Evaluation of Alpha1 Antitrypsin Deficiency-Associated Mutations in People with Cystic Fibrosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Laboratory Tests
2.2. Data Processing and Analysis
3. Results
3.1. Prevalence of AAT Alleles
3.2. Association of AAT Mutations with CF Clinical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAT | Alpha1 antitrypsin |
AATD | Alpha1 antitrypsin deficiency |
CF | Cystic Fibrosis |
CRP | C-reactive protein |
FADO-CF | Finding AAT Deficiency in Obstructive Lung Diseases: Cystic Fibrosis |
FEV1 | Forced expiratory volume in one second |
pwCF | people with CF |
ROC | receiver operating characteristic |
References
- Calle Rubio, M.; Lopez-Campos, J.L.; Miravitlles, M.; Soler Cataluna, J.J.; Alcazar Navarrete, B.; Fuentes Ferrer, M.E.; Rodriguez Hermosa, J.L. Variations in chronic obstructive pulmonary disease outpatient care in respiratory clinics: Results from the 2021 epoconsul audit. Arch. Bronconeumol. 2023, 59, 295–304. [Google Scholar] [CrossRef]
- Blanco, I.; Diego, I.; Castañón, C.; Bueno, P.; Miravitlles, M. Estimated worldwide prevalence of the pi*zz alpha-1 antitrypsin genotype in subjects with chronic obstructive pulmonary disease. Arch. Bronconeumol. 2023, 59, 427–434. [Google Scholar] [CrossRef]
- Dey, T.; Kalita, J.; Weldon, S.; Taggart, C.C. Proteases and their inhibitors in chronic obstructive pulmonary disease. J. Clin. Med. 2018, 7, 244. [Google Scholar] [CrossRef]
- McElvaney, N.G. Alpha-1 antitrypsin therapy in cystic fibrosis and the lung disease associated with alpha-1 antitrypsin deficiency. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. S2), S191–S196. [Google Scholar] [CrossRef]
- Zorzo, C.; Girón, R.M.; Hernández, S.; Gómez-Punter, R.M.; Caballero, P. Association between evolution of mucus plugging, parenchymal alterations and air trapping on computed tomography and risk of exacerbations in adults with cystic fibrosis. Arch. Bronconeumol. 2022, 58, 575–577. [Google Scholar] [CrossRef]
- Regard, L.; Martin, C.; Burgel, P.R. Cystic fibrosis in 2021: “The times they are a-changin”. Arch. Bronconeumol. 2022, 58, 536–538. [Google Scholar] [CrossRef]
- Aliberti, S.; Gramegna, A.; Seia, M.; Malvestiti, F.; Mantero, M.; Sotgiu, G.; Simonetta, E.; Prati, D.; Paganini, S.; Ferrarotti, I.; et al. Alpha(1)-antitrypsin inherited variants in patients with bronchiectasis. Arch. Bronconeumol. 2023, 59, 401–402. [Google Scholar] [CrossRef] [PubMed]
- Doring, G.; Krogh-Johansen, H.; Weidinger, S.; Hoiby, N. Allotypes of alpha 1-antitrypsin in patients with cystic fibrosis, homozygous and heterozygous for deltaf508. Pediatr. Pulmonol. 1994, 18, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Mahadeva, R.; Stewart, S.; Bilton, D.; Lomas, D.A. Alpha-1 antitrypsin deficiency alleles and severe cystic fibrosis lung disease. Thorax 1998, 53, 1022–1024. [Google Scholar] [CrossRef] [PubMed]
- Mahadeva, R.; Westerbeek, R.C.; Perry, D.J.; Lovegrove, J.U.; Whitehouse, D.B.; Carroll, N.R.; Ross-Russell, R.I.; Webb, A.K.; Bilton, D.; Lomas, D.A. Alpha1-antitrypsin deficiency alleles and the taq-i g-->a allele in cystic fibrosis lung disease. Eur. Respir. J. 1998, 11, 873–879. [Google Scholar] [CrossRef]
