Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = carlin-type gold deposits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8890 KiB  
Article
Alteration Information Extraction and Mineral Prospectivity Mapping in the Laozhaiwan Area Using Multisource Remote Sensing Data
by Qi Chen, Dayu Cai, Zhifang Zhao, Xiaoguang Yang, Yilong Wang, Xiao Jiang, Lei Xu, Haichuan Duan, Yang He, Xiaoxiao Zhang, Yiyang Wang and Ting Xu
Remote Sens. 2025, 17(13), 2178; https://doi.org/10.3390/rs17132178 - 25 Jun 2025
Viewed by 535
Abstract
Gold is a vital strategic resource for many countries. The Laozhaiwan area is an important gold resource base in Yunnan Province and even nationwide. Conducting mineral resource exploration in this region to increase gold reserves is of great significance. The application of remote [...] Read more.
Gold is a vital strategic resource for many countries. The Laozhaiwan area is an important gold resource base in Yunnan Province and even nationwide. Conducting mineral resource exploration in this region to increase gold reserves is of great significance. The application of remote sensing technology in mineral resource exploration is a green and efficient technical approach, which has been widely utilized in the field of mineral resource prospecting. This study selects the Laozhaiwan area in the southeastern part of Yunnan Province as the research region. Linear and ring structures were extracted using the remote sensing visual interpretation method based on Sentinel-2A multispectral data. Additionally, Sentinel-2A, ASTER, and ZY1-02D data were used to extract iron-stained, hydroxyl, silicification, and limonite alteration information through Principal Component Analysis (PCA) and Spectral Angle Mapper (SAM) methods. Additionally, 50 linear structures and 12 ring structures were extracted. A comprehensive analysis of geological data reveals that alteration minerals and linear-ring structures are closely related to mineralization, providing valuable indicators for mineral resource exploration. By comprehensively analyzing the alteration information and remote sensing interpretation results of the linear-ring structures, two prospective areas for mineral exploration were delineated. Field investigations and petrographic studies confirmed the reliability of remote sensing technology in mineral exploration. The mineral exploration method based on multi-source remote sensing technology can clearly reflect various alteration information and linear-ring structural data. It provides remote sensing geological insights for geological survey work and has great application potential in the field of mineral resource exploration. Full article
Show Figures

Figure 1

29 pages, 5916 KiB  
Article
Metal Fingerprints of Eocene Rhyolite Magmas Coincident with Carlin-Type Gold Deposition in Nevada USA
by Celestine N. Mercer, Hannah R. Babel, Cameron M. Mercer and Albert H. Hofstra
Minerals 2025, 15(5), 479; https://doi.org/10.3390/min15050479 - 4 May 2025
Viewed by 582
Abstract
Eocene magmatic systems contemporaneous with world-class Carlin-type Au deposits in Nevada (USA) have been proposed by some researchers as a key ingredient for Au mineralization, though evidence conclusively demonstrating their genetic relationship remains tenuous. This study provides the first direct evidence of the [...] Read more.
Eocene magmatic systems contemporaneous with world-class Carlin-type Au deposits in Nevada (USA) have been proposed by some researchers as a key ingredient for Au mineralization, though evidence conclusively demonstrating their genetic relationship remains tenuous. This study provides the first direct evidence of the pre-eruptive metal budget of volatile- and metal-charged silicic magmas coincident in time (~41 to 34 Ma) and space (within 5 km) with Carlin-type Au deposits. We characterize the pre-eruptive metal fingerprints of these diverse magmatic systems to assess their potential as sources of metals for Carlin-type Au mineralization. Metal abundances from quartz-hosted melt inclusions (Au, Te, Ag, Sb, Tl, Mo, W, Sn, As, Pb, Co, Cu, Ni, and Zn) characterized in situ by SHRIMP-RG and LA-ICP-MS represent our best (and only) estimates for the pre-eruptive metal budget in these systems. Median metal concentrations are generally within one order of magnitude of average upper crust and average continental rhyolite values. But there are two notable exceptions, with median Au contents extending >1 order of magnitude higher than average upper crust and median Cu contents ranging >1 order of magnitude lower than upper crust. Despite this, melts contain lower Au/Cu (<0.1), Au/Ag (<5), and Au/Tl (<0.3) than most ore-grade Carlin-type rock samples and quartz-hosted fluid inclusions, regardless of their age and timing relative to nearby Carlin-type Au mineralization. The metal fingerprints of these magmatic systems, defined both by traditional and multivariate compositional data analysis techniques, are distinct from one another. Yet none are particularly specialized, e.g., high Au/Cu, in terms of being ideal ingredients as postulated by magmatic models for Carlin-type Au mineralization. Magmatic Au contents do not appear to be correlated with rhyolite “flavors” in the way that Cu, Sn, and Nb contents are. Fluid/melt partitioning modeling and magma volume estimates support the idea that a diverse array of non-specialized silicic magmas could feasibly contribute some or potentially all of the Au, Ag, and Cu in Carlin-type systems. The compositional diversity among contemporaneous magmatic systems could possibly contribute to some of the diversity observed across Carlin-type Au districts in Nevada. Full article
Show Figures

Graphical abstract

18 pages, 7833 KiB  
Article
Analysis of Structural Position of Carlin-Type Gold Deposits with Lineament Analysis of Remote Sensing Data Using pyLEFA Software
by Sergei Shevyrev and Natalia Boriskina
Minerals 2025, 15(3), 219; https://doi.org/10.3390/min15030219 - 24 Feb 2025
Viewed by 972
Abstract
Previous research on Carlin-type gold deposits in North America and China has revealed peculiarities in their genesis, distribution, and prospectivity. However, pinpointing these deposits within known ore districts and prospective areas is a complex and resource-demanding task. Studying the structural and geological characteristics [...] Read more.
Previous research on Carlin-type gold deposits in North America and China has revealed peculiarities in their genesis, distribution, and prospectivity. However, pinpointing these deposits within known ore districts and prospective areas is a complex and resource-demanding task. Studying the structural and geological characteristics of Carlin-type deposits in areas with a longer history of exploration using machine learning techniques is crucial, especially considering the potential for discovering Carlin-type deposits in Russia. Crustal fracturing fields detected in space imagery and digital relief models can serve as a foundation for prospectivity mapping of Carlin-type deposits, even without evidence of magmatic sources of ore matter. The detection of disjunctive features, observed as linear elements (lineaments) in remote sensing images of the Earth, allows for a quantitative description of the Earth’s crust permeability to ore-bearing magmas and fluids. This can be accomplished using open source pyLEFA software. Optical detection methods facilitate this process, while the assessment of heterogeneity in the distribution of fracture field parameters is achieved using unsupervised learning and classification. Machine learning based on datasets produced with pyLEFA enables the assessment of the contribution of predictor variables to the result. The knowledge acquired can be applied to areas with the potential for discovering Carlin-type deposits. Full article
Show Figures

Figure 1

20 pages, 6165 KiB  
Article
Extraction and Interpretation of Gold Exploration Indexes in Jinya-Mingshan Area Based on Association Rule Algorithm and Statistical Analysis
by Xinzhu Dong, Guangfei Guo, Yang Huang, Weihe Chen, Zhiyuan Ni, Jiandong Meng and Pingru Li
Minerals 2025, 15(2), 165; https://doi.org/10.3390/min15020165 - 11 Feb 2025
Viewed by 574
Abstract
Geochemical data serve as crucial references for prospecting, and the effective extraction of prospecting information from such data determines the success rate of exploration. In the era of big data, novel prospecting methods based on geochemical data offer new ideas for exploring various [...] Read more.
Geochemical data serve as crucial references for prospecting, and the effective extraction of prospecting information from such data determines the success rate of exploration. In the era of big data, novel prospecting methods based on geochemical data offer new ideas for exploring various ore deposits. By employing advanced data analysis techniques like machine learning and artificial intelligence, it becomes possible to identify elusive patterns and trends that are challenging to detect using traditional approaches, thereby significantly enhancing the success rate of prospecting endeavors. In this study, we selected drainage sediment geochemical data (Au, Ba, Mo, Sb, V, W, Zn) in the Jinya-Mingshan area to explore potential Carlin-type gold deposits. Traditional geochemical processing methods along with an association rule algorithm were employed for conducting comprehensive data mining analysis. The results demonstrate that the element combinations within the study area can be categorized into strong positive associations and enrichments (Mo, Sb, Zn) associated with vulcanization, strong negative associations, and decarbonation-related migration elements (Ba), as well as strong positive associations and weakly enriched elements (W) and weak positive associations and weakly enriched elements (V) not significantly related to mineralization. In comparison to Mo and Sb, which are closely linked to Au as revealed by cluster analysis and factor analysis, the association rule algorithm also reveals a relatively close correlation between Ba, Zn, and Au. Based on the element correlations obtained through the association rule algorithm, a new prospecting index was constructed for the study area. This new index is more reasonable than traditional indices. In conclusion, the association rule algorithm possesses unique advantages in information mining of geochemical data and holds promising applications in geological exploration. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

14 pages, 6673 KiB  
Article
In Situ Carbonate U-Pb Dating of Gold and Mercury Deposits in the Youjiang Metallogenic Province, SW China, and Implications for Multistage Mineralization
by Jinwei Li, Yuzhou Zhuo, Yitong Guo, Xinyue Lu and Xinlu Hu
Minerals 2024, 14(7), 669; https://doi.org/10.3390/min14070669 - 28 Jun 2024
Viewed by 1286
Abstract
The Youjiang metallogenic province (YMP) is a famous ore-concentrating area in South China, known for its substantial Carlin-type gold deposits, antimony deposits, and mercury deposits. Previous studies have yielded conflicting views regarding the ages of mineralization in this area, particularly regarding the occurrence [...] Read more.
The Youjiang metallogenic province (YMP) is a famous ore-concentrating area in South China, known for its substantial Carlin-type gold deposits, antimony deposits, and mercury deposits. Previous studies have yielded conflicting views regarding the ages of mineralization in this area, particularly regarding the occurrence of Yanshanian versus Indosinian ore-forming events during the Mesozoic era. To resolve these discrepancies, this study utilized in situ LA-ICP-MS U-Pb dating on carbonate minerals from the Lannigou Carlin-type Au deposit, the Lanmuchang Hg-(Tl) deposit, and the Sixiangchang Hg deposit to accurately determine their mineralization ages. Our results indicate that the three deposits formed at 137 ± 9 Ma, ~97 Ma, and 454 ± 21 Ma, respectively. By integrating previously reported geochronological data, we propose that the low-temperature Au-As-Sb-Hg-Tl deposits in the YMP were formed during two major periods, Late Triassic and Late Jurassic to Cretaceous, with the latter being more prevalent. Additionally, there was a Paleozoic hydrothermal mercury mineralization event at the northeastern edge of this region. These newly acquired data significantly enhance our understanding of multistage, low-temperature mineralization events in the YMP. Our study also demonstrates that in situ carbonate U-Pb dating is an excellent method for investigating the timing of low-temperature mineralization events. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Graphical abstract

20 pages, 10787 KiB  
Article
Exploration Vectors and Indicators Extracted by Factor Analysis and Association Rule Algorithms at the Lintan Carlin-Type Gold Deposit, Youjiang Basin, China
by Xiaolong Wang, Shengtao Cao, Qinping Tan, Zhuojun Xie, Yong Xia, Lujing Zheng, Jianzhong Liu, Kelin Zhou, Jingdan Xiao and Tingxian Ren
Minerals 2024, 14(5), 492; https://doi.org/10.3390/min14050492 - 7 May 2024
Cited by 4 | Viewed by 1528
Abstract
The Youjiang Basin in China is the world’s second-largest concentrated area of Carlin-type Au deposits after Nevada, USA, boasting cumulative Au reserves nearing 1000 t. This study examined the recently unearthed Lintan Carlin-type Au deposit within the Youjiang Basin. Factor analysis and association [...] Read more.
The Youjiang Basin in China is the world’s second-largest concentrated area of Carlin-type Au deposits after Nevada, USA, boasting cumulative Au reserves nearing 1000 t. This study examined the recently unearthed Lintan Carlin-type Au deposit within the Youjiang Basin. Factor analysis and association rule algorithms were used to identify exploration vectors and indicators essential for navigating this promising geological territory. In the Lintan mining area, the geological strata encompass the Triassic Bianyang, Niluo, and Xuman formations comprised clastic rocks, followed by the deeper Permian Wujiaping Formation with massive carbonate rocks. The orebodies are restricted to the F14 inverse fault, cutting through the Xuman Formation, with an additional F7 fault between the Wujiaping and Xuman formations. A total of 125 rock samples from the F14 fault and a representative cross-section were analyzed for 15 elements (Au, Ag, As, Bi, Cd, Co, Cu, Hg, Mo, Ni, Pb, Sb, Tl, W, and Zn). The elements were divided into four groups based on cluster and factor analysis. Group 1 (Co, Cu, Zn, Ni, Tl, W, and Bi) was mainly enriched in the Xuman, Niluo, and Bianyang formations controlled by sedimentary diagenesis. Group 2 (Au, As, Hg, and Sb) was concentrated in the F14 and F7 faults, representing Au mineralization. Group 3 (Pb, Ag, and Mo) was mostly enriched near the F14 and F7 faults, displaying a peripheral halo of Au mineralization, and was probability controlled by ore-forming hydrothermal activities. Group 4 (Cd and Mo) exhibited extreme enrichment along the periphery of the F7 fault. This pattern indicates the presence of a substantial hydrothermal alteration zone surrounding the fault, likely influenced by ore-forming hydrothermal processes. Additