Detection of Leishmania DNA in Ticks and Fleas from Dogs and Domestic Animals in Endemic Algerian Provinces
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Collection
2.3. Morphological Identification of Ticks and Fleas
2.3.1. Tick Identification
2.3.2. Flea Identification
2.4. Leishmania Molecular Detection
2.5. Statistical Analysis
2.5.1. Multivariable Analysis of Factors Associated with Leishmania DNA Detection in Ectoparasites
2.5.2. Logistic Regression Model
2.6. Ethical Considerations
3. Results
3.1. Morphological Identification of Ticks and Fleas
3.1.1. Geographic Distribution
3.1.2. Host Distribution
3.1.3. Species Composition and Prevalence
3.2. Detection of Leishmania DNA in Ectoparasites
3.2.1. Leishmania DNA Prevalence by Ectoparasite Species and Host Animal
3.2.2. Geographic Variation in Leishmania DNA Detection Rate
3.2.3. Host Specific Leishmania DNA Detection Patterns
3.2.4. Influence of Arthropod Sex on Leishmania DNA Detection Rate
3.2.5. Logistic Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAAES | Algerian Association for Animal Experimentation Sciences |
ANOVA | Analysis of variance |
bp | base pair(s) |
CanL | Canine leishmaniasis |
CCL | Chronic cutaneous leishmaniasis |
CI | Confidence interval |
CL | Cutaneous leishmaniasis |
CTAB | Cetyltrimethylammonium bromide |
DNA | Deoxyribonucleic acid |
GPS | Global Positioning System |
ITS1 | Internal transcribed spacer 1 |
KOH | Potassium hydroxide |
(L.) | Leishmania (genus abbreviation) |
OR | Odds ratio |
PCR | Polymerase chain reaction |
qPCR | Quantitative polymerase chain reaction |
RFLP | Restriction fragment length polymorphism |
s.l. | sensu lato (in the broad sense) |
s.s. | sensu stricto (in the strict sense) |
spp. | multiple species within a genus |
SCL | Sporadic cutaneous leishmaniasis |
TE (buffer) | Tris–EDTA buffer |
UV | Ultraviolet |
VL | Visceral leishmaniasis |
WHO | World Health Organization |
ZCL | Zoonotic cutaneous leishmaniasis |
References
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M.; WHO Leishmaniasis Control Team. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Ruiz-Postigo, J.A.; Jain, S.; Mikhailov, A.; Maia-Elkhoury, A.N.; Valadas, S.; Warusavithana, S.; Osman, M.; Lin, Z.; Beshah, A.; Yajima, A. Global leishmaniasis surveillance/Surveillance mondiale de la leishmaniose: 2019–2020, une période de reference pour la feuille de route a l’horizon 2030. 2019–2020, a baseline for the 2030 roadmap. World Health Organ. Wkly. Epidemiol. Rec. 2021, 96, 401–420. [Google Scholar]
- Assimina, Z.; Charilaos, K.; Fotoula, B. Leishmaniasis: An overlooked public health concern. Health Sci. J. 2008, 2, 196–205. [Google Scholar]
- Lemma, W.; Bizuneh, A.; Tekie, H.; Belay, H.; Wondimu, H.; Kassahun, A.; Shiferaw, W.; Balkew, M.; Abassi, I.; Baneth, G.; et al. Preliminary study on investigation of zoonotic visceral leishmaniasis in endemic foci of Ethiopia by detecting Leishmania infections in rodents. Asian Pac. J. Trop. Med. 2017, 10, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Dedet, J.P.; Addadi, K.; Belazzoug, S. Les phlébotomes (Diptera, Psychodidae) d’Algérie. Cahiers-ORSTOM. Entomol. Médicale Et Parasitol. 1984, 22, 99–127. [Google Scholar]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis–authors’ reply. Lancet 2019, 393, 872–873. [Google Scholar] [CrossRef]