- Meyer, P.; Braun, A.; Roscher, A.A. Analysis of the two common alpha-1-antitrypsin deficiency alleles pims and pimz as modifiers of pseudomonas aeruginosa susceptibility in cystic fibrosis. Clin. Genet. 2002, 62, 325–327. [Google Scholar] [CrossRef]
- Frangolias, D.D.; Ruan, J.; Wilcox, P.J.; Davidson, A.G.; Wong, L.T.; Berthiaume, Y.; Hennessey, R.; Freitag, A.; Pedder, L.; Corey, M.; et al. Alpha 1-antitrypsin deficiency alleles in cystic fibrosis lung disease. Am. J. Respir. Cell Mol. Biol. 2003, 29, 390–396. [Google Scholar] [CrossRef]
- Bhalla, M.; Turcios, N.; Aponte, V.; Jenkins, M.; Leitman, B.S.; McCauley, D.I.; Naidich, D.P. Cystic fibrosis: Scoring system with thin-section ct. Radiology 1991, 179, 783–788. [Google Scholar] [CrossRef]
- Polverino, E.; Goeminne, P.C.; McDonnell, M.J.; Aliberti, S.; Marshall, S.E.; Loebinger, M.R.; Murris, M.; Canton, R.; Torres, A.; Dimakou, K.; et al. European respiratory society guidelines for the management of adult bronchiectasis. Eur. Respir. J. 2017, 50, 1700629. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Campos, J.L.; Casas-Maldonado, F.; Torres-Duran, M.; Medina-Gonzalvez, A.; Rodriguez-Fidalgo, M.L.; Carrascosa, I.; Calle, M.; Osaba, L.; Rapun, N.; Drobnic, E.; et al. Results of a diagnostic procedure based on multiplex technology on dried blood spots and buccal swabs for subjects with suspected alpha1 antitrypsin deficiency. Arch. Bronconeumol. (Engl. Ed.) 2021, 57, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Reinoso-Arija, R.; Proano, C.; Ruiz-Serrano, R.; Nunez Ollero, D.; Ruiz-Duque, B.; Ortega Ruiz, F.; Marquez Martin, E.; Carrasco Hernandez, L.; Lopez-Campos, J.L. [results of the implementation of a case-finding program for alpha-1 antitrypsin deficiency in copd patients]. Open Respir. Arch. 2023, 5, 100251. [Google Scholar] [CrossRef] [PubMed]
- Sanders, C.L.; Ponte, A.; Kueppers, F. The effects of inflammation on alpha 1 antitrypsin levels in a national screening cohort. COPD J. Chronic Obstr. Pulm. Dis. 2018, 15, 10–16. [Google Scholar] [CrossRef]
- Hernández-Pérez, J.M.; Martín-González, E.; González-Carracedo, M.A. Alpha-1 antitrypsin deficiency and serpina1 variants could play a role in asthma exacerbations. Arch. Bronconeumol. 2023, 59, 416–417. [Google Scholar] [CrossRef]
- Jiménez-Gómez, M.; Díaz Campos, R.M.; Diab Cáceres, L. Cystic fibrosis-asthma overlap syndrome. Combination of cystic fibrosis transmembrane conductance regulator modulators and type 2 targeted biologic treatment for asthma. Arch. Bronconeumol. 2023, 59, 512–513. [Google Scholar] [CrossRef]
- Parr, D.G.; Chorostowska-Wynimko, J.; Corsico, A.; Esquinas, C.; McElvaney, G.N.; Sark, A.D.; Sucena, M.; Tanash, H.; Turner, A.M.; Miravitlles, M. Impact of COVID-19 in patients with severe alpha-1 antitrypsin deficiency: The imca1 study of the earco clinical research collaboration. Arch. Bronconeumol. 2022, 58, 840–842. [Google Scholar] [CrossRef]
- Martín, T.; Guimarães, C.; Esquinas, C.; Torres-Duran, M.; Turner, A.M.; Tanash, H.; Rodríguez-García, C.; Corsico, A.; López-Campos, J.L.; Bartošovská, E.; et al. Risk of lung disease in the pi*ss genotype of alpha-1 antitrypsin: An earco research project. Respir. Res. 2024, 25, 260. [Google Scholar] [CrossRef] [PubMed]
- Blanco, I.; de Serres, F.J.; Fernandez-Bustillo, E.; Lara, B.; Miravitlles, M. Estimated numbers and prevalence of pi*s and pi*z alleles of alpha1-antitrypsin deficiency in european countries. Eur. Respir. J. 2006, 27, 77–84. [Google Scholar] [CrossRef]
- de Serres, F.J.; Blanco, I. Prevalence of alpha1-antitrypsin deficiency alleles pi*s and pi*z worldwide and effective screening for each of the five phenotypic classes pi*ms, pi*mz, pi*ss, pi*sz, and pi*zz: A comprehensive review. Ther. Adv. Respir. Dis. 2012, 6, 277–295. [Google Scholar] [CrossRef]
- Carrasco Hernández, L.; Girón Moreno, R.M.; Peláez, A.; Gómez Bonilla, A.; Gómez Crespo, B.; Diab Cáceres, L.; Tejedor Ortiz, M.T.; García Clemente, M.; Solís García, M.; González Torres, L.; et al. Real life with tezacaftor and ivacaftor in adult patients with cystic fibrosis: Spanish multicenter study. Arch. Bronconeumol. 2022, 58, 672–674. [Google Scholar] [CrossRef]
- Madrid Carbajal, C.; Palomo, B.; García Clemente, M. Radiological changes after treatment with triple therapy in cystic fibrosis. Are bronchiectasis irreversible? Arch. Bronconeumol. 2023, 59, 118. [Google Scholar] [CrossRef] [PubMed]
- Boëlle, P.Y.; Debray, D.; Guillot, L.; Corvol, H. Serpina1 z allele is associated with cystic fibrosis liver disease. Genet. Med. 2019, 21, 2151–2155. [Google Scholar] [CrossRef] [PubMed]
- Amati, F.; Gramegna, A.; Contarini, M.; Stainer, A.; Curcio, C.; Aliberti, S.; Corsico, A.G.; Blasi, F. Genetic and serum screening for alpha-1-antitrypsin deficiency in adult patients with cystic fibrosis: A single-center experience. Biomedicines 2022, 10, 3248. [Google Scholar] [CrossRef] [PubMed]
- Scioscia, G.; Santacroce, R.; Tondo, P.; Hoxhallari, A.; Soccio, P.; Giuffreda, E.; D’Ambrosio, M.F.; Leccese, A.; Paladini, L.; Natale, M.P.; et al. A report on a targeted screening population for alpha-1-antitrypsin deficiency (aatd) in central-southern italy. Arch. Bronconeumol. 2024, 60, 595–597. [Google Scholar] [CrossRef]
- Ersöz, H.; Torres-Durán, M.; Turner, A.M.; Tanash, H.; Rodríguez García, C.; Corsico, A.G.; López-Campos, J.L.; Miravitlles, M.; Clarenbach, C.F.; Chapman, K.R.; et al. Sex-differences in alpha-1 antitrypsin deficiency: Data from the earco registry. Arch. Bronconeumol. 2025, 61, 22–30. [Google Scholar] [CrossRef]
- Fähndrich, S.; Herr, C.; Greulich, T.; Seibert, M.; Lepper, P.M.; Bernhard, N.; Lützow, C.; Vogelmeier, C.; Bals, R. Sex differences in alpha-1-antitrypsin deficiency lung disease-analysis from the german registry. COPD J. Chronic Obstr. Pulm. Dis. 2015, 12 (Suppl. S1), 58–62. [Google Scholar] [CrossRef]
- Lam, G.Y.; Goodwin, J.; Wilcox, P.G.; Quon, B.S. Sex disparities in cystic fibrosis: Review on the effect of female sex hormones on lung pathophysiology and outcomes. ERJ Open Res. 2021, 7, 00475-2020. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.H.; Gallins, P.J.; Pace, R.G.; Dang, H.; Aksit, M.A.; Blue, E.E.; Buckingham, K.J.; Collaco, J.M.; Faino, A.V.; Gordon, W.W.; et al. Genetic modifiers of cystic fibrosis lung disease severity: Whole-genome analysis of 7840 patients. Am. J. Respir. Crit. Care Med. 2023, 207, 1324–1333. [Google Scholar] [CrossRef] [PubMed]
- Kueppers, F. Predictaat: Accounting for inflammation in the diagnosis of alpha 1 antitrypsin deficiency. COPD J. Chronic Obstr. Pulm. Dis. 2020, 17, 619–622. [Google Scholar] [CrossRef] [PubMed]
Variable | No AATD (n = 311) | Any AATD Mutation (n = 58) | p Value * |
---|---|---|---|
Age (years) | 22.9 (14.2) | 24.3 (16.9) | 0.243 |
Pediatric (<18 y.) cases (n) | 129 (41.5) | 22 (37.9) | 0.614 |
Gender (male) | 155 (49.8) | 21 (36.2) | 0.056 |
Never smokers (n) | 293 (94.2) | 56 (96.6) | 0.350 |
Tobacco history (pack-years) | 11.7 (9.7) | 20.0 (14.1) | 0.143 |
Age upon CF diagnosis (years) | 6.3 (11.9) | 7.8 (14.1) | 0.187 |
CF mutations (n): | 0.073 | ||
F508del homozygous | 85 (27.4) | 14 (24.1) | |
F508del heterozygous | 156 (50.3) | 23 (39.7) | |
Other | 69 (22.3) | 21 (36.2) | |
Body mass index (kg/m2) | 20.7 (4.3) | 21.0 (4.1) | 0.315 |
FVC (liters) | 3.1 (1.2) | 2.8 (1.0) | 0.084 |
FVC (%) | 90.9 (18.6) | 85.6 (31.9) | 0.063 |
FEV1 (liters) | 2.2 (0.9) | 2.0 (0.7) | 0.043 |
FEV1 (%) | 77.3 (24.6) | 74.0 (24.6) | 0.378 |
Chronic bronchial infection (n) | 188 (60.3) | 32 (56.1) | 0.453 |
CFTR modulators (n) | 161 (51.8) | 19 (32.8) | 0.008 |
Study | Population | PI*MS | PI*MZ | PI*SS | PI*SZ | Other |
---|---|---|---|---|---|---|
Döring G et al. Pediatr Pulmonol 1994 [8] | 215 pwCF | 17 (7.9%) | 10 (4.6) | 1 (0.4%) | – | – |
Mahadeva R et al. Thorax 1998 [9] * | 79 pwCF | 4 (5.0%) | 1 (1.2%) | – | – | – |
Mahadeva R et al. Eur Respir J 1998 [10] | 147 pwCF | 16 (10.1%) | 3 (1.9%) | 1 (0.6%) | – | – |
Meyer P et al. Clin Genet 2002 [11] | 269 pwCF | 16 (6%) | 5 (1.9%) | – | – | – |
Frangolias DD et al. Am J Respir Cell Mol Biol 2003 [12] | 716 pwCF | 69 (9.6%) | 18 (2.5%) | 13 (1.8%) | – | – |
Amati F et al. Biomedicines 2022 [28] | 173 pwCF | 9 (5.2%) | – | – | – | – |
Current study | 369 pwCF | 47 (12.7%) | 5 (1.4%) | 3 (0.8%) | 2 (0.5%) | PI*M/Plowell 1 (0.3%) |
Pooled analysis | 1889 pwCF * | 174 (9.2%) | 42 (2.2%) | 17 (0.8%) | 2 (0.1%) | 1 (0.05%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Campos, J.L.; García Tamayo, P.; Girón, M.V.; Delgado-Pecellín, I.; Olveira, G.; Carrasco, L.; Reinoso-Arija, R.; Olveira, C.; Quintana-Gallego, E. Evaluation of Alpha1 Antitrypsin Deficiency-Associated Mutations in People with Cystic Fibrosis. J. Clin. Med. 2025, 14, 6789. https://doi.org/10.3390/jcm14196789
Lopez-Campos JL, García Tamayo P, Girón MV, Delgado-Pecellín I, Olveira G, Carrasco L, Reinoso-Arija R, Olveira C, Quintana-Gallego E. Evaluation of Alpha1 Antitrypsin Deficiency-Associated Mutations in People with Cystic Fibrosis. Journal of Clinical Medicine. 2025; 14(19):6789. https://doi.org/10.3390/jcm14196789
Chicago/Turabian StyleLopez-Campos, Jose Luis, Pedro García Tamayo, Maria Victoria Girón, Isabel Delgado-Pecellín, Gabriel Olveira, Laura Carrasco, Rocío Reinoso-Arija, Casilda Olveira, and Esther Quintana-Gallego. 2025. "Evaluation of Alpha1 Antitrypsin Deficiency-Associated Mutations in People with Cystic Fibrosis" Journal of Clinical Medicine 14, no. 19: 6789. https://doi.org/10.3390/jcm14196789
APA StyleLopez-Campos, J. L., García Tamayo, P., Girón, M. V., Delgado-Pecellín, I., Olveira, G., Carrasco, L., Reinoso-Arija, R., Olveira, C., & Quintana-Gallego, E. (2025). Evaluation of Alpha1 Antitrypsin Deficiency-Associated Mutations in People with Cystic Fibrosis. Journal of Clinical Medicine, 14(19), 6789. https://doi.org/10.3390/jcm14196789