Songpan–Ganzi Rare Metal Metallogenic Belt. Minerals 2025, 15, 253. https://doi.org/10.3390/min15030253
Hu J, Zhou J, Tan H, Ni Z, Zhu Z, Niu T, Liu Y. Geologic Characteristics and Age of Beryllium Mineralization in the Jiulong Area, the Southeast Edge of the Western Kunlun–Songpan–Ganzi Rare Metal Metallogenic Belt. Minerals. 2025; 15(3):253. https://doi.org/10.3390/min15030253
Chicago/Turabian StyleHu, Junliang, Jiayun Zhou, Hongqi Tan, Zhiyao Ni, Zhimin Zhu, Teng Niu, and Yingdong Liu. 2025. "Geologic Characteristics and Age of Beryllium Mineralization in the Jiulong Area, the Southeast Edge of the Western Kunlun–Songpan–Ganzi Rare Metal Metallogenic Belt" Minerals 15, no. 3: 253. https://doi.org/10.3390/min15030253
APA StyleHu, J., Zhou, J., Tan, H., Ni, Z., Zhu, Z., Niu, T., & Liu, Y. (2025). Geologic Characteristics and Age of Beryllium Mineralization in the Jiulong Area, the Southeast Edge of the Western Kunlun–Songpan–Ganzi Rare Metal Metallogenic Belt. Minerals, 15(3), 253. https://doi.org/10.3390/min15030253