Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (941)

Search Parameters:
Keywords = carrier-binding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1583 KB  
Article
Interaction of Lysozyme with Sulfated β-Cyclodextrin: Dissecting Salt and Hydration Contributions
by Jacek J. Walkowiak
Molecules 2026, 31(2), 372; https://doi.org/10.3390/molecules31020372 - 20 Jan 2026
Abstract
This article investigates the thermodynamic driving force of the interaction between lysozyme (Lys) and sulfated β-cyclodextrin (β-CDS), with a particular emphasis on the elusive role of hydration during polyelectrolyte–protein binding. Using isothermal titration calorimetry (ITC), the binding affinity was quantified across varying temperatures [...] Read more.
This article investigates the thermodynamic driving force of the interaction between lysozyme (Lys) and sulfated β-cyclodextrin (β-CDS), with a particular emphasis on the elusive role of hydration during polyelectrolyte–protein binding. Using isothermal titration calorimetry (ITC), the binding affinity was quantified across varying temperatures and salt concentrations, employing a recently developed thermodynamic framework that explicitly separates the contributions from counterion release and hydration effects. The study reveals that while counterion release is minimal in the Lys/β-CDS system, hydration effects become a dominant factor influencing the binding free energy ΔGb, especially as experimental temperature deviates from the characteristic temperature T0. It demonstrates that hydration contributions can substantially weaken binding at increased salt concentration cs. The high characteristic temperature T0 and the salt-dependent heat capacity change indicate a complex interplay of water structure and ion association—significantly departing from commonly linear interpretations of ΔGb vs. log cs based solely on counterion release effects. This work advances the understanding of polyelectrolyte–protein interactions by providing the first direct quantification of the hydration effect in such complexes and may have an impact on the rational design of biomolecular assemblies and therapeutic carriers. Full article
25 pages, 4240 KB  
Article
Graphene-Based Nanosystem for Targeted Delivery of Anti-Sense miRNA-21 on Hepatocellular Carcinoma Cells
by Paola Trischitta, Paulina Kucharzewska, Barbara Nasiłowska, Wojciech Skrzeczanowski, Rosamaria Pennisi, Maria Teresa Sciortino and Marta Kutwin
Int. J. Mol. Sci. 2026, 27(2), 975; https://doi.org/10.3390/ijms27020975 - 19 Jan 2026
Abstract
The application of nanotechnology in medicine has garnered significant interest, particularly in the development of advanced drug delivery systems. Graphene oxide (GO) shows promise as a carrier for delivering microRNA (miRNA) mimics or antisense constructs. miRNAs play a crucial role in regulating gene [...] Read more.
The application of nanotechnology in medicine has garnered significant interest, particularly in the development of advanced drug delivery systems. Graphene oxide (GO) shows promise as a carrier for delivering microRNA (miRNA) mimics or antisense constructs. miRNAs play a crucial role in regulating gene expression, and their dysregulation is associated with various diseases, including cancer. This study aimed to evaluate the impact of graphene oxide on cellular signaling pathways and its potential as a platform for gene delivery by developing a GO–antisense miRNA-21 nanosystem in HepG2 liver cancer cells. A colloidal dispersion of GO was used to prepare GO-antisense miRNA-21 nanosystems via self-assembly. The nanosystem was characterized in terms of ultrastructure, size distribution, surface composition and binding by TEM, DLS, ATR-FTIR and UV-Vis spectra. Zeta potential measurements were conducted to evaluate nanosystem stability by assessing the release kinetics of antisense miRNA-21. The efficiency of the GO nanosystem in delivering antisense miRNA-21 into HepG2 cells was analyzed using confocal microscopy and flow cytometry. Given the central role of miRNA-21 in inflammatory and oncogenic pathways, we first assessed its expression following GO exposure. In line with previous studies reporting high miRNA-21 expression in hepatocellular carcinoma cells, GO treatment further increased miRNA-21 levels in HepG2 cells compared with untreated controls. Changes in the expression levels of IL-8, MCP-1, ICAM-1, TIMP-2, and NF-kB were quantified by qPCR analysis. The ultrastructural analysis confirmed a strong affinity between GO and antisense miRNA-21. Transfection results demonstrate that the GO-based nanosystem effectively delivered antisense miRNA-21 into HepG2 cells, leading to a reduction in the expression of key pro-inflammatory genes. These findings suggest that GO-based nanocarriers may offer a promising strategy for delivering localized intratumoral miRNA-based therapies that target gene regulation in hepatocellular carcinoma. Full article
Show Figures