- Eddaikra, N.; Ait-Oudhia, K.; Kherrachi, I.; Oury, B.; Moulti-Mati, F.; Benikhlef, R.; Harrat, Z.; Sereno, D. Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria. PLoS Negl. Trop. Dis. 2018, 12, e0006310. [Google Scholar] [CrossRef]
- Benikhlef, R.; Aoun, K.; Boudrissa, A.; Ben Abid, M.; Cherif, K.; Aissi, W.; Benrekta, S.; Boubidi, S.C.; Späth, G.F.; Bouratbine, A.; et al. Cutaneous leishmaniasis in Algeria; highlight on the focus of M’Sila. Microorganisms 2021, 9, 962. [Google Scholar] [CrossRef]
- Eddaikra, N.; Benikhlef, R.; Sereno, D. A Century of Epidemiological Advances in Cutaneous and Visceral Leishmaniasis in Algeria. J. Parasitol. Res. 2025, 2025, 2102270. [Google Scholar] [CrossRef]
- Boubou, N. Etude géodemographique et climatique de la problématique de l’eau en algerie. Geodemographic’s and climate’s study of water’s problems in algeria. Le J. De L’eau Et De L’environnement 2015, 14, 48–61. [Google Scholar]
- Randa, G.; Samir, Z.; Hamid, B. Association between climatic changes and leishmaniasis incidence in Biskra district, Algeria. J. Entomol. Zool. Stud. 2017, 5, 43–49. [Google Scholar]
- Bounoua, L.; Kahime, K.; Houti, L.; Blakey, T.; Ebi, K.L.; Zhang, P.; Imhoff, M.L.; Thome, K.J.; Dudek, C.; Sahabi, S.A. Linking Climate to Incidence of Zoonotic Cutaneous Leishmaniasis (L. major) in Pre-Saharan North Africa. Int. J. Environ. Res. Public Health 2013, 10, 3172–3191. [Google Scholar] [CrossRef] [PubMed]
- Wenyon, C.M. The transmission of leishmania infections: A review. Trans. R. Soc. Trop. Med. Hyg. 1932, 25, 319–348. [Google Scholar] [CrossRef]
- Bayon, H. Demonstration of specimens relating to the transmission of artificial cultures of Leishmania infantum to mice and rats. Br. Med. J. 1912, 2, 1197–1199. [Google Scholar]
- Adler, S.; Theodor, O. The experimental transmission of cutaneous leishmaniasis to man from Phlebotomus papatasii. Ann. Trop. Med. Parasitol. 1925, 19, 365–371. [Google Scholar] [CrossRef]
- Sergent, E.; Sergent, E.; Parrot, L.; Donatien, A.; Beguet, M.; Sergent, E. Transmission du clou de Biskra par le phlébotome (Phlebotomus papatasi Scop.). CR Acad. Sci. 1921, 173, 1030–1032. [Google Scholar]
- Wenyon, C.M. Experiments on the Behaviour of Leishmania and allied Flagellates in Bugs and Fleas, with some Remarks on Previous Work. J. Lond. Sch. Trop. Med. 1912, 2, 13–26. [Google Scholar]
- Dantas-Torres, F. Ticks as vectors of Leishmania parasites. Trends Parasitol. 2011, 27, 155–159. [Google Scholar] [CrossRef]
- Rioux, J.A.; Lanotte, G.; Croset, H.; Houin, R.; Guy, Y.; Debet, J.P. Ecology of leishmaniasis in the south of France. 3. Comparison of susceptibility of Phlebotomus ariasi and Rhipicephalus turanicus to infection by Leishmania donovani. Ann. De Parasitol. Hum. Et Comp. 1972, 47, 147–157. [Google Scholar] [CrossRef]
- Blanc, G.; Caminopetros, J. Transmission of Mediterranean EA by a Tick. Compte Rendu De L’academie Des Sci. 1930, 191, 1162–1164. [Google Scholar]
- Gherbi, R.; Bounechada, M.; Latrofa, M.S.; Annoscia, G.; Tarallo, V.D.; Dantas-Torres, F.; Otranto, D. Phlebotomine sand flies and Leishmania species in a focus of cutaneous leishmaniasis in Algeria. PLoS Negl. Trop. Dis. 2020, 14, e0008024. [Google Scholar] [CrossRef] [PubMed]
- Harrat, Z.; Pratlong, F.; Belazzoug, S.; Dereure, J.; Deniau, M.; Rioux, J.A.; Belkaid, M.; Dedet, J.P. Leishmania infantum and L. major in Algeria. Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.G.; Fattori, K.R.; Souza, F.; Lima, V.M. Potential role for dog fleas in the cycle of Leishmania spp. Vet. Parasitol. 2009, 165, 150–154. [Google Scholar] [CrossRef]
- Malamos, B. Experiments with Leishmania. IV. Experiments in the Transmission of Kala-azar by Ticks, R. sanguineus. Arch. Fur Schiffs-Und Tropenhygiene 1938, 42, 22–23. [Google Scholar]
- McKenzie, K.K. A Study of the Transmission of Canine Leishmaniasis by the Tick, Rhipicephalus sanguineus (Latreille), and an Ultrastructural Comparison of the Promastigotes (Arthropod, Biological); Oklahoma State University: Stillwater, OK, USA, 1984. [Google Scholar]
- Dantas-Torres, F.; Lorusso, V.; Testini, G.; de Paiva-Cavalcanti, M.; Figueredo, L.A.; Stanneck, D.; Mencke, N.; Brandão-Filho, S.P.; Alves, L.C.; Otranto, D. Detection of Leishmania infantum in Rhipicephalus sanguineus ticks from Brazil and Italy. Parasitol. Res. 2010, 106, 857–860. [Google Scholar] [CrossRef]
- Coutinho, M.T.; Bueno, L.L.; Sterzik, A.; Fujiwara, R.T.; Botelho, J.R.; De Maria, M.; Genaro, O.; Linardi, P.M. Participation of Rhipicephalus sanguineus (Acari: Ixodidae) in the epidemiology of canine visceral leishmaniasis. Vet. Parasitol. 2005, 128, 149–155. [Google Scholar] [CrossRef]
- Coutinho, M.T.; Linardi, P.M. Can fleas from dogs infected with canine visceral leishmaniasis transfer the infection to other mammals? Vet. Parasitol. 2007, 147, 320–325. [Google Scholar] [CrossRef]
- Azarm, A.; Dalimi, A.; Mohebali, M.; Mohammadiha, A.; Pirestani, M.; Zarei, Z.; Zahraei-Ramazani, A. Molecular Identification of Leishmania infantum kDNA in Naturally Infected Dogs and Their Fleas in an Endemic Focus of Canine Visceral Leishmaniasis in Iran. J. Arthropod Borne Dis. 2022, 16, 243. [Google Scholar] [CrossRef]
- Kernif, T.; Medrouh, B.; Eddaikra, N.; Oury, B.; Holzmuller, P.; Sereno, D. Ticks as vectors of Trypanosomatidae with medical or veterinary interest: Insights and implications from a comprehensive systematic review and meta-analysis. Heliyon 2024, 10, e40895. [Google Scholar] [CrossRef]
- Dantas-Torres, F. Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasites Vectors 2010, 3, 26. [Google Scholar] [CrossRef]
- Paz, G.F.; Ribeiro, M.F.; Michalsky, E.M.; da Rocha Lima, A.C.; França-Silva, J.C.; Barata, R.A.; Fortes-Dias, C.L.; Dias, E.S. Evaluation of the vectorial capacity of Rhipicephalus sanguineus (Acari: Ixodidae) in the transmission of canine visceral leishmaniasis. Parasitol. Res. 2010, 106, 523–528. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Rossi, L.; Scroccaro, A.M.; Montarsi, F.; Caldin, M.; Furlanello, T.; Trotta, M. Detection of Leishmania infantum DNA mainly in Rhipicephalus sanguineus male ticks removed from dogs living in endemic areas of canine leishmaniosis. Parasites Vectors 2012, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Trotta, M.; Nicetto, M.; Fogliazza, A.; Montarsi, F.; Caldin, M.; Furlanello, T.; Solano-Gallego, L. Detection of Leishmania infantum, Babesia canis, and rickettsiae in ticks removed from dogs living in Italy. Ticks Tick Borne Dis. 2012, 3, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C.A.; Barr, S.C. Canine leishmaniasis in North America: Emerging or newly recognized? Vet. Clin. N. Am. Small Anim. Pract. 2009, 39, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Benikhlef, R.; Harrat, Z.; Aoun, K. Epidemiological profile of cutaneous leishmaniasis due to Leishmania tropica in Algeria and Tunisia. J. Biol. Méd. 2019, 8, 215–223. [Google Scholar]
- Belkacemi, S.; Ouazzi, L. Etude Rétrospective Des Cas Des Leishmanioses Cutanée et Viscérale Entre 2007 et 2015 Dans La Région de Tizi-Ouzou et Etude de Six Cas de la Leishmaniose Cutanée Diagnostiqués au CHU de Belloua. Ph.D. Dissertation, Université Mouloud Mammeri, Tizi Ouzou, Algeria, 2016. [Google Scholar]
- Mouloua, A.; Boubidi, S.C.; Bouiba, L.; Mezai, G.; Madiou, M.; Harrat, Z. Environmental impact on the distribution of leishmaniasis in the focus of Tizi-Ouzou (Algeria). Rev. Méd. Vét. 2017, 168, 252–261. [Google Scholar]
- Moulinier, C. Parasitologie et Mycologie Médicales: Eléments de Morphologie et de Biologie; Arthropodes. Champignons ou mycètes: Hors texte couleur. Troisième partie. Quatrième partie. Éditions Médicales Internationales; Tec & Doc Lavoisier: Cachan, France, 2002; p. 2743004886. [Google Scholar]
- Walker, A.R.; Bouattour, A.; Camica, J.L.; Estrada-Pena, A.; Horak, I.G.; Latif, A.A.; Pegram, R.G.; Preston, P.M. Ticks of Domestic Animals in Africa: A Guide to Identification of Species; Bioscience Reports Edinburgh: Edinburgh, UK, 2003; Volume 74. [Google Scholar]
- Duchemin, J.B. Biogéographie des Puces de Madagascar. Ph.D. Dissertation, Paris-East Créteil University (UPEC), Créteil, France, 2003; 253p. [Google Scholar]
- Beaucournu, J.C.; Launay, H. Les puces (Siphonaptera) de France et du Bassin Méditerranéen Occidental; Fédération Française des Sociétés de Sciences Naturelles: Paris, France, 1990. [Google Scholar]
- Estrada-Peña, A. Ticks of Domestic Animals in the Mediterranean Region: A Guide to Identification of Species; University of Zaragoza: Zaragoza, Spain, 2004. [Google Scholar]
- Šlapeta, J.; Chandra, S.; Halliday, B. The tropical lineage of the brown dog tick Rhipicephalus sanguineus sensu lato identified as Rhipicephalus linnaei (Audouin, 1826). Int. J. Parasitol. 2021, 51, 431–436. [Google Scholar] [CrossRef]
- Lodhi, M.A.; Ye, G.N.; Weeden, N.F.; Reisch, B.I. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol. Biol. Rep. 1994, 12, 6–13. [Google Scholar] [CrossRef]
- Schonian, G.; Nasereddin, A.; Dinse, N.; Schweynoch, C.; Schallig, H.D.; Presber, W.; Jaffe, C.L. PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn. Microbiol. Infect. Dis. 2003, 47, 349–358. [Google Scholar] [CrossRef]
- Kebbi, R.; Nait-Mouloud, M.; Hassissen, L.; Ayad, A. Seasonal activity of ticks infesting domestic dogs in Bejaia province, Northern Algeria. Onderstepoort J. Vet. Res. 2019, 86, e1–e6. [Google Scholar] [CrossRef]
- Djouaher, T.; Chahed, S.; Beneldjouzi, A.; Eddaikra, N.; Brahmi, K. Diversity of hard tick (Acari: Ixodidae) infesting small ruminants in some breeding farms in Tizi-Ouzou area (Northern Algeria). Bull. De La Société R. Des Sci. De Liège 2023, 92, 53–70. [Google Scholar] [CrossRef]
- Benikhlef, R.; Harrat, Z.; Toudjine, M.; Djerbouh, A.; Bendali-Braham, S.; Belkaid, M. Detection of Leishmania infantum MON-24 in the dog. Med. Trop. 2004, 64, 381–383. [Google Scholar]
- Benikhlef, R.; Aoun, K.; Bedoui, K.; Harrat, Z.; Bouratbine, A. First identifications of Leishmania infantum MON-80 in dogs in Algeria and Tunisia. Rev. Méd. Vét. 2009, 160, 460–462. [Google Scholar]
- Sidhoum, N.R.; Boucheikhchoukh, M.; Mechouk, N.; Deak, G. An overview of fleas (Siphonaptera) in wild and domestic mammals from Algeria with new data from the central north and south of the country. Acta Trop. 2023, 247, 107004. [Google Scholar] [CrossRef] [PubMed]
- Bitam, I.; Parola, P.; De La Cruz, K.D.; Matsumoto, K.; Baziz, B.; Rolain, J.M.; Belkaid, M.; Raoult, D. First molecular detection of Rickettsia felis in fleas from Algeria. Am. J. Trop. Med. Hyg. 2006, 74, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Mans, B.J. Paradigms in tick evolution. Trends Parasitol. 2023, 39, 475–486. [Google Scholar] [CrossRef]
- Durden, L.A.; Hinkle, N.C. Chapter 10—Fleas (Siphonaptera). In Medical and Veterinary Entomology, 3rd ed.; Mullen, G.R., Durden, L.A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 145–169. [Google Scholar] [CrossRef]
- Bitam, I.; Dittmar, K.; Parola, P.; Whiting, M.F.; Raoult, D. Fleas and flea-borne diseases. Int. J. Infect. Dis. 2010, 14, e667–e676. [Google Scholar] [CrossRef]
- Boucheikhchoukh, M.; Mechouk, N.; Benakhla, A.; Raoult, D.; Parola, P. Molecular evidence of bacteria in Melophagus ovinus sheep keds and Hippobosca equina forest flies collected from sheep and horses in northeastern Algeria. Comp. Immunol. Microbiol. Infect Dis. 2019, 65, 103–109. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Ostfeld, R.S.; Peterson, A.T.; Poulin, R.; de la Fuente, J. Effects of environmental change on zoonotic disease risk: An ecological primer. Trends Parasitol. 2014, 30, 205–214. [Google Scholar] [CrossRef]
- Bedouhene, A.; Kelanemer, R.; Medrouh, B.; Kernif, T.; Saidi, F.; Tail, G.; Ziam, H. Seasonal Dynamics and Predilection Sites of Ticks (Acari: Ixodidae) Feeding on Cows in the Western Parts of the Djurdjura, Algeria. Front. Trop. Dis. 2022, 3, 856179. [Google Scholar] [CrossRef]
- Zeroual, F.; Bitam, I.; Ouchene, N.; Leulmi, H.; Aouadi, A.; Benakhla, A. Identification and seasonal dynamics of ticks on wild boar (Sus scrofa) in the extreme north-east of Algeria. Bull. Soc. Zool Fr. 2014, 139, 245–253. [Google Scholar]
