Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (722)

Search Parameters:
Keywords = carrier screening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1002 KB  
Review
Advancements in Prenatal Genetic Screening and Testing: Emerging Technologies and Evolving Applications
by Mona M. Makhamreh, Mei Ling Chong and Ignatia B. Van den Veyver
Diagnostics 2025, 15(20), 2579; https://doi.org/10.3390/diagnostics15202579 (registering DOI) - 13 Oct 2025
Abstract
Advancements in genomic technologies have transformed prenatal genetic testing, offering more accurate, comprehensive, and noninvasive approaches to reproductive care. This review provides an in-depth overview of current methodologies and emerging innovations, including expanded carrier screening (ECS), cell-free DNA (cfDNA) testing, chromosomal microarray analysis [...] Read more.
Advancements in genomic technologies have transformed prenatal genetic testing, offering more accurate, comprehensive, and noninvasive approaches to reproductive care. This review provides an in-depth overview of current methodologies and emerging innovations, including expanded carrier screening (ECS), cell-free DNA (cfDNA) testing, chromosomal microarray analysis (CMA), and sequencing-based diagnostics. We highlight how next-generation sequencing (NGS) technologies have revolutionized carrier screening and fetal genome analysis, enabling detection of a broad spectrum of genetic conditions. The clinical implementation of cfDNA has expanded from common aneuploidies to include copy number variants (CNVs), and single-gene disorders. Diagnostic testing has similarly evolved, with genome sequencing outperforming traditional CMA and exome sequencing through its ability to detect both sequence and structural variants in a single assay. Emerging tools such as optical genome mapping, RNA sequencing, and long-read sequencing further enhance diagnostic yield and variant interpretation. This review summarizes major technological advancements, assesses their clinical utility and limitations, and outlines future directions in prenatal genomics. Full article
(This article belongs to the Special Issue Game-Changing Concepts in Reproductive Health)
17 pages, 1484 KB  
Article
Detection of Leishmania DNA in Ticks and Fleas from Dogs and Domestic Animals in Endemic Algerian Provinces
by Razika Benikhlef, Naouel Eddaikra, Assia Beneldjouzi, Maria Dekar, Lydia Hamrioui, Karima Brahmi, Souad Bencherifa and Denis Sereno
Microorganisms 2025, 13(10), 2338; https://doi.org/10.3390/microorganisms13102338 (registering DOI) - 10 Oct 2025
Viewed by 117
Abstract
Background: Leishmaniasis is a zoonotic vector-borne disease and a significant global public health concern worldwide and in Algeria. In this study, we investigated the potential role of ticks and fleas as carriers of Leishmania in endemic regions of Algeria. Methods: Adult ectoparasites were [...] Read more.
Background: Leishmaniasis is a zoonotic vector-borne disease and a significant global public health concern worldwide and in Algeria. In this study, we investigated the potential role of ticks and fleas as carriers of Leishmania in endemic regions of Algeria. Methods: Adult ectoparasites were collected from reservoir dogs and cohabiting animals across three provinces: Tizi-Ouzou (northeast), M’Sila (southeast), and Tébessa (extreme east). A subset of 247 ectoparasites was randomly selected for Leishmania DNA screening using ITS1-PCR. Results: Morphological identification revealed two tick species, Rhipicephalus turanicus (378 specimens) and Rhipicephalus sanguineus s.l (127 specimens), and one flea species, Ctenocephalides felis (94 specimens). Dogs were the most heavily infested hosts (74.12%), followed by sheep (9.51%) and cats (9.34%). Leishmania DNA was detected in 36.43% (90/247) of the tested specimens, with higher positivity in ticks (41.32%) compared to fleas (17.64%). Infection rates varied by host species, with dogs harboring the majority of positive ectoparasites (62/90), primarily R. sanguineus s.l (19/30) and R. turanicus (40/115). Leishmania DNA was also detected in ectoparasites collected from cats and sheep, whereas goats and rabbits were free from Leishmania DNA. Conclusions: This investigation highlights the high detection rate of Leishmania DNA in ticks and fleas from animals in Algerian endemic regions, indicating exposure to infected hosts. Together with previous reports, these findings support the view that ticks and fleas may act as incidental hosts or mechanical carriers of the parasite. However, their role in parasite transmission remains unconfirmed and warrant further investigation, particularly through studies assessing vector competence. These results emphasize the need for additional research to clarify the contribution of these ectoparasites to Leishmania transmission and multi-host dynamics. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

36 pages, 1058 KB  
Systematic Review
Functionalization Strategies of Chitosan-Based Scaffolds with Growth Factors for Bone Regeneration: A Systematic Review
by Jan Kiryk, Mateusz Michalak, Zuzanna Majchrzak, Marzena Laszczyńska, Sylwia Kiryk, Sylwia Szotek, Hanna Gerber, Izabela Nawrot-Hadzik, Jacek Matys and Maciej Dobrzyński
Mar. Drugs 2025, 23(10), 396; https://doi.org/10.3390/md23100396 - 9 Oct 2025
Viewed by 275
Abstract
Bioactive agents can stimulate osteogenesis, angiogenesis, and cell proliferation; therefore, their application in bone regeneration offers significant therapeutic potential. The aim of this systematic review was to evaluate strategies for applying chitosan-based scaffolds with growth factors in bone regeneration. A structured literature search [...] Read more.
Bioactive agents can stimulate osteogenesis, angiogenesis, and cell proliferation; therefore, their application in bone regeneration offers significant therapeutic potential. The aim of this systematic review was to evaluate strategies for applying chitosan-based scaffolds with growth factors in bone regeneration. A structured literature search was conducted in July 2025 across the PubMed, Scopus, and Web of Science databases. Search terms included combinations of (chitosan scaffold) AND (growth factor OR BMP-2 OR VEGF OR FGF OR TGF-beta OR periostin OR PDGF OR IGF-1 OR EGF OR ANG-1 OR ANG-2 OR GDF-5 OR SDF-1 OR osteopontin). The study selection process followed PRISMA 2020 guidelines and the PICO framework. Out of 367 records, 226 were screened, and 17 studies met the eligibility criteria for qualitative analysis. BMP-2 was the most frequently investigated growth factor, studied in both in vitro and in vivo models, with rats and rabbits as the most common animal models. Scaffold compositions varied, incorporating hydroxyapatite, heparin, polyethylene glycol diacrylate, octacalcium phosphate-mineralized graphene, silk fibroin, and aloe vera. Growth factors were introduced using diverse methods, including microspheres, chemical grafting, covalent coupling, protein carriers, and nanohydroxyapatite mesopores. Most studies reported enhanced bone regeneration, although differences in models, scaffold composition, and delivery methods preclude definitive conclusions. The addition of growth factors generally improved osteoblast proliferation, angiogenesis, bone density, and expression of osteogenic markers (RunX2, COL1, OPN, OCN). Combining two bioactive agents further amplified osteoinduction and vascularization. Sustained-release systems, particularly those using heparin or hydroxyapatite, prolonged biological activity and improved regenerative outcomes. In conclusion, functionalization of chitosan-based scaffolds with growth factors shows promising potential for bone regeneration. Controlled-release systems and combinations of different bioactive molecules may offer synergistic effects on osteogenesis and angiogenesis. Further research should focus on optimizing scaffold compositions and delivery methods to tailor bioactive agent release for specific clinical applications. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Graphical abstract

22 pages, 7067 KB  
Article
New Evaluation System for Extra-Heavy Oil Viscosity Reducer Effectiveness: From 1D Static Viscosity Reduction to 3D SAGD Chemical–Thermal Synergy
by Hongbo Li, Enhui Pei, Chao Xu and Jing Yang
Energies 2025, 18(19), 5307; https://doi.org/10.3390/en18195307 - 8 Oct 2025
Viewed by 289
Abstract
To overcome the production bottleneck induced by the high viscosity of extra-heavy oil and resolve the issues of limited efficiency in traditional thermal oil recovery methods (including cyclic steam stimulation (CSS), steam flooding, and steam-assisted gravity drainage (SAGD)) as well as the fragmentation [...] Read more.
To overcome the production bottleneck induced by the high viscosity of extra-heavy oil and resolve the issues of limited efficiency in traditional thermal oil recovery methods (including cyclic steam stimulation (CSS), steam flooding, and steam-assisted gravity drainage (SAGD)) as well as the fragmentation of existing viscosity reducer evaluation systems, this study establishes a multi-dimensional evaluation system for the effectiveness of viscosity reducers, with stage-averaged remaining oil saturation as the core benchmarks. A “1D static → 2D dynamic → 3D synergistic” progressive sequential experimental design was adopted. In the 1D static experiments, multi-gradient concentration tests were conducted to analyze the variation law of the viscosity reduction rate of viscosity reducers, thereby screening out the optimal adapted concentration for subsequent experiments. For the 2D dynamic experiments, sand-packed tubes were used as the experimental carrier to compare the oil recovery efficiencies of ultimate steam flooding, viscosity reducer flooding with different concentrations, and the composite process of “steam flooding → viscosity reducer flooding → secondary steam flooding”, which clarified the functional value of viscosity reducers in dynamic displacement. In the 3D synergistic experiments, slab cores were employed to simulate the SAGD development process after multiple rounds of cyclic steam stimulation, aiming to explore the regulatory effect of viscosity reducers on residual oil distribution and oil recovery factor. This novel evaluation system clearly elaborates the synergistic mechanism of viscosity reducers, i.e., “chemical empowerment (emulsification and viscosity reduction, wettability alteration) + thermal amplification (steam carrying and displacement, steam chamber expansion)”. It fills the gap in the existing evaluation chain, which previously lacked a connection from static performance to dynamic displacement and further to multi-process synergistic adaptation. Moreover, it provides quantifiable and implementable evaluation criteria for steam–chemical composite flooding of extra-heavy oil, effectively releasing the efficiency-enhancing potential of viscosity reducers. This study holds critical supporting significance for promoting the efficient and economical development of extra-heavy oil resources. Full article
Show Figures

Figure 1

23 pages, 5282 KB  
Article
Bilayer TMDs for Future FETs: Carrier Dynamics and Device Implications
by Shoaib Mansoori, Edward Chen and Massimo Fischetti
Nanomaterials 2025, 15(19), 1526; https://doi.org/10.3390/nano15191526 - 5 Oct 2025
Viewed by 275
Abstract
Bilayer transition metal dichalcogenides (TMDs) are promising materials for next-generation field-effect transistors (FETs) due to their atomically thin structure and favorable transport properties. In this study, we employ density functional theory (DFT) to compute the electronic band structures and phonon dispersions of bilayer [...] Read more.
Bilayer transition metal dichalcogenides (TMDs) are promising materials for next-generation field-effect transistors (FETs) due to their atomically thin structure and favorable transport properties. In this study, we employ density functional theory (DFT) to compute the electronic band structures and phonon dispersions of bilayer WS2, WSe2, and MoS2, and the electron-phonon scattering rates using the EPW (electron-phonon Wannier) method. Carrier transport is then investigated within a semiclassical full-band Monte Carlo framework, explicitly including intrinsic electron-phonon scattering, dielectric screening, scattering with hybrid plasmon–phonon interface excitations (IPPs), and scattering with ionized impurities. Freestanding bilayers exhibit the highest mobilities, with hole mobilities reaching 2300 cm2/V·s in WS2 and 1300 cm2/V·s in WSe2. Using hBN as the top gate dielectric preserves or slightly enhances mobility, whereas HfO2 significantly reduces transport due to stronger IPP and remote phonon scattering. Device-level simulations of double-gate FETs indicate that series resistance strongly limits performance, with optimized WSe2 pFETs achieving ON currents of 820 A/m, and a 10% enhancement when hBN replaces HfO2. These results show the direct impact of first-principles electronic structure and scattering physics on device-level transport, underscoring the importance of material properties and the dielectric environment in bilayer TMDs. Full article
(This article belongs to the Special Issue First Principles Study of Two-Dimensional Materials)
Show Figures

Figure 1

19 pages, 955 KB  
Review
HTLV-1 and ATLL: Epidemiology, Oncogenesis, and Opportunities for Community-Informed Research in the United States
by Adrian Altieri, Sean Patrick Reilly, Abu Mansalay, Alan Soo-Beng Khoo, Nettie Johnson, Zafar K. Khan, Amy Leader, Pooja Jain and Pierluigi Porcu
Viruses 2025, 17(10), 1333; https://doi.org/10.3390/v17101333 - 30 Sep 2025
Viewed by 572
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the first oncogenic human retrovirus, causes adult T-cell leukemia/lymphoma (ATLL), an aggressive neoplasm of mature CD4+ T-cells that is incurable in most patients and is associated with a median survival of less than 1 year. HTLV-1 [...] Read more.
Human T-cell leukemia virus type 1 (HTLV-1), the first oncogenic human retrovirus, causes adult T-cell leukemia/lymphoma (ATLL), an aggressive neoplasm of mature CD4+ T-cells that is incurable in most patients and is associated with a median survival of less than 1 year. HTLV-1 also causes inflammatory disorders, including HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and uveitis. The estimated lifetime risks of ATLL and HAM/TSP in HTLV-1 carriers are 3–5% and 0.25–1.8%, respectively. Although there is uncertainty about other health effects of HTLV-1, a recent meta-analysis showed an association between HTLV-1 and cardiovascular, cerebrovascular, and metabolic diseases and a 57% increased risk of early mortality in HTLV-1 carriers, independent of ATLL or HAM/TSP. Furthermore, emerging studies in endemic areas show that outcomes for common cancers, such as cervical cancer and lymphoma (non-ATLL), are inferior in HTLV-1 carriers compared to publicly reported data. Thus, the impact of HTLV-1 may be greater and more diverse than currently understood. This review provides an outline of the prevalence and impact of HTLV-1 and associated disorders in the US, focused on—but not limited to—ATLL, with an emphasis on the social determinants of health that can affect the success of screening and prevention strategies. We also discuss the mechanisms by which HTLV-1 drives the pathogenesis of ATLL and potential strategies for early diagnosis and intervention. Finally, we conclude by suggesting approaches to designing and implementing community-informed research initiatives in HTLV-1 and ATLL. Full article
Show Figures

Figure 1

24 pages, 6128 KB  
Article
DC/AC/RF Characteristic Fluctuation of N-Type Bulk FinFETs Induced by Random Interface Traps
by Sekhar Reddy Kola and Yiming Li
Processes 2025, 13(10), 3103; https://doi.org/10.3390/pr13103103 - 28 Sep 2025
Viewed by 325
Abstract
Three-dimensional bulk fin-type field-effect transistors (FinFETs) have been the dominant devices since the sub-22 nm technology node. Electrical characteristics of scaled devices suffer from different process variation effects. Owing to the trapping and de-trapping of charge carriers, random interface traps (RITs) degrade device [...] Read more.
Three-dimensional bulk fin-type field-effect transistors (FinFETs) have been the dominant devices since the sub-22 nm technology node. Electrical characteristics of scaled devices suffer from different process variation effects. Owing to the trapping and de-trapping of charge carriers, random interface traps (RITs) degrade device characteristics, and, to study this effect, this work investigates the impact of RITs on the DC/AC/RF characteristic fluctuations of FinFETs. Under high gate bias, the device screening effect suppresses large fluctuations induced by RITs. In relation to different densities of interface traps (Dit), fluctuations of short-channel effects, including potential barriers and current densities, are analyzed. Bulk FinFETs exhibit entirely different variability, despite having the same number of RITs. Potential barriers are significantly altered when devices with RITs are located near the source end. An analysis and a discussion of RIT-fluctuated gate capacitances, transconductances, cut-off, and 3-dB frequencies are provided. Under high Dit conditions, we observe ~146% variation in off-state current, ~26% in threshold voltage, and large fluctuations of ~107% and ~131% in gain and cut-off frequency, respectively. The effects of the random position of RITs on both AC and RF characteristic fluctuations are also discussed and designed in three different scenarios. Across all densities of interface traps, the device with RITs near the drain end exhibits relatively minimal fluctuations in gate capacitance, voltage gain, cut-off, and 3-dB frequencies. Full article
(This article belongs to the Special Issue New Trends in the Modeling and Design of Micro/Nano-Devices)
Show Figures

Figure 1

19 pages, 2101 KB  
Article
Infantile Anemia and Iron Treatments Affect the Gut Microbiome of Young Rhesus Monkeys
by Christopher L. Coe, Gabriele R. Lubach, Wellington Z. Amaral, Gregory J. Phillips, Mark Lyte, Michael K. Georgieff, Raghavendra B. Rao and James R. Connor
Microorganisms 2025, 13(10), 2256; https://doi.org/10.3390/microorganisms13102256 - 26 Sep 2025
Viewed by 354
Abstract
The influence of iron deficiency anemia and iron treatments on the gut microbiome was evaluated in young rhesus monkeys. First, the hindgut bacterial profiles of 12 iron-deficient anemic infants were compared to those of 9 iron-sufficient infants at 6 months of age, a [...] Read more.
The influence of iron deficiency anemia and iron treatments on the gut microbiome was evaluated in young rhesus monkeys. First, the hindgut bacterial profiles of 12 iron-deficient anemic infants were compared to those of 9 iron-sufficient infants at 6 months of age, a time when the risk of anemia is high due to rapid growth. After this screening, the anemic monkeys were treated with either parenteral or enteral iron. Seven monkeys were injected intramuscularly with iron dextran, the typical weekly treatment used in veterinary practice. Four other anemic infants were treated with a novel oral supplement daily: yeast genetically modified to express ferritin. Fecal specimens were analyzed using 16S ribosomal RNA (rRNA) gene amplicon sequencing. Bacterial species richness in anemic infants was not different from that of iron-sufficient infants, but beta diversity and LEfSe analyses of bacterial composition indicated that the microbiota profiles were associated with iron status. Both systemic and oral iron increased alpha and beta diversity metrics. The relative abundance of Ruminococcaceae and other Firmicutes shifted in the direction of an iron-sufficient host, but many different bacteria, including Mollicutes, Tenericutes, and Archaea, were also enriched. Collectively, the findings affirm the important influence of the host’s iron status on commensal bacteria in the gut and concur with clinical concerns about the possibility of adverse consequences after iron supplementation in low-resource settings where children may be carriers of iron-responsive bacterial pathogens. Full article
(This article belongs to the Special Issue Gut Microbiome in Homeostasis and Disease, 3rd Edition)
Show Figures

Graphical abstract

14 pages, 774 KB  
Article
Evaluation of Alpha1 Antitrypsin Deficiency-Associated Mutations in People with Cystic Fibrosis
by Jose Luis Lopez-Campos, Pedro García Tamayo, Maria Victoria Girón, Isabel Delgado-Pecellín, Gabriel Olveira, Laura Carrasco, Rocío Reinoso-Arija, Casilda Olveira and Esther Quintana-Gallego
J. Clin. Med. 2025, 14(19), 6789; https://doi.org/10.3390/jcm14196789 - 25 Sep 2025
Viewed by 291
Abstract
Background: Recent hypotheses suggest that mutations associated with alpha1 antitrypsin (AAT) deficiency (AATD) may influence the clinical presentation and progression of cystic fibrosis (CF). This study employs a longitudinal design to determine the prevalence of AATD mutations and assess their impact on [...] Read more.
Background: Recent hypotheses suggest that mutations associated with alpha1 antitrypsin (AAT) deficiency (AATD) may influence the clinical presentation and progression of cystic fibrosis (CF). This study employs a longitudinal design to determine the prevalence of AATD mutations and assess their impact on CF. Methods: The study Finding AAT Deficiency in Obstructive Lung Diseases: Cystic Fibrosis (FADO-CF) is a retrospective cohort study evaluating people with CF from November 2020 to February 2024. On the date of inclusion, serum levels of AAT were measured and a genotyping of 14 mutations associated with AATD was performed. Historical information, including data on exacerbations, microbiological sputum isolations, and lung function, was obtained from the medical records, aiming at a temporal lag of 10 years. Results: The sample consisted of 369 people with CF (40.9% pediatrics). Of these, 58 (15.7%) cases presented at least one AATD mutation. The AATD allelic combinations identified were PI*MS in 47 (12.7%) cases, PI*MZ in 5 (1.4%) cases, PI*SS in 3 (0.8%) cases, PI*SZ in 2 (0.5%) cases, and PI*M/Plowell in 1 (0.3%) case. The optimal cutoff value for AAT levels to detect AATD-associated mutation carriers was 129 mg/dL in the overall cohort (sensitivity of 73.0%; specificity 69.2%) and 99.5 mg/dL when excluding PI*MS cases (sensitivity 98.0%; specificity 90.9%), highlighting the need for lower thresholds in clinically severe genotypes to improve case detection. The number of mild exacerbations during the follow-up appeared to be associated with AATD mutations. Conclusions: AATD mutations are prevalent in CF and may impact certain clinical outcomes. If systematic screening was to be planned, we recommend considering the proposed cut-off points to select the population for genetic studies. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Clinical Manifestations and Treatment)
Show Figures

Figure 1

21 pages, 1987 KB  
Review
Data-Driven Perovskite Design via High-Throughput Simulation and Machine Learning
by Yidi Wang, Dan Sun, Bei Zhao, Tianyu Zhu, Chengcheng Liu, Zixuan Xu, Tianhang Zhou and Chunming Xu
Processes 2025, 13(10), 3049; https://doi.org/10.3390/pr13103049 - 24 Sep 2025
Viewed by 565
Abstract
Perovskites (ABX3) exhibit remarkable potential in optoelectronic conversion, catalysis, and diverse energy-related fields. However, the tunability of A, B, and X-site compositions renders conventional screening methods labor-intensive and inefficient. This review systematically synthesizes the roles of physical simulations and machine learning [...] Read more.
Perovskites (ABX3) exhibit remarkable potential in optoelectronic conversion, catalysis, and diverse energy-related fields. However, the tunability of A, B, and X-site compositions renders conventional screening methods labor-intensive and inefficient. This review systematically synthesizes the roles of physical simulations and machine learning (ML) in accelerating perovskite discovery. By harnessing existing experimental datasets and high-throughput computational results, ML models elucidate structure-property relationships and predict performance metrics for solar cells, (photo)electrocatalysts, oxygen carriers, and energy-storage materials, with experimental validation confirming their predictive reliability. While data scarcity and heterogeneity inherently limit ML-based prediction of material property, integrating high-throughput computational methods as external mechanistic constraints—supplementing standardized, large-scale training data and imposing loss penalties—can improve accuracy and efficiency in bandgap prediction and defect engineering. Moreover, although embedding high-throughput simulations into ML architectures remains nascent, physics-embedded approaches (e.g., symmetry-aware networks) show increasing promise for enhancing physical consistency. This dual-driven paradigm, integrating data and physics, provides a versatile framework for perovskite design, achieving both high predictive accuracy and interpretability—key milestones toward a rational design strategy for functional materials discovery. Full article
Show Figures

Figure 1

19 pages, 1554 KB  
Article
Newborn Screening of X-Linked Adrenoleukodystrophy in Italy: Clinical and Biochemical Outcomes from a 4-Year Pilot Study
by Eleonora Bonaventura, Fabio Bruschi, Luisella Alberti, Clara Antonello, Filippo Arrigoni, Marina Balestriero, Barbara Borsani, Laura Cappelletti, Elisa Cattaneo, Matilde Ferrario, Giulia Fiore, Maria Iascone, Giana Izzo, Simona Lucchi, Cecilia Parazzini, Michela Perrone Donnorso, Luigina Spaccini, Ylenia Vaia, Pierangelo Veggiotti, Elvira Verduci, Gianvincenzo Zuccotti, Cristina Cereda, Davide Tonduti and XALD-NBS Study Groupadd Show full author list remove Hide full author list
Int. J. Neonatal Screen. 2025, 11(4), 84; https://doi.org/10.3390/ijns11040084 - 24 Sep 2025
Viewed by 532
Abstract
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder, caused by mutations in the ABCD1 gene. Early diagnosis is critical to manage adrenal insufficiency and cerebral forms of the disease. Since 2021, a pilot newborn screening (NBS) program for X-ALD has been launched [...] Read more.
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder, caused by mutations in the ABCD1 gene. Early diagnosis is critical to manage adrenal insufficiency and cerebral forms of the disease. Since 2021, a pilot newborn screening (NBS) program for X-ALD has been launched in Lombardy, Italy. From September 2021 to June 2025, 138,116 newborns (≥37 weeks’ gestational age) were screened for elevated C26:0-lysophosphatidylcholine (C26:0-LPC) levels using a two-tier algorithm. Genetic testing was performed in non-negative cases. Males found to be ABCD1 variant carriers were enrolled in multidisciplinary follow-up, including neurological, endocrinological, and nutritional assessments. Eleven individuals (six males, five females) carried pathogenic or likely pathogenic ABCD1 variants. Three males were diagnosed with adrenal insufficiency and started hydrocortisone therapy between 1 and 2 years of age. Growth parameters were within normal range overall, but two children showed signs of stunting associated with poor dietary compliance. Additionally, three patients were diagnosed with Zellweger spectrum disorders (ZSDs). No patients affected with Aicardi-Goutières Syndrome were identified. Newborn screening for X-ALD in Italy is feasible and enables early detection and intervention. Biochemical markers and genetic analysis are reliable tools for identifying affected males and female carriers. Multidisciplinary management is essential to address medical and psychosocial challenges during follow-up. Full article
Show Figures