Graphical abstract

29 pages, 25745 KB  
Article
Honey Bee AMPs as a Novel Carrier Protein for the Development of a Subunit Vaccine: An Immunoinformatic Approach
by Roy Dinata, Piyush Baindara, Chettri Arati and Guruswami Gurusubramanian
Curr. Issues Mol. Biol. 2026, 48(1), 81; https://doi.org/10.3390/cimb48010081 - 14 Jan 2026
Viewed by 90
Abstract
Infectious diseases remain a persistent global health threat, intensified by the rapid emergence of antibiotic-resistant pathogens. Despite the transformative impact of antibiotics, the escalating resistance crisis underscores the urgent need for alternative therapeutic approaches. Antimicrobial peptides (AMPs) have emerged as promising candidates due [...] Read more.
Infectious diseases remain a persistent global health threat, intensified by the rapid emergence of antibiotic-resistant pathogens. Despite the transformative impact of antibiotics, the escalating resistance crisis underscores the urgent need for alternative therapeutic approaches. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their broad-spectrum antimicrobial and immunomodulatory activities. The present study investigated 82 honey bee antimicrobial peptides (BAMPs) representing seven families: abaecin, apamin, apisimin, apidaecin, defensin, hymenoptaecin, and melittin among eight honey bee species. Immunoinformatics analyses identified five peptides (P15450, A0A2A3EK62, Q86BU7, C7AHW3, and I3RJI9A) with high antigenicity and non-allergenic profiles. Structural modeling, molecular docking with TLR3 and TLR4-MD2, and molecular dynamics simulations revealed stable receptor-peptide interactions and favorable binding energetics, further supported by silico immune simulations. Overall, these findings suggest that the selected BAMPs exhibit strong immunogenic potential and may serve as effective adjuvants or carrier molecules in subunit vaccine design against drug-resistant pathogens; however, further experimental validation is essential to confirm their safety and immunological efficacy. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

26 pages, 1174 KB  
Review
Molecular Survival Strategies Against Kidney Filtration: Implications for Therapeutic Protein Engineering
by William P. Heaps, Anne Elise Packard, Kristina M. McCammon, Tyler P. Green, Joseph P. Talley, Bradley C. Bundy and Dennis Della Corte
Biophysica 2026, 6(1), 4; https://doi.org/10.3390/biophysica6010004 - 13 Jan 2026
Viewed by 205
Abstract
The glomerular filtration barrier poses a significant challenge for circulating proteins, with molecules below ~60–70 kDa facing rapid renal clearance. Endogenous proteins have evolved sophisticated evasion mechanisms including oligomerization, carrier binding, electrostatic repulsion, and FcRn-mediated recycling. Understanding these natural strategies provides blueprints for [...] Read more.
The glomerular filtration barrier poses a significant challenge for circulating proteins, with molecules below ~60–70 kDa facing rapid renal clearance. Endogenous proteins have evolved sophisticated evasion mechanisms including oligomerization, carrier binding, electrostatic repulsion, and FcRn-mediated recycling. Understanding these natural strategies provides blueprints for engineering therapeutic proteins with improved pharmacokinetics. This review examines how endogenous proteins resist filtration, evaluates their application in protein engineering, and discusses clinical translation including established technologies (PEGylation, Fc-fusion) and emerging strategies (albumin-binding domains, glycoengineering). We address critical challenges of balancing half-life extension with tissue penetration, biological activity, and immunogenicity—essential considerations for the rational design of next-generation therapeutics with optimized dosing and enhanced efficacy. Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
Show Figures

Figure 1

34 pages, 2404 KB  
Review
Novel Applications of Starch and Starch Derivatives in the Food and Alcoholic Beverages Industry: A Review
by Alice Vilela, Berta Gonçalves, Carla Gonçalves, Fernanda Cosme and Teresa Pinto
Foods 2026, 15(2), 277; https://doi.org/10.3390/foods15020277 - 12 Jan 2026
Viewed by 662
Abstract
Starch and its derivatives have undergone substantial advancement in the food and beverage industry, driven by growing demand for improved functionality and health-promoting attributes. Native starches are widely used as thickeners and stabilizers; however, their applications are limited by deficiencies such as poor [...] Read more.
Starch and its derivatives have undergone substantial advancement in the food and beverage industry, driven by growing demand for improved functionality and health-promoting attributes. Native starches are widely used as thickeners and stabilizers; however, their applications are limited by deficiencies such as poor freeze–thaw stability. To overcome these constraints, a range of physical, chemical, and enzymatic modification techniques has been developed, yielding starches with tailored and enhanced properties. Recent innovations include polyphenol-modified starches, which improve physicochemical characteristics and confer additional health benefits, such as reduced digestibility and increased antioxidant activity—features that are particularly valuable for functional foods targeting hyperglycemia. Enzymatic modifications further enhance starch quality and processing efficiency, while chemically modified forms, such as oxidized and acetylated starches, improve emulsification and water-binding capacities in various processed foods. Starch nanoparticles have also gained attention as encapsulating agents and carriers for bioactive compounds, broadening their technological applications. In parallel, the exploration of unconventional starch sources derived from fruit-processing by-products supports sustainability efforts while introducing novel functional attributes. Collectively, these developments are contributing to the creation of healthier, more stable food products that align with consumer expectations and regulatory standards. The following sections of this article examine emerging applications of starch and its derivatives, with particular emphasis on their health benefits and sustainable production pathways. Full article
(This article belongs to the Special Issue Starch: Properties and Functionality in Food Systems)
Show Figures

Figure 1

18 pages, 1383 KB  
Review
Intrinsic Asymmetry in Weak Acid Transmembrane Transporters
by Emmi Jaeger, Sebastian Buss and Eric Beitz
Biomolecules 2026, 16(1), 91; https://doi.org/10.3390/biom16010091 - 6 Jan 2026
Viewed by 321
Abstract
Transmembrane facilitation of substrates by channels and secondary active transporters results in a defined steady-state concentration ratio across the membrane. Evidence is accumulating that asymmetry in the structural build of the transporters, or interaction with asymmetric partner proteins, can shift the position of [...] Read more.
Transmembrane facilitation of substrates by channels and secondary active transporters results in a defined steady-state concentration ratio across the membrane. Evidence is accumulating that asymmetry in the structural build of the transporters, or interaction with asymmetric partner proteins, can shift the position of the transmembrane equilibrium by biased transport directionality. For instance, the bacterial lactose transporter, LacY, and two amino acid transporters, i.e., the human excitatory amino acid carrier, EAAC1, and the yeast lysine permease, Lyp1, were reported to exhibit distinct transport kinetics in the inward and outward direction by protein-intrinsic properties. A recent example is transport modulation of human monocarboxylate transporters, MCT, by shedding of the extracellular domain of an ancillary protein, basigin. Loss of the domain selectively increases export of lactate from lung cancer cells by a factor of four, contributing to the Warburg effect and malignancy. Further, intrinsic properties of monocarboxylate transporters involving asymmetric affinities of substrate binding, or biased open probabilities were shown to generate preference for one transport direction. Here, we discuss molecular mechanisms and physiological contexts of asymmetric secondary active transmembrane transport. Focus is laid on experimentally established cases, and examples are given in which putative bias in transport directionality may have been overlooked. Full article
Show Figures

Figure 1

22 pages, 6766 KB  
Article
Zn–IMP 3D Coordination Polymers for Drug Delivery: Crystal Structure and Computational Studies
by Hafiz Zeshan Aqil, Yanhong Zhu, Masooma Hyder Khan, Yaqoot Khan, Beenish Sandhu, Muhammad Irfan and Hui Li
Polymers 2026, 18(1), 119; https://doi.org/10.3390/polym18010119 - 31 Dec 2025
Viewed by 351
Abstract
Coordination polymers (CPs) are garnering attention in the field of medicine day by day. The goal is to develop a CP with biosafe and environment-friendly characteristics. Herein, we report two such novel 3D coordination polymers of zinc-inosine-5′-monophosphate (Zn-IMP) and bpe/azpy (as linkers) which [...] Read more.
Coordination polymers (CPs) are garnering attention in the field of medicine day by day. The goal is to develop a CP with biosafe and environment-friendly characteristics. Herein, we report two such novel 3D coordination polymers of zinc-inosine-5′-monophosphate (Zn-IMP) and bpe/azpy (as linkers) which were engineered as metal–organic frameworks that can be used as drug carriers for hydroxyurea (HU). We employed SCXRD, PXRD, solid-state CD, FTIR and TGA for crystal structure characterizations; the results achieved 3D coordination polymers which contain a P21 space group with chiral distorted tetrahedral geometry. Solution phase studies like UV–vis and CD were carried out to understand mechanistic pathways for interaction and chirality, respectively. We have also performed computational studies to evaluate the drug delivery capacity of both 3D CPs. Molecular docking and multi-pH molecular dynamics (MD) quantify that HU binds more strongly with CP−1 (ΔG =−10.87 ± 0.12) as compared to CP−2 (ΔG = −7.59 ± 0.26 kcal·mol−1), at normal and basic pH. MD simulation analysis indicated that a more compact and rigid cavity is observed by CP−1 as compared to CP−2 at physiological pH. Across acidic pH, for CP−1 the ligand RMSD increases markedly and U becomes slightly less negative, which indicated partial loss of contacts, thus releasing drugs in a tumor-like environment more easily. These result showed that CP−1 offers stronger binding, higher structural stability and a more pronounced pH-responsive release profile than CP−2, making CP-1 more promising candidate for targeted HU drug delivery, while CP−2 may serve as a weaker-binding, faster-release complement. Full article
Show Figures

