Newborn Screening of X-Linked Adrenoleukodystrophy in Italy: Clinical and Biochemical Outcomes from a 4-Year Pilot Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
Neonatal Biochemical Findings
4. X-ALD Patients
4.1. Endocrinological Issues
4.2. Nutritional Assessment
5. Non-ALD Patients Detected Through NBS
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moser, A.B.; Jones, R.O.; Hubbard, W.C.; Tortorelli, S.; Orsini, J.J.; Caggana, M.; Vogel, B.H.; Raymond, G.V. Newborn Screening for X-Linked Adrenoleukodystrophy. Int. J. Neonatal Screen. 2016, 2, 15. [Google Scholar] [CrossRef]
- Kemp, S.; Wanders, R.J. X-linked adrenoleukodystrophy: Very long-chain fatty acid metabolism, ABC half-transporters and the complicated route to treatment. Mol. Genet. Metab. 2007, 90, 268–276. [Google Scholar] [CrossRef]
- Turk, B.R.; Theda, C.; Fatemi, A.; Moser, A.B. X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int. J. Dev. Neurosci. 2020, 80, 52–72. [Google Scholar] [CrossRef]
- Petrillo, S.; D’amico, J.; Nicita, F.; Torda, C.; Vasco, G.; Bertini, E.S.; Cappa, M.; Piemonte, F. Antioxidant Response in Human X-Linked Adrenoleukodystrophy Fibroblasts. Antioxidants 2022, 11, 2125. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Dubey, P.; Moser, H.W.; Moser, A. X-linked adrenoleukodystrophy: Therapeutic approaches to distinct phenotypes. Pediatr. Transplant. 2005, 9, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.; Barbier, M.; Dijkstra, I.M.E.; Schür, R.; de Bie, R.M.A.; Verhamme, C.; Dijkgraaf, M.G.W.; Aubourg, P.A.; Wanders, R.J.A.; van Geel, B.M.; et al. X-linked adrenoleukodystrophy in women: A cross-sectional cohort study. Brain 2014, 137, 693–706. [Google Scholar] [CrossRef]
- Bezman, L.; Moser, A.B.; Raymond, G.V.; Rinaldo, P.; Watkins, P.A.; Smith, K.D.; Kass, N.E.; Moser, H.W. Adrenoleukodystrophy: Incidence, new mutation rate, and results of extended family screening. Ann. Neurol. 2001, 49, 512–517. [Google Scholar] [CrossRef]
- Jaspers, Y.R.J.; Yska, H.A.F.; Bergner, C.G.; Dijkstra, I.M.E.; Huffnagel, I.C.; Voermans, M.M.C.; Wever, E.; Salomons, G.S.; Vaz, F.M.; Jongejan, A.; et al. Lipidomic biomarkers in plasma correlate with disease severity in adrenoleukodystrophy. Commun. Med. 2024, 4, 175. [Google Scholar] [CrossRef]
- Raymond, G.V.; Aubourg, P.; Paker, A.; Escolar, M.; Fischer, A.; Blanche, S.; Baruchel, A.; Dalle, J.-H.; Michel, G.; Prasad, V.; et al. Survival and Functional Outcomes in Boys with Cerebral Adrenoleukodystrophy with and without Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2019, 25, 538–548. [Google Scholar] [CrossRef]
- Miller, W.P.; Rothman, S.M.; Nascene, D.; Kivisto, T.; DeFor, T.E.; Ziegler, R.S.; Eisengart, J.; Leiser, K.; Raymond, G.; Lund, T.C.; et al. Outcomes after allogeneic hematopoietic cell transplantation for childhood cerebral adrenoleukodystrophy: The largest single-institution cohort report. Blood 2011, 118, 1971–1978. [Google Scholar] [CrossRef]