Figure 1

13 pages, 1061 KB  
Article
Selenoprotein S and the Causal Risk of Hypertension in Pregnancy: A Mendelian Randomization Study
by Mengqi Cai, Wenrui Lv, Yan He, Weili Liu and Yuzhen Gao
Healthcare 2025, 13(18), 2383; https://doi.org/10.3390/healthcare13182383 - 22 Sep 2025
Viewed by 433
Abstract
Background: Pregnancy-induced hypertension (PIH) affects approximately 10% of pregnancies worldwide, representing a leading cause of maternal and perinatal morbidity and mortality. The relationship between plasma selenium levels and PIH remains controversial, with observational studies limited by confounding factors. Selenoprotein S (SELENOS) has emerged [...] Read more.
Background: Pregnancy-induced hypertension (PIH) affects approximately 10% of pregnancies worldwide, representing a leading cause of maternal and perinatal morbidity and mortality. The relationship between plasma selenium levels and PIH remains controversial, with observational studies limited by confounding factors. Selenoprotein S (SELENOS) has emerged as a potential biomarker for PIH risk. As one of the carrier proteins for dietary selenium, SELENOS plays a crucial role in oxidative stress and inflammatory pathways. However, the causal relationship between the plasma levels of the SELENOS and PIH development remains unclear. This study employed Mendelian randomization (MR) to investigate the causal link between the plasma levels of the SELENOS and PIH risk, providing evidence for preventive strategies. Methods: We conducted a two-sample MR analysis using genome-wide association study (GWAS) summary statistics from the INTERVAL study and FinnGen consortium. The analysis included individuals of European ancestry, utilizing the inverse-variance weighted (IVW) method as the primary approach. Comprehensive sensitivity analyses were performed to address potential pleiotropy and strengthen causal inference. Results: The analysis encompassed 3301 samples for the plasma levels of the SELENOS and 7686 PIH cases, 1109 pre-existing hypertension (PEH) cases, 4255 gestational hypertension (GH) cases, and 83 preeclampsia (PE) cases superimposed on chronic hypertension, alongside approximately 115,000 controls. Genetic variabilities that have been found to be accompanied by elevated levels of plasma selenioprotein levels showed significant associations with increased risk of PIH [odds ratio (OR) 1.078, 95% confidence interval (CI) 1.031–1.126, p = 0.001], PEH (OR 1.232, 95% CI 1.105–1.373, p < 0.001), and GH (OR 1.111, 95% CI 1.047–1.180, p = 0.001), with suggestive associations for preeclampsia superimposed on chronic hypertension (OR 1.590, 95% CI 1.078–2.344, p = 0.019). Conclusions: This study provides robust genetic evidence for a causal relationship between the plasma levels of the SELENOS and PIH risk, establishing SELENOS as a potential modifiable risk factor with significant clinical implications. These findings support the development of personalized selenium management strategies during pregnancy and highlight the potential for early screening and targeted interventions to improve maternal and fetal outcomes. Full article
(This article belongs to the Special Issue Improving Adolescent Girls’ and Women’s Health and Nutrition)
Show Figures

Figure 1

24 pages, 5835 KB  
Article
Study on the Structure-Luminescence Relationship and Anti-Counterfeiting Application of (Ca,Sr)-Al-O Composite Fluorescent Materials
by Jianhui Lv, Jigang Wang, Yuansheng Qi, Jindi Hu, Haiming Li, Chuanming Wang, Xiaohan Cheng, Deyu Pan, Zhenjun Li and Junming Li
Nanomaterials 2025, 15(18), 1446; https://doi.org/10.3390/nano15181446 - 19 Sep 2025
Viewed by 305
Abstract
A novel long-lasting luminescent composite material based on the (Ca,Sr)-Al-O system was synthesized using a solution combustion method. (Ca,Sr)3Al2O6 is the primary phase, with SrAl2O4 as a controllable secondary phase. Compared to conventional single-phase SrAl [...] Read more.
A novel long-lasting luminescent composite material based on the (Ca,Sr)-Al-O system was synthesized using a solution combustion method. (Ca,Sr)3Al2O6 is the primary phase, with SrAl2O4 as a controllable secondary phase. Compared to conventional single-phase SrAl2O4 phosphors, the introduction of a calcium-rich hexaaluminate matrix creates additional defects and a specific trap distribution at the composite interface, significantly improving carrier storage and release efficiency. Eu2+ + Nd3+ synergistic doping enables precise control of the trap depth and number. Under 365 nm excitation, Eu2+ emission is located at ~515 nm, with Nd3+ acting as an effective trap center. Under optimal firing conditions at 700 °C (Eu2+ = 0.02, Nd3+ = 0.003), the afterglow lifetime exceeds 30 s. Furthermore, The (Ca,Sr)3Al2O6 host stabilizes the lattice and optimizes defect states, while synergizing with the SrAl2O4 secondary phase to improve the afterglow performance. This composite phosphor exhibits excellent dual-mode anti-counterfeiting properties: long-lasting green emission under 365 nm excitation and transient blue-violet emission under 254 nm excitation. Based on this, a screen-printing ink was prepared using the phosphor and ethanol + PVB, enabling high-resolution QR code printing. Pattern recognition and code verification can be performed both in the UV on and off states, demonstrating its great potential in high-security anti-counterfeiting applications. Compared to traditional single-phase SrAl2O4 systems, this study for the first time constructed a composite trap engineering of the (Ca,Sr)3Al2O6 primary phase and the SrAl2O4 secondary phase, achieving the integration of dual-mode anti-counterfeiting functionality with a high-resolution QR code fluorescent ink. Full article
Show Figures