Figure 1

25 pages, 7503 KB  
Article
Naringin Mitigates PEDV-Induced Intestinal Damage in Suckling Piglets by Modulating Inflammatory, Antiviral, and Metabolic and Transport Pathways
by Yanyan Zhang, Muzi Li, Zongyun Li, Zhonghua Li, Lei Wang, Di Zhao, Tao Wu, Dan Yi and Yongqing Hou
Biomolecules 2026, 16(1), 48; https://doi.org/10.3390/biom16010048 - 28 Dec 2025
Viewed by 327
Abstract
This study evaluated the protective effects of naringin (NG) against intestinal injury in 7-day-old piglets infected with porcine epidemic diarrhea virus (PEDV). Eighteen piglets (Duroc × Landrace × Large, body weight = 2.58 ± 0.05 kg) were divided into three treatment groups based [...] Read more.
This study evaluated the protective effects of naringin (NG) against intestinal injury in 7-day-old piglets infected with porcine epidemic diarrhea virus (PEDV). Eighteen piglets (Duroc × Landrace × Large, body weight = 2.58 ± 0.05 kg) were divided into three treatment groups based on similar body weights and equal numbers of males and females: the blank control group (CON group), the PEDV infection group (PEDV group), and the NG intervention + PEDV infection group (NG + PEDV group) (n = 6 per group). The experiment lasted for 11 days, comprising a pre-feeding period from days 0 to 3 and a formal experimental period from days 4 to 10. On days 4–10 of the experiment, piglets in the NG + PEDV group were orally administered NG (10 mg/kg). On Day 8 of the experiment, piglets in the PEDV and NG + PEDV groups were inoculated with PEDV (3 mL, 106 50% tissue culture infective dose (TCID50) per milliliter). On day 11 of the experiment, piglets were euthanized for sample collection. PEDV infection caused significant intestinal damage, including a decreased (p < 0.05) villus height in the duodenum and ileum and an increased (p < 0.05) crypt depth in all intestinal segments. This intestinal damage was accompanied by an impaired absorptive function, as indicated by reduced (p < 0.05) serum D-xylose. Further results showed that PEDV compromised the intestinal antioxidant capacity by decreasing (p < 0.05) glutathione peroxidase and catalase activities, and it stimulated the intestinal inflammatory response by upregulating (p < 0.05) the expression of key inflammatory genes, including regenerating family member 3 gamma (REG3G; duodenum, jejunum, colon), S100 calcium binding protein A9 (S100A9; ileum, colon), interleukin 1 beta (IL-1β; ileum, colon), and S100 calcium binding protein A8 (S100A8; colon). PEDV also suppressed the intestinal lipid metabolism pathway by downregulating (p < 0.05) the ileal expression of Solute Carrier Family 27 Member 4 (SLC27A4), Microsomal Triglyceride Transfer Protein (MTTP), Apolipoprotein A4 (APOA4), Apolipoprotein C3 (APOC3), Diacylglycerol O-Acyltransferase 1 (DGAT1), and Cytochrome P450 Family 2 Subfamily J Member 34 (CYP2J34). Moreover, PEDV suppressed the intestinal antiviral ability by downregulating (p < 0.05) interferon (IFN) signaling pathway genes, including MX dynamin like GTPase 1 (MX1) and ISG15 ubiquitin like modifier (ISG15) in the duodenum; weakened intestinal water and ion transport by downregulating (p < 0.05) aquaporin 10 (AQP10) and potassium inwardly rectifying channel subfamily J member 13 (KCNJ13) in the duodenum, aquaporin 7 (AQP7) and transient receptor potential cation channel subfamily V member 6 (TRPV6) in the ileum, and TRPV6 and transient receptor potential cation channel subfamily M member 6 (TRPM6) in the colon; and inhibited intestinal digestive and absorptive function by downregulating (p < 0.05) phosphoenolpyruvate carboxykinase 1 (PCK1) in the duodenum and sucrase-isomaltase (SI) in the ileum. Notably, NG effectively counteracted these detrimental effects. Moreover, NG activated the IFN signaling pathway in the jejunum and suppressed PEDV replication in the colon. In conclusion, NG alleviates PEDV-induced intestinal injury by enhancing the antioxidant capacity, suppressing inflammation, normalizing the expression of metabolic and transport genes, and improving the antiviral ability. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

41 pages, 2928 KB  
Review
Extracellular RNAs as Messengers and Early Biomarkers in Neurodegeneration
by Kaidong Lu and Magdalena J. Koziol
Int. J. Mol. Sci. 2026, 27(1), 320; https://doi.org/10.3390/ijms27010320 - 27 Dec 2025
Viewed by 711
Abstract
Extracellular RNAs are released from cells and circulate stably in biofluids such as blood, cerebrospinal fluid, saliva, and urine via carriers including extracellular vesicles, RNA-binding proteins and lipoproteins. Because transcriptional and metabolic disturbances—notably mitochondrial dysfunction and oxidative stress—often precede protein aggregation, synaptic loss, [...] Read more.
Extracellular RNAs are released from cells and circulate stably in biofluids such as blood, cerebrospinal fluid, saliva, and urine via carriers including extracellular vesicles, RNA-binding proteins and lipoproteins. Because transcriptional and metabolic disturbances—notably mitochondrial dysfunction and oxidative stress—often precede protein aggregation, synaptic loss, and structural change in many brain diseases, exRNAs offer minimally invasive access to early disease biology. Mechanistic studies demonstrate selective RNA packaging and delivery: transferred mRNAs can be translated and miRNAs can modulate targets, indicating exRNAs both report intracellular programs and actively influence recipient cells. Clinical and preclinical data support a dual role for exRNAs as biomarkers and as mediators of pathology. Key technical hurdles—pre-analytical variability, isolation heterogeneity, and uncertain cellular origin—limit reproducibility; recommended solutions include standardized workflows, carrier- and cell type-specific enrichment, multimodal integration with proteomics/metabolomics and neuroimaging, and large, longitudinal validation studies. We synthesize mechanistic and clinical evidence for exRNA utility in early detection, prognosis, and therapeutic targeting and outline a roadmap to translate exRNA findings into robust clinical assays and interventions for neurodegenerative and brain disorders. Full article
Show Figures

Figure 1

29 pages, 5903 KB  
Article
Compatibility and Stability of a Shigella Polysaccharide—Protein Conjugate Antigen Formulated with Aluminum Salt and CpG 1018® Adjuvants
by Poorva Taskar, Prashant Kumar, Brandy Dotson, Anup Datta, Shangdong Guo, Giriraj Chalke, Richa Puri, Harshita Seth, Benjamin Wizel, Sangeeta B. Joshi and David B. Volkin
Vaccines 2026, 14(1), 10; https://doi.org/10.3390/vaccines14010010 - 20 Dec 2025
Viewed by 412
Abstract
This study evaluated the formulation and stability of a quadrivalent glycoconjugate Shigella vaccine candidate based on four predominant strains (S. flexneri; 2a, 3a, and 6, and S. sonnei) covering ~64% of global Shigella infections. Each glycoconjugate antigen [...] Read more.
This study evaluated the formulation and stability of a quadrivalent glycoconjugate Shigella vaccine candidate based on four predominant strains (S. flexneri; 2a, 3a, and 6, and S. sonnei) covering ~64% of global Shigella infections. Each glycoconjugate antigen consists of a strain-specific O-polysaccharide (O-PS) covalently linked to the carrier protein IpaB, a component of the Shigella type III secretion system. First, selective competitive ELISAs were developed to measure antigenicity of the four O-PS-IpaB conjugates formulated with different adjuvants (i.e., Alhydrogel®, AH; Adju-phos®, AP; and CpG-1018®, CpG). Next, the monovalent S. sonnei O-PS-IpaB conjugate was studied to elucidate interactions with aluminum salt adjuvants (AH, AP) under different solution conditions. Third, the stability profiles of AH- or AP-adjuvanted S. sonnei O-PS-IpaB conjugate in various formulations (±CpG) were determined at different temperatures. Interestingly, incubation at 25 °C for 2 weeks resulted in increased antigenicity values when the antigen was bound to AP or AH, suggesting increased epitope exposure upon adjuvant binding. When bound to AP adjuvant at pH 5.8, the best glycoconjugate antigen stability was observed at elevated temperatures. The CpG adjuvant under these conditions, however, displayed incompatibility (i.e., material loss), presumably from precipitation due to lack of interaction with AP and presence of the detergent LDAO from the bulk antigen buffer. In contrast, the glycoconjugate antigen and CpG adjuvant were both bound to the AH adjuvant and stable at 2–8 °C, pH 7.0. This AH-CpG formulation of the O-PS-IpaB conjugate antigens was identified as a promising candidate for future animal immunogenicity testing. Full article
(This article belongs to the Special Issue Vaccine Design and Development)
Show Figures

Figure 1

22 pages, 1814 KB  
Review
Microalgae and Macroalgae as Advanced Sources of Tyrosinase Inhibitors
by Joanna Harasym and Katarzyna Hałdys
Molecules 2026, 31(1), 20; https://doi.org/10.3390/molecules31010020 - 20 Dec 2025
Viewed by 550
Abstract
Tyrosinase (EC 1.14.18.1) is the primary enzyme responsible for melanogenesis in mammals and enzymatic browning in food, creating a high demand for potent, safe inhibitors of this enzyme in the cosmetic, medical, and agricultural sectors. Conventional synthetic inhibitors often face limitations concerning their [...] Read more.
Tyrosinase (EC 1.14.18.1) is the primary enzyme responsible for melanogenesis in mammals and enzymatic browning in food, creating a high demand for potent, safe inhibitors of this enzyme in the cosmetic, medical, and agricultural sectors. Conventional synthetic inhibitors often face limitations concerning their cytotoxicity and stability, necessitating the exploration of marine natural products (MNPs). Marine algae, comprising macroalgae (seaweeds) and microalgae (including cyanobacteria), represent an underexploited source of structurally diverse bioactives. Macroalgae, particularly brown species, yield complex phlorotannins, such as the non-competitive oligomer dieckol, which exhibits an IC50 of 2.16 µg/mL. Conversely, microalgae deliver high-potency, low-molecular-weight compounds, notably the synthesizable scytonemin monomer (ScyM) with an IC50 of 4.90 µM—significantly stronger than kojic acid. Mechanistic analysis, supported by molecular docking, reveals diverse modes of action, from the two-step slow binding of complex phlorotannins to the highly specific competitive binding of red algal bromophenols. Translational success requires the consistent application of green extraction techniques, such as Natural Deep Eutectic Solvents (NADESs), and advanced delivery systems, like Nanostructured Lipid Carriers (NLCs), to ensure the stability and bioavailability of these compounds for future cosmeceutical and medical applications. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Food Chemistry)
Show Figures

Figure 1

23 pages, 1253 KB  
Review
Advances in Bioactive Compounds from Plants and Their Applications in Alzheimer’s Disease
by Steve Pavlov, Santosh Kumar Prajapati, Dhananjay Yadav, Andrea Marcano-Rodriguez, Hariom Yadav and Shalini Jain
Biomolecules 2026, 16(1), 7; https://doi.org/10.3390/biom16010007 - 19 Dec 2025
Viewed by 682
Abstract
Alzheimer’s disease (AD), the leading cause of dementia worldwide, is characterized by progressive neuronal loss, amyloid-β (Aβ) aggregation, tau hyperphosphorylation, oxidative stress, neuroinflammation, cholinergic dysfunction, and gut–brain axis dysregulation. Despite advances in anti-amyloid therapeutics, current interventions provide only modest symptomatic relief and face [...] Read more.
Alzheimer’s disease (AD), the leading cause of dementia worldwide, is characterized by progressive neuronal loss, amyloid-β (Aβ) aggregation, tau hyperphosphorylation, oxidative stress, neuroinflammation, cholinergic dysfunction, and gut–brain axis dysregulation. Despite advances in anti-amyloid therapeutics, current interventions provide only modest symptomatic relief and face limitations in accessibility, cost, and long-term efficacy. Plant-derived bioactive compounds, rooted in traditional medicine systems such as Ayurveda and Traditional Chinese Medicine, have gained increasing attention as multi-target therapeutic agents due to their pleiotropic actions, relative safety, and ability to cross the blood–brain barrier. This review synthesizes mechanistic and translational evidence on major phytochemicals, including withanolides (Withania somnifera), curcumin (Curcuma longa), ginkgolides and bilobalide (Ginkgo biloba), bacosides (Bacopa monnieri), ginsenosides (Panax ginseng), crocin/safranal (Crocus sativus), epigallocatechin-3-gallate (Camellia sinensis), rosmarinic acid (Salvia officinalis, Melissa officinalis), and asiaticosides (Centella asiatica). These compounds exert neuroprotective effects by inhibiting Aβ aggregation, reducing tau phosphorylation, scavenging reactive oxygen species, attenuating NF-κB-mediated inflammation, modulating cholinergic signaling, enhancing synaptic plasticity via brain-derived neurotrophic factor/cAMP response element-binding protein (BDNF/CREB) activation, and regulating gut microbiota. Multi-target approach analyses underscore their synergistic potential in targeting interconnected AD pathways. However, translation remains hindered by poor oral bioavailability, rapid metabolism, and variability in clinical outcomes. Advances in delivery platforms, including liposomes, bilosomes, solid lipid nanoparticles, and nanostructured lipid carriers, are improving stability, blood–brain penetration, and therapeutic efficacy in preclinical models. Collectively, plant-derived phytochemicals serve as promising, affordable, and multi-modal candidates for reshaping AD management, bridging traditional knowledge with modern therapeutic innovation. Full article
Show Figures

Figure 1

21 pages, 8163 KB  
Article
Identification of the ACBP Family Genes and Their Response to Cold and Salt Stress in Citrus
by Lijuan Jiang, Xiaoyu Wang, Yu Sheng and Xiaoyong Xu
Agriculture 2025, 15(24), 2547; https://doi.org/10.3390/agriculture15242547 - 9 Dec 2025
Viewed by 377
Abstract
Acyl-CoA-binding proteins (ACBPs) are essential lipid carrier proteins involved in plant lipid metabolism. However, the systematic identification and expression profiles of the ACBP gene family in citrus species remain poorly understood. Here, Citrus sinensis and Poncirus trifoliata were chosen as model species to [...] Read more.
Acyl-CoA-binding proteins (ACBPs) are essential lipid carrier proteins involved in plant lipid metabolism. However, the systematic identification and expression profiles of the ACBP gene family in citrus species remain poorly understood. Here, Citrus sinensis and Poncirus trifoliata were chosen as model species to examine the biological properties of citrus ACBPs. Using bioinformatics methods, five ACBP gene members were found in each species and named CsACBPs and PtrACBPs, respectively. All obtained ACBP members were divided into four subfamilies based on conserved domains and amino acid sequences. CsACBP and PtrACBP genes exhibited structural variation in motifs and exons. The predicted protein structures of CsACBPs and PtrACBPs exhibited conservation between the two species while displaying distinct variation within each species. Collinearity analysis showed one intraspecific pairing relationship in each of the two citrus species. Furthermore, there were more collinear couplings between citrus species and Arabidopsis thaliana but none between citrus species and Oryza sativa (rice). Notably, the analysis of cis-acting elements in ACBP gene promoters identified a number of motifs associated with light, abiotic stresses, and phytohormones. Expression profiling confirmed tissue-specific expression patterns of CsACBP1~5 and PtrACBP1~5. RT-qPCR analysis revealed that all CsACBP and PtrACBP genes responded to cold and salt stresses, though the magnitude of their responses varied significantly. Specially, although PtrACBP5 did not respond to low temperatures as rapidly as other members, its expression level increased significantly after 24 h of low-temperature treatment. Protein–protein interaction (PPI) network predictions indicated tight associations among four of the five CsACBPs, with CsACBP5 excluded from these interactions. Moreover, CsACBP1, CsACBP2, and CsACBP3 were predicted to be potential targets of csi-miR3952, csi-miR396a, and csi-miR477b, respectively. Overall, our research provides a solid foundation for further investigations into the biological functions and regulatory mechanisms of ACBP genes in citrus growth, development, and stress adaptation. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