- Page, K.M.; Stenger, E.O.; Connelly, J.A.; Shyr, D.; West, T.; Wood, S.; Case, L.; Kester, M.; Shim, S.; Hammond, L.; et al. Hematopoietic Stem Cell Transplantation to Treat Leukodystrophies: Clinical Practice Guidelines from the Hunter’s Hope Leukodystrophy Care Network. Biol. Blood Marrow Transplant. 2019, 25, e363–e374. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.; van Ballegoij, W.J.; Mallack, E.J.; Van Haren, K.P.; Köhler, W.; Salsano, E.; van Trotsenburg, A.; Mochel, F.; Sevin, C.; Regelmann, M.O.; et al. International Recommendations for the Diagnosis and Management of Patients With Adrenoleukodystrophy. Neurology 2022, 99, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Köhler, W.; Engelen, M.; Eichler, F.; Lachmann, R.; Fatemi, A.; Sampson, J.; Salsano, E.; Gamez, J.; Molnar, M.J.; Pascual, S.; et al. Safety and efficacy of leriglitazone for preventing disease progression in men with adrenomyeloneuropathy (ADVANCE): A randomised, double-blind, multi-centre, placebo-controlled phase 2–3 trial. Lancet Neurol. 2023, 22, 127–136. [Google Scholar] [CrossRef] [PubMed]
- García-Cazorla, Á.; Sevin, C.; Constante, J.R.; Yazbeck, E.; Rosewich, H.; Jimenez, S.; Chiang, G.C.-Y.; Rapalino, O.; Caruso, P.; Balentine, D.; et al. Safety and efficacy of leriglitazone in childhood cerebral adrenoleukodystrophy (NEXUS): An interim analysis of an open-label, phase 2/3 trial. eClinicalMedicine 2025, 84, 103265. [Google Scholar] [CrossRef]
- Spreghini, M.R.; Gianni, N.; Todisco, T.; Rizzo, C.; Cappa, M.; Manco, M. Nutritional Counseling and Mediterranean Diet in Adrenoleukodystrophy: A Real-Life Experience. Nutrients 2024, 16, 3341. [Google Scholar] [CrossRef]
- Vogel, B.; Bradley, S.; Adams, D.; D’ACo, K.; Erbe, R.; Fong, C.; Iglesias, A.; Kronn, D.; Levy, P.; Morrissey, M.; et al. Newborn screening for X-linked adrenoleukodystrophy in New York State: Diagnostic protocol, surveillance protocol and treatment guidelines. Mol. Genet. Metab. 2015, 114, 599–603. [Google Scholar] [CrossRef]
- Wiens, K.; Berry, S.A.; Choi, H.; Gaviglio, A.; Gupta, A.; Hietala, A.; Kenney-Jung, D.; Lund, T.; Miller, W.; Pierpont, E.I.; et al. A report on state-wide implementation of newborn screening for X-linked Adrenoleukodystrophy. Am. J. Med. Genet. Part A 2019, 179, 1205–1213. [Google Scholar] [CrossRef]
- Tang, H.; Matteson, J.; Rinaldo, P.; Tortorelli, S.; Currier, R.; Sciortino, S. The Clinical Impact of CLIR Tools toward Rapid Resolution of Post-Newborn Screening Confirmatory Testing for X-Linked Adrenoleukodystrophy in California. Int. J. Neonatal Screen. 2020, 6, 62. [Google Scholar] [CrossRef]
- Lee, S.; Clinard, K.; Young, S.P.; Rehder, C.W.; Fan, Z.; Calikoglu, A.S.; Bali, D.S.; Bailey, D.B.; Gehtland, L.M.; Millington, D.S.; et al. Evaluation of X-Linked Adrenoleukodystrophy Newborn Screening in North Carolina. JAMA Netw. Open 2020, 3, e1920356. [Google Scholar] [CrossRef]
- Hall, P.L.; Li, H.; Hagar, A.F.; Jerris, S.C.; Wittenauer, A.; Wilcox, W. Newborn Screening for X-Linked Adrenoleukodystrophy in Georgia: Experiences from a Pilot Study Screening of 51,081 Newborns. Int. J. Neonatal Screen. 2020, 6, 81. [Google Scholar] [CrossRef]
- Matteson, J.; Sciortino, S.; Feuchtbaum, L.; Bishop, T.; Olney, R.S.; Tang, H. Adrenoleukodystrophy Newborn Screening in California Since 2016: Programmatic Outcomes and Follow-Up. Int. J. Neonatal Screen. 2021, 7, 22. [Google Scholar] [CrossRef]
- Burton, B.K.; Hickey, R.; Hitchins, L.; Shively, V.; Ehrhardt, J.; Ashbaugh, L.; Peng, Y.; Basheeruddin, K. Newborn Screening for X-Linked Adrenoleukodystrophy: The Initial Illinois Experience. Int. J. Neonatal Screen. 2022, 8, 6. [Google Scholar] [CrossRef]
- Priestley, J.R.C.; Adang, L.A.; Williams, S.D.; Lichter-Konecki, U.; Menello, C.; Engelhardt, N.M.; DiPerna, J.C.; DiBoscio, B.; Ahrens-Nicklas, R.C.; Edmondson, A.C.; et al. Newborn Screening for X-Linked Adrenoleukodystrophy: Review of Data and Outcomes in Pennsylvania. Int. J. Neonatal Screen. 2022, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.-L.; Xu, F.; Jiang, K.; Wang, Y.-M.; Ji, W.; Zhuang, Y.-P. Evaluation of a panel of very long-chain lysophosphatidylcholines and acylcarnitines for screening of X-linked adrenoleukodystrophy in China. Clin. Chim. Acta 2020, 503, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, A.; Christopher, R.; Palakuzhiyil, S.V.; Chandra, S.R. Utility of measuring very long-chain fatty-acyl carnitines in dried blood spots for newborn screening of X-linked Adrenoleukodystrophy. Mol. Genet. Metab. Rep. 2021, 26, 100720. [Google Scholar] [CrossRef] [PubMed]
- Barendsen, R.W.; Dijkstra, I.M.E.; Visser, W.F.; Alders, M.; Bliek, J.; Boelen, A.; Bouva, M.J.; van der Crabben, S.N.; Elsinghorst, E.; van Gorp, A.G.M.; et al. Adrenoleukodystrophy Newborn Screening in the Netherlands (SCAN Study): The X-Factor. Front. Cell Dev. Biol. 2020, 8, 499. [Google Scholar] [CrossRef]
- Bonaventura, E.; Alberti, L.; Lucchi, S.; Cappelletti, L.; Fazzone, S.; Cattaneo, E.; Bellini, M.; Izzo, G.; Parazzini, C.; Bosetti, A.; et al. Newborn screening for X-linked adrenoleukodystrophy in Italy: Diagnostic algorithm and disease monitoring. Front. Neurol. 2023, 13, 1072256. [Google Scholar] [CrossRef]
- The Grey Zone|ALD Research Project|ALD Connect. Available online: https://aldconnect.org/clinical-trials-and-research/the-grey-zone/ (accessed on 14 August 2025).
- Lucca, C.; Rosina, E.; Pezzani, L.; Piazzolla, D.; Spaccini, L.; Scatigno, A.; Gasperini, S.; Pezzoli, L.; Cereda, A.; Milani, D.; et al. First-Tier Versus Last-Tier Trio Whole-Genome Sequencing for the Diagnosis of Pediatric-Onset Rare Diseases. Clin. Genet. 2025, 108, 412–421. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Multicentre Growth Reference Study Group WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. Int. J. Paediatr. 2006, 95 (Suppl. 450), 76–85. [Google Scholar] [CrossRef]
- World Health Organization. Body Mass Index-for-Age (BMI-for-Age)—WHO Growth Standards. Available online: https://www.who.int/toolkits/child-growth-standards/standards/body-mass-index-for-age-bmi-for-age (accessed on 14 August 2025).
- Addo, O.Y.; Himes, J.H.; Zemel, B.S. Reference ranges for midupper arm circumference, upper arm muscle area, and upper arm fat area in US children and adolescents aged 1–20 y. Am. J. Clin. Nutr. 2017, 105, 111–120. [Google Scholar] [CrossRef]
- Addo, O.Y.; Himes, J.H. Reference curves for triceps and subscapular skinfold thicknesses in US children and adolescents. Am. J. Clin. Nutr. 2010, 91, 635–642. [Google Scholar] [CrossRef]
- Visani, G.; Lucca, C. Fetal and Postnatal Brain Magnetic Resonance in a Newborn with Zellweger Spectrum Disorders: A challenging case. Correspondence: Fabio Sirchia, fabio.sirchia@smatteo.pv.it. Department of Molecular Medicine, University of Pavia, Pavia, Italy. 2025, paper under review.
- Armangue, T.; Orsini, J.J.; Takanohashi, A.; Gavazzi, F.; Conant, A.; Ulrick, N.; Morrissey, M.A.; Nahhas, N.; Helman, G.; Gordish-Dressman, H.; et al. Neonatal detection of Aicardi Goutières Syndrome by increased C26:0 lysophosphatidylcholine and interferon signature on newborn screening blood spots. Mol. Genet. Metab. 2017, 122, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Tise, C.G.; Morales, J.A.; Lee, A.S.; Velez-Bartolomei, F.; Floyd, B.J.; Levy, R.J.; Cusmano-Ozog, K.P.; Feigenbaum, A.S.; Ruzhnikov, M.R.Z.; Lee, C.U.; et al. Aicardi-Goutières syndrome may present with positive newborn screen for X-linked adrenoleukodystrophy. Am. J. Med. Genet. Part A 2021, 185, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.K.-W.; Chan, J.; Cembrowski, G.S.; Van Assendelft, O.W. Complete Blood Count Reference Interval Diagrams Derived from NHANES III: Stratification by Age, Sex, and Race. Lab. Hematol. 2004, 10, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Nishio, H.; Kodama, S.; Yokoyama, S.; Matsuo, T.; Mio, T.; Sumino, K. A simple method to diagnose adrenoleukodystrophy using a dried blood spot on filter paper. Clin. Chim. Acta 1986, 159, 77–82. [Google Scholar] [CrossRef]
- Tanaka, K.; Shimada, M.; Naruto, T.; Yamamoto, H.; Nishizawa, K.; Saeki, Y. Very Long-Chain Fatty Acids in Erythrocyte Membrane Phospholipids in Adrenoleukodystrophy. Pediatr. Int. 1989, 31, 136–143. [Google Scholar] [CrossRef]
- ALD Mutation Statistics. Available online: https://adrenoleukodystrophy.info/mutations-biochemistry/mutation-statistics (accessed on 14 August 2025).
- Huffnagel, I.C.; Laheji, F.K.; Aziz-Bose, R.; ATritos, N.; Marino, R.; Linthorst, G.E.; Kemp, S.; Engelen, M.; Eichler, F. The Natural History of Adrenal Insufficiency in X-Linked Adrenoleukodystrophy: An International Collaboration. J. Clin. Endocrinol. Metab. 2018, 104, 118–126. [Google Scholar] [CrossRef]
- Cappa, M.; Todisco, T.; Bizzarri, C. X-linked adrenoleukodystrophy and primary adrenal insufficiency. Front. Endocrinol. 2023, 14, 1309053. [Google Scholar] [CrossRef]
- Videbæk, C.; Melgaard, L.; Lund, A.M.; Grønborg, S.W. Newborn screening for adrenoleukodystrophy: International experiences and challenges. Mol. Genet. Metab. 2023, 140, 107734. [Google Scholar] [CrossRef]
Demographics | Genetics | C26:0-LPC at Birth (DBS) | Neurology | Endocrinology | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Patient | Sex | Age at Last FU (y,mo) | Gene | Variant | Aminoacidic Change | Pathogenicity | 1TT (µmol/L) | 2TT (µmol/L) | Clinical Picture at Last Follow-Up | Brain MRI at Last Follow-Up | Clinical Picture at Last Follow-Up | Adrenal Crisis |
Pt1 | Male | 3y 5mo | ABCD1 | c.293C>T | p.Ser98Leu | pathogenetic | 0.77 | 2.09 | Normal | Normal | Addison only | 0 |
Pt2 | Male | 3y | ABCD1 | c.488G>A | p.Arg163His | pathogenetic | 0.64 | 0.60 | Normal | Normal | Asymptomatic (partial AI) | 0 |
Pt3 | Male | 3y | ABCD1 | c.1628del | p.Pro543Fs | pathogenetic | 0.88 | 1.10 | Normal | Normal | Addison only | 0 |
Pt4 | Male | 1y 6mo | ABCD1 | c.893G>T | p.Gly298Val | likely pathogenetic | 0.82 | 0.59 | Normal | Normal | Addison only | 0 |
Pt5 | Male | 1y | ABCD1 | c.794T>A | p.Phe265Tyr | likely pathogenetic | 0.51 | 0.39 | Normal | not performed as per protocol | Asymptomatic | 0 |
Pt6 | Male | 0y 6mo | ABCD1 | c.1687dup | p.Val563Glyfs*38 | likely pathogenetic | 0.74 | 0.66 | Normal | not performed as per protocol | Asymptomatic | 0 |
Pt7 | Female | 0y 1mo | ABCD1 | c.1036A>G | p.Met346Val | likely pathogenetic | 0.61 | 0.51 | not evaluated as per protocol | not performed as per protocol | not performed as per protocol | not applicable |
Pt8 | Female | 0y 1mo | ABCD1 | c.1850G>A | p.Arg617His | likely pathogenetic | 0.64 | 0.46 | not evaluated as per protocol | not performed as per protocol | not performed as per protocol | not applicable |
Pt9 | Female | 0y 1mo | ABCD1 | c.532C>T | p.Gln178* | likely pathogenetic | 0.57 | 0.39 | not evaluated as per protocol | not performed as per protocol | not performed as per protocol | not applicable |
Pt10 | Female | 0y 1mo | ABCD1 | c.293C>T | p.Ser98Leu | pathogenetic | 0.37 | 0.27 | not evaluated as per protocol | not performed as per protocol | not performed as per protocol | not applicable |
Pt11 | Female | 0y 1mo | ABCD1 | c.270_279dup | p.Leu94Aspfs*104 | pathogenic | 0.45 | 0.35 | not evaluated as per protocol | not performed as per protocol | not performed as per protocol | not applicable |
Pt12 | Male | 2y 1mo | ACOX1 | g.75829529_76012979del (maternal origin); g.75958635_75961120del–c.270-735_431-1059del (paternal origin) | pathogenic; pathogenic | 0.79 | 0.56 | Pathological at birth (see text) | leukodystrophy, cortical malformations | Addison disease | 0 | |
Pt13 | Male | 0y 2mo (died) | PEX10 | c.193G>A (homozygous) | p.Gly65Ser; p.Gly65Ser | likely pathogenetic | 1.20 | 1.10 | Died, Pathological at birth (see text) | leukodystrophy, cortical malformations | not tested | 0 |
Pt14 | Female | 0y 2mo (died) | PEX26 | c.230+607_371+39dup (homozygous) | likely pathogenetic | 1.43 | 0.92 | Died, Pathological at birth (see text) | leukodystrophy, cortical malformations | not tested | 0 |
C26-LPC (<0.5 µmol/L)—1TT | |||||||
Patients | Screening | 6th Month | 12th Month | 18th Month | 24th Month | 30th Month | 36th Month |
Pt1 | 0.77 | 0.67 | 0.49 | 0.45 | 0.37 | ||
Pt2 | 0.64 | 0.24 | 0.48 | 0.21 | 0.31 | 0.39 | |
Pt3 | 0.88 | 0.79 | 0.75 | 0.42 | 0.66 | 0.55 | 0.61 |
Pt4 | 0.82 | 0.54 | 0.80 | 0.79 | |||
Pt5 | 0.51 | 0.48 | |||||
Pt6 | 0.74 | ||||||
C26-LPC (<0.1 µmol/L)—2TT | |||||||
Patients | Screening | 6th Month | 12th Month | 18th Month | 24th Month | 30th Month | 36th Month |
Pt1 | 2.09 | 0.39 | 0.67 | 0.20 | 0.30 | ||
Pt2 | 0.60 | 0.21 | 0.20 | 0.13 | 0.17 | 0.16 | |
Pt3 | 1.10 | 0.59 | 0.53 | 0.32 | 0.48 | 0.44 | 0.54 |
Pt4 | 0.59 | 0.38 | 0.45 | 0.58 | |||
Pt5 | 0.39 | 0.26 | |||||
Pt6 | 0.66 |
Patients | Pt 1 | Pt 3 | Pt 4 |
Addison’s Disease | Addison’s Disease | Partial AI | |
Birth date | 2021 | 2022 | 2023 |
Age at onset of ACTH abnormal values | 12 mo | 3 mo | 1 y 6 mo |
Age at start hormonal treatment | 1y 9mo | 1y 1mo | 1y 6mo |
(21 months) | (13 months) | (18 months) | |
ACTH (ng/L) | 348 | 546 | 586 |
Cortisol (mcg/L) | 104 | 84 | 127 |
Cortisol peak 60 min (mcg/L) | 102 | 81 | 159 |
Fasting blood glucose (mg/dL) | 81 | 74 | 70 |
Na/K (mmol/L) | 134/4.5 | 138/4.1 | 139/4.7 |
Signs/symptoms | none | none | none |
Glucocorticoid replacement therapy | HC granules | HC granules/tablets | HC granules |
8.6 mg/m2/day | 9 mg/m2/day | 7 mg/m2/day |
T0 | T1 | T2 | ||||
Mean | SD | Mean | SD | Mean | SD | |
Age | 0.56 | 0.14 | 1.32 | 0.29 | 2.24 | 0.49 |
Weight (kg) | 8.02 | 0.65 | 10.52 | 0.54 | 12.73 | 0.88 |
Weight-for-age SDS WHO | −0.13 | 0.37 | 0.05 | 0.36 | 0.04 | 0.34 |
Length/height (cm) | 68.92 | 1.72 | 78.34 | 3.24 | 86.70 | 4.46 |
Length/height-for-age SDS WHO | 0.19 | 0.77 | −0.57 | 1.06 | −0.77 | 0.56 |
Weight-for-length SDS WHO | −0.27 | 0.82 | 0.45 | 0.76 | 0.61 | 0.28 |
BMI (kg/m2) | 16.87 | 1.09 | 17.18 | 1.31 | 16.85 | 0.53 |
BMI-for-age SDS WHO | −0.31 | 0.82 | 0.56 | 0.98 | 0.75 | 0.31 |
MUAC (cm) | 14.38 | 1.11 | 15.25 | 0.50 | 16.28 | 0.93 |
MUAC SDS WHO | 0.01 | 0.90 | 0.37 | 0.33 | 0.76 | 0.80 |
Skinfold tricipital | 8.85 | 1.42 | 8.20 | 1.12 | 7.50 | 2.08 |
Skinfold tricipital SDS WHO | −0.13 | 1.05 | 0.22 | 0.78 | −0.32 | 1.46 |
AMA% | 65.15 | 3.80 | 69.13 | 3.52 | 73.28 | 6.71 |
AFA% | 34.85 | 3.80 | 30.88 | 3.52 | 26.73 | 6.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonaventura, E.; Bruschi, F.; Alberti, L.; Antonello, C.; Arrigoni, F.; Balestriero, M.; Borsani, B.; Cappelletti, L.; Cattaneo, E.; Ferrario, M.; et al. Newborn Screening of X-Linked Adrenoleukodystrophy in Italy: Clinical and Biochemical Outcomes from a 4-Year Pilot Study. Int. J. Neonatal Screen. 2025, 11, 84. https://doi.org/10.3390/ijns11040084
Bonaventura E, Bruschi F, Alberti L, Antonello C, Arrigoni F, Balestriero M, Borsani B, Cappelletti L, Cattaneo E, Ferrario M, et al. Newborn Screening of X-Linked Adrenoleukodystrophy in Italy: Clinical and Biochemical Outcomes from a 4-Year Pilot Study. International Journal of Neonatal Screening. 2025; 11(4):84. https://doi.org/10.3390/ijns11040084
Chicago/Turabian StyleBonaventura, Eleonora, Fabio Bruschi, Luisella Alberti, Clara Antonello, Filippo Arrigoni, Marina Balestriero, Barbara Borsani, Laura Cappelletti, Elisa Cattaneo, Matilde Ferrario, and et al. 2025. "Newborn Screening of X-Linked Adrenoleukodystrophy in Italy: Clinical and Biochemical Outcomes from a 4-Year Pilot Study" International Journal of Neonatal Screening 11, no. 4: 84. https://doi.org/10.3390/ijns11040084
APA StyleBonaventura, E., Bruschi, F., Alberti, L., Antonello, C., Arrigoni, F., Balestriero, M., Borsani, B., Cappelletti, L., Cattaneo, E., Ferrario, M., Fiore, G., Iascone, M., Izzo, G., Lucchi, S., Parazzini, C., Perrone Donnorso, M., Spaccini, L., Vaia, Y., Veggiotti, P., ... XALD-NBS Study Group. (2025). Newborn Screening of X-Linked Adrenoleukodystrophy in Italy: Clinical and Biochemical Outcomes from a 4-Year Pilot Study. International Journal of Neonatal Screening, 11(4), 84. https://doi.org/10.3390/ijns11040084