Figure 1

12 pages, 1655 KB  
Article
Two-Dimensional Multilayered Ferroelectric with Polarization-Boosted Photocatalytic Hydrogen Evolution
by Yu Peng, Liangyao Li, Yilin Xu, Xing Wang and Yu Hou
Catalysts 2025, 15(9), 910; https://doi.org/10.3390/catal15090910 - 18 Sep 2025
Viewed by 461
Abstract
Ferroelectric materials have attracted great attention for photocatalytic hydrogen (H2) evolution due to their internal depolarization fields that promote carrier separation and directional migration. However, conventional inorganic ferroelectrics often suffer from wide band gaps and low conductivity, limiting their solar-to-hydrogen conversion [...] Read more.
Ferroelectric materials have attracted great attention for photocatalytic hydrogen (H2) evolution due to their internal depolarization fields that promote carrier separation and directional migration. However, conventional inorganic ferroelectrics often suffer from wide band gaps and low conductivity, limiting their solar-to-hydrogen conversion efficiency. Here, we report a two-dimensional (2D) multilayered perovskite ferroelectric, [butylammonium]2[ethylammonium]2Pb3I10 (BAPI), which integrates robust spontaneous polarization (Ps) and excellent semiconductor properties to enable efficient photocatalysis. Under simultaneous light and ultrasonic excitation, BAPI/Pt (1 wt%) achieves a H2 evolution rate of 1256 μmol g−1 h−1, which is twice that under light alone, due to dynamic polarization modulation that mitigates ionic screening and enhances internal electric fields. Notably, this enhancement vanishes when BAPI transitions to a centrosymmetric, nonpolar phase at 323 K, confirming the critical role of Ps. These findings offer a new pathway toward high-performance ferroelectric photocatalysts for solar hydrogen production. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

12 pages, 225 KB  
Review
Haematologists as Genetic Counsellors for Haemoglobinopathies: Are They Prepared?
by Michael Angastiniotis and Androulla Eleftheriou
Hematol. Rep. 2025, 17(5), 48; https://doi.org/10.3390/hematolrep17050048 - 15 Sep 2025
Viewed by 419
Abstract
Background/Objectives: In haematology, a wide range of blood disorders are hereditary. The thalassaemias are hereditary anaemias characterised by a high burden of disease at the public health level, challenging the resources of many health systems. This review focuses on thalassaemias for which [...] Read more.
Background/Objectives: In haematology, a wide range of blood disorders are hereditary. The thalassaemias are hereditary anaemias characterised by a high burden of disease at the public health level, challenging the resources of many health systems. This review focuses on thalassaemias for which many countries have developed screening and prevention programmes. To manage this heavy burden, two approaches were introduced over the years. The first one focused on reducing the annual affected births consequent to appropriate non-directive genetic counselling, offering to the parents the chance to make an informed choice concerning their reproductive lives. The second approach was related to the development of curative treatments such as haematopoietic stem cell transplantation (HSCT) in the early years, with continued ongoing efforts for improvements, followed by successful advances in gene-based holistic cures in more recent years. Genetic counselling is a vital component in successful prevention, aiming at informing individuals who are found to be carriers and couples who are both carriers with a 25% risk at every pregnancy of having an affected child in the case of recessive, Mendelian inheritance. The issues are many, and that may have to be discussed, highlighting the level of skills which a genetic counsellor is expected to possess and utilise appropriately in every counselling session. The concern is that such trained and skilled professionals are few in number and not well integrated into the multidisciplinary groups addressing the control of these complex disorders. It is our experience that for blood disorders, counselling is rarely in the hands of qualified scientists. It is our firm belief that it is necessary to incorporate genetic counselling as an integral part of haematology services. Methods: To investigate current practices we have drawn on the experience of existing programmes, as well as published literature. Results: Currently, in almost all haemoglobinopathy prevention programmes, counselling is offered by the clinicians in charge of clinical care or, in some settings, by the nurse of the clinic or the screening laboratory scientist. Conclusions: The Thalassaemia International Federation suggests and is in the process of developing special training in counselling as part of haematology training, as well as professional development modules for those already in practice. Considering the complexity of the issues that must be discussed, a multidisciplinary approach to counselling should be considered where possible. Full article
(This article belongs to the Special Issue Anaemia in Focus: Challenges and Solutions in Haematology)
Back to TopTop