11 pages, 1243 KB  
Article
An ETS2 Enhancer Variant May Modulate Gene Expression and Contribute to Defining a Genetic Risk Profile for SLE Susceptibility
by Andrea Latini, Giada De Benedittis, Chiara Morgante, Carlo Perricone, Fulvia Ceccarelli, Fabrizio Conti, Giuseppe Novelli, Cinzia Ciccacci and Paola Borgiani
Genes 2025, 16(12), 1462; https://doi.org/10.3390/genes16121462 - 8 Dec 2025
Viewed by 407
Abstract
Background/Objectives: Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease strongly influenced by genetic factors. Genome-wide association studies (GWASs) have identified numerous non-coding susceptibility loci, but their functional roles remain poorly understood. The single-nucleotide variant (SNV) rs2836882, located in an enhancer near [...] Read more.
Background/Objectives: Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease strongly influenced by genetic factors. Genome-wide association studies (GWASs) have identified numerous non-coding susceptibility loci, but their functional roles remain poorly understood. The single-nucleotide variant (SNV) rs2836882, located in an enhancer near the ETS2 proto-oncogene, has been implicated in immune regulation, though its contribution to SLE is unclear. Methods: We analyzed rs2836882 in 246 Italian patients with SLE and 216 matched controls using TaqMan genotyping. A weighted genetic risk score (wGRS) combining rs2836882 with other known SLE variants was calculated. ETS2 mRNA expression was quantified by RT-qPCR in PBMCs from 60 individuals, and in silico analyses assessed the variant’s functional context. Results: The rs2836882 risk allele was significantly associated with SLE (OR = 1.54, p = 0.02). Patients showed a markedly higher wGRS than controls (p < 0.00001), confirming an additive genetic burden. In silico data indicated that rs2836882 lies within an active enhancer region (H3K4me1/H3K27ac+) containing PU.1 binding motifs and functions as an expression quantitative trait locus (eQTL) for ETS2. Expression analysis demonstrated that carriers of the risk allele exhibited significantly increased ETS2 expression compared to non-carriers (p = 0.002) in both groups. Conclusions: In conclusion, rs2836882 is a functional regulatory variant that enhances ETS2 transcription and contributes to increased SLE susceptibility. These findings establish a mechanistic link between a non-coding GWAS locus and disease risk, emphasizing the role of regulatory variants in autoimmune pathogenesis and supporting the integration of functional non-coding variants into genetic risk models for improved patient stratification. Full article
(This article belongs to the Special Issue Genetic and Epigenetic Insights in Autoimmune Diseases)
Show Figures

Figure 1

12 pages, 1011 KB  
Article
Comparison of Antigen Conjugation to a Peptidic Carrier or to Bovine Serum Albumin in the Serodiagnosis of Canine Visceral Leishmaniasis via Suspension Array Technology
by Thais Stelzer Toledo, Pauline Martins Cunha, Josué da Costa Lima-Junior, Monique Paiva De Campos, Alinne R. S. Renzetti, Fabiano Borges Figueiredo, Fernanda Nazaré Morgado, Renato Porrozzi, Fatima da Conceição-Silva, Marta de Almeida Santiago and Paula Mello De Luca
Antibodies 2025, 14(4), 103; https://doi.org/10.3390/antib14040103 - 4 Dec 2025
Viewed by 507
Abstract
Backgroud/Objectives: Canine Visceral Leishmaniasis (CVL), caused by Leishmania infantum, is a significant public health concern due to dogs serving as reservoirs for human infection. An accurate and rapid diagnostic method to distinguish symptomatic and asymptomatic CVL from healthy and vaccinated animals [...] Read more.
Backgroud/Objectives: Canine Visceral Leishmaniasis (CVL), caused by Leishmania infantum, is a significant public health concern due to dogs serving as reservoirs for human infection. An accurate and rapid diagnostic method to distinguish symptomatic and asymptomatic CVL from healthy and vaccinated animals is essential for controlling canine and human disease. Developing innovative antibody detection techniques and exploring new antigens are essential for enhancing CVL testing efficiency. Our study focuses on a multiplex flow cytometry technique to detect Leishmania-specific antibodies in canine serum. This involved conjugating small peptides with carrier proteins or peptide tags, sequences designed to facilitate bead coupling. Methods: A peptide from the L. infantum A2 protein was coupled to beads in three forms: unconjugated, conjugated with BSA, and conjugated with a C-terminal β-alanine–lysine (x4)–cysteine TAG. This TAG was previously designed to enhance peptide solubility, improve binding efficiency, and provide functional groups for covalent attachment to the beads, ensuring stable immobilization in the multiplex assay. Results: Our results suggest that the multiplex approach shows promise as a rapid serological test for CVL, particularly with TAG-conjugated peptides, which optimize bead coupling. However, peptide/BSA conjugation revealed anti-BSA antibodies in samples from healthy and CVL dogs. Conclusions: In conclusion, our findings highlight the potential of multiplex methodologies to enhance CVL diagnostics and caution against using BSA as a bead coupling agent in serological tests for canine samples due to its impact on test specificity and sensitivity. Full article
(This article belongs to the Special Issue Antibodies in Laboratory Diagnostic Techniques)
Show Figures

Figure 1

Back to TopTop