- Morel, P.C.; Vassiliades, G. Les Rhipicephalus du groupe sanguineus: Espèces africaines (Acariens: Ixodoidea). Rev. D’élevage Et De Méd. Vétérinaire Des. Pays. Trop. 1962, 15, 343–386. [Google Scholar] [CrossRef]
- Meddour, A. Clés d’identification des Ixodina (Acarina) d’Algérie. Sci. Technol. C Biotechnol. 2006, 24, 32–42. [Google Scholar]
- Benchikh-Elfegoun, M.; Benakhla, A.; Bentounsi, B.; Bouattour, A.; Piarroux, R. Identification and seasonal kinetics of parasitic ticks in cattle in the region of Taher (Jijel) Algeria. Ann. Vet. Med. 2007, 151, 209–214. [Google Scholar]
- Bouchama, B.; Dik, B.; Benia, F.; Mouffok, C. Dynamique saisonnière des tiques (Acari: Ixodidae) parasites des bovins dans la région semi-aride de la wilaya de Sétif Algérie. Bull. Soc. Zool. Fr. 2020, 145, 71–81. [Google Scholar]
- Mechouk, N.; Mihalca, A.D.; Deak, G.; Bouslama, Z. Synopsis of the ticks of Algeria with new hosts and localities records. Parasit Vectors 2022, 15, 302. [Google Scholar] [CrossRef] [PubMed]
- Bitam, I.; Parola, P.; Matsumoto, K.; Rolain, J.M.; Baziz, B.; Boubidi, S.C.; Harrat, Z.; Belkaid, M.; Raoult, D. First molecular detection of R. conorii, R. aeschlimannii, and R. massiliae in ticks from Algeria. Ann. N. Y. Acad. Sci. 2006, 1078, 368–372. [Google Scholar] [CrossRef]
- Colombo, F.A.; Odorizzi, R.M.; Laurenti, M.D.; Galati, E.A.; Canavez, F.; Pereira-Chioccola, V.L. Detection of Leishmania (Leishmania) infantum RNA in fleas and ticks collected from naturally infected dogs. Parasitol. Res. 2011, 109, 267–274. [Google Scholar] [CrossRef]
- Pereira, A.; Parreira, R.; Cristóvão, J.M.; Vitale, F.; Bastien, P.; Campino, L.; Maia, C. Leishmania infantum strains from cats are similar in biological properties to canine and human strains. Vet. Parasitol. 2021, 298, 109531. [Google Scholar] [CrossRef]
- Costa-Val, A.P.D.; Coura, F.M.; Barbieri, J.M.; Diniz, L.; Sampaio, A.; Reis, J.K.P.D.; Bueno, B.L.; Gontijo, C.M.F. Serological study of feline leishmaniasis and molecular detection of Leishmania infantum and Leishmania braziliensis in cats (Felis catus). Rev. Bras. Parasitol. Vet. 2020, 29, e003520. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gallego, A.; Feo Bernabe, L.; Dalmau, A.; Esteban-Saltiveri, D.; Font, A.; Leiva, M.; Ortuñez-Navarro, A.; Peña, M.T.; Tabar, M.D.; Real-Sampietro, L.; et al. Feline leishmaniosis: Diagnosis, treatment and outcome in 16 cats. J. Feline Med. Surg. 2020, 22, 993–1007. [Google Scholar] [CrossRef]
- Baneth, G.; Nachum-Biala, Y.; Zuberi, A.; Zipori-Barki, N.; Orshan, L.; Kleinerman, G.; Shmueli-Goldin, A.; Bellaiche, M.; Leszkowicz-Mazuz, M.; Salant, H.; et al. Leishmania infection in cats and dogs housed together in an animal shelter reveals a higher parasite load in infected dogs despite a greater seroprevalence among cats. Parasit Vectors 2020, 13, 115. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J.; André, M.R.; Qin, T. Editorial: New insights in the microbe-vector interaction. Front. Microbiol. 2024, 15, 1364989. [Google Scholar] [CrossRef]
Samples Sites and GPS | Hosts | Number of Ticks or Fleas per Animal Host | Ticks or Fleas Species | Sex of Ticks/Fleas | Leishmania DNA Detection (n) | |||
---|---|---|---|---|---|---|---|---|
Female | Male | Negative | Positive | |||||
Draâ Ben Khedda | 36°44′06″ N, 3°57′20″ E | Dog | 5 | R. sanguineus s.l | 5 | 0 | 0 | 5♀ |
4 | R. turanicus | 0 | 4 | 0 | 4♂ | |||
Dog | 24 | R. sanguineus s.l | 14 | 10 | _/ | _/ | ||
40 | R. turanicus | 24 | 16 | /_ | _/ | |||
Dog | 6 | C. felis | 4 | 2 | _/ | _/ | ||
Sheep | 2 | R. sanguineus s.l | 1 | 1 | 2 | 0 | ||
6 | R. turanicus | 6 | 0 | 4 | 2♀ | |||
Sheep | 8 | R. sanguineus s.l | 6 | 2 | /_ | /_ | ||
Sheep | 2 | C. felis | 2 | 0 | 0 | 2♀ | ||
Sheep | 12 | C. felis | 9 | 3 | _/ | _/ | ||
Ouacif | 36°31′25″ N, 4°12′20″ E | Dog | 8 | R. sanguineus s.l | 3 | 5 | _/ | _/ |
24 | R. turanicus | 12 | 12 | /_ | _/ | |||
Dog | 8 | R. sanguineus s.l | 3 | 5 | 3 | 5 (2♀, 3♂) | ||
24 | R. turanicus | 12 | 12 | 16 | 8 (5♀, 3♂) | |||
Rabbit | 9 | C. felis | 8 | 1 | _/ | _/ | ||
Tizi Rached | 36°33′45″ N, 2°32′00″ E | Dog | 5 | R. sanguineus s.l | 0 | 5 | 0 | 5♂ |
59 | R. turanicus | 37 | 22 | 49 | 10 (7♀, 3♂) | |||
Dog | 9 | R. sanguineus s.l | 1 | 8 | /_ | /_ | ||
25 | R. turanicus | 8 | 17 | _/ | /_ | |||
Cat | 3 | R. sanguineus s.l | 0 | 3 | 3 | 0 | ||
32 | R. turanicus | 16 | 16 | 12 | 20 (12♀, 8♂) | |||
Dog | 3 | C. felis | 3 | 0 | 0 | 3♀ | ||
Bouzgeune | 36°37′00″ N, 4°28′47″ E | Dog | 7 | R. sanguineus s.l | 6 | 1 | 7 | 0 |
10 | R. turanicus | 3 | 7 | 10 | 0 | |||
Dog | 24 | R. sanguineus s.l | 11 | 13 | /_ | _/ | ||
92 | R. turanicus | 63 | 29 | _/ | _/ | |||
Cat | 6 | R. sanguineus s.l | 6 | 0 | 6 | 0 | ||
2 | R. turanicus | 1 | 1 | 2 | 0 | |||
Cat | 3 | R. sanguineus s.l | 3 | 0 | _/ | _/ | ||
Goat | 2 | R. sanguineus s.l | 2 | 0 | _/ | /_ | ||
6 | R. turanicus | 6 | 0 | _/ | /_ | |||
Goat | 13 | C. felis | 9 | 4 | 13 | 0 | ||
Sheep | 12 | C. felis | 11 | 1 | 11 | 1♀ | ||
Sheep | 6 | C. felis | 4 | 2 | _/ | _/ | ||
Cat | 10 | C. felis | 10 | 0 | 7 | 3♀ | ||
Mekla | 36° 41′ 16″ N, 4° 16′ 05″ E | Dog | 8 | R. sanguineus s.l | 0 | 8 | / | _/ |
36 | R. turanicus | 17 | 19 | /_ | _/ | |||
Rabbit | 11 | C. felis | 11 | 0 | 11 | 0 | ||
Rabbit | 1 | C. felis | 1 | 0 | _/ | _/ | ||
Sheep | 9 | C. felis | 8 | 1 | _/ | _/ | ||
M’sila | 35°42′07″ N, 4°32′48″ E | Dog | 3 | R. sanguineus s.l | 0 | 3 | 0 | 3♂ |
17 | R. turanicus | 11 | 6 | 0 | 17 (11♀, 6♂) | |||
Messloula | 35°24′19″ N, 8°06′59″ E | Dog | 2 | R. sanguineus s.l | 1 | 1 | 1 | 1♂ |
1 | R. turanicus | 1 | 0 | 0 | 1♂ | |||
Total ectoparasites | 599 | 359 | 240 | / | / | |||
505 ticks/94 fleas | 279 ticks/80 fleas | 226 ticks/14 fleas | / | / | ||||
Total ectoparasites tested for Leishmania DNA | 247 | 155♀ | 92♂ | 157 (101♀, 56♂) | 90 (53♀, 37♂) |
Ectoparasites/Hosts | R. sanguineus s.l | R. turanicus | C. felis | Total | |||||
---|---|---|---|---|---|---|---|---|---|
N° Positive | (%) | N° Positive | (%) | N° Positive | (%) | N° Positive | (%) | ||
Tizi-Ouzou | Draâ Ben Khedda | 5♀/7 | 42.85 | 6 (4♂, 2♀)/10 | 60.00 | 2♀/2 | 100.00 | 13/19 | 68.42 |
Ouacif | 5 (3♂, 2♀)/8 | 62.5 | 8 (3♂, 5♀)/24 | 33.33 | - | - | 13/32 | 40.62 | |
Tizi Rached | 5♂/8 | 62.5 | 30 (11♂, 19♀)/91 | 32.96 | 3♀/3 | 100.00 | 38/102 | 37.25 | |
Bouzgeune | 0/13 | 0.00 | 0/12 | 0.00 | 4♀/35 | 11.42 | 4/60 | 6.66 | |
Mekla | - | - | - | - | 0/11 | 0.00 | 0/11 | 0.00 | |
Total | 15/36 | 41 | 44/137 | 32.11 | 9/51 | 17.64 | 68/224 | 30.35 | |
M’sila | 3♂/3 | 100.00 | 17(6♂, 11♀)/17 | 100.00 | - | - | 20/20 | 100.00 | |
Tébessa | 1♂/2 | 50.00 | 1♂/1 | 100.00 | - | - | 2/3 | 66.66 | |
Total | 19/41 | 46.34 | 62/155 | 40.00 | 9/51 | 17.64 | 90/247 | 36.43 |
Ectoparasite/Hosts | R. sanguineus | R. turanicus | C. felis | Total | ||||
---|---|---|---|---|---|---|---|---|
N° Positive | (%) | N° Positive | (%) | N° Positive | (%) | N° Positive | (%) | |
Dogs | 19 (12♂, 7♀)/30 | 63.33 | 40 (17♂, 23♀)/115 | 34.78 | 3♀/3 | 100 | (62/148) | 41.89 |
Cats | 0/9 | 0.00 | 20 (8♂, 12♀)/34 | 58.82 | 3♀/10 | 30 | (23/53) | 43.39 |
Sheeps | 0/2 | 0.00 | 2 (2♀)/6 | 33.33 | 3♀/14 | 21.42 | (5/22) | 22.72 |
Goats | - | - | - | 0/13 | 0.00 | (0/13) | 0.00 | |
Rabbits | - | - | - | 0/11 | 0.00 | (0/11) | 0.00 | |
Total | 19/41 | 46.34% | 62/155 | 40.00% | 9/51 | 17.64% | 90/247 | 36.43% |
Ectoparasites | Positive | Negative | p Valus > 0.05 | ||
---|---|---|---|---|---|
♀ | ♂ | ♀ | ♂ | ||
R. sanguineus s.l | 7 | 12 | 15 | 7 | 0.06 |
R. turanicus | 37 | 25 | 49 | 44 | 0.32 |
C. felis | 9 | 0 | 37 | 5 | 0.999 |
Total | 53 | 37 | 101 | 56 | 247 |
Predictor | Coefficient | Std. Error | z-Score | p-Value | 95% CI (Lower) | 95% CI (Upper) |
---|---|---|---|---|---|---|
Intercept | −0.213 | 0.509 | −0.42 | 0.675 | −1.210 | 0.784 |
R. sanguineus s.l | +0.147 | 0.593 | 0.25 | 0.804 | −1.015 | 1.310 |
R. turanicus | −0.122 | 0.533 | −0.23 | 0.819 | −1.166 | 0.922 |
Dog | −0.050 | 0.336 | −0.15 | 0.882 | −0.708 | 0.608 |
Sheep | −0.992 | 0.627 | −1.58 | 0.113 | −2.221 | 0.236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benikhlef, R.; Eddaikra, N.; Beneldjouzi, A.; Dekar, M.; Hamrioui, L.; Brahmi, K.; Bencherifa, S.; Sereno, D. Detection of Leishmania DNA in Ticks and Fleas from Dogs and Domestic Animals in Endemic Algerian Provinces. Microorganisms 2025, 13, 2338. https://doi.org/10.3390/microorganisms13102338
Benikhlef R, Eddaikra N, Beneldjouzi A, Dekar M, Hamrioui L, Brahmi K, Bencherifa S, Sereno D. Detection of Leishmania DNA in Ticks and Fleas from Dogs and Domestic Animals in Endemic Algerian Provinces. Microorganisms. 2025; 13(10):2338. https://doi.org/10.3390/microorganisms13102338
Chicago/Turabian StyleBenikhlef, Razika, Naouel Eddaikra, Assia Beneldjouzi, Maria Dekar, Lydia Hamrioui, Karima Brahmi, Souad Bencherifa, and Denis Sereno. 2025. "Detection of Leishmania DNA in Ticks and Fleas from Dogs and Domestic Animals in Endemic Algerian Provinces" Microorganisms 13, no. 10: 2338. https://doi.org/10.3390/microorganisms13102338
APA StyleBenikhlef, R., Eddaikra, N., Beneldjouzi, A., Dekar, M., Hamrioui, L., Brahmi, K., Bencherifa, S., & Sereno, D. (2025). Detection of Leishmania DNA in Ticks and Fleas from Dogs and Domestic Animals in Endemic Algerian Provinces. Microorganisms, 13(10), 2338. https://doi.org/10.3390/microorganisms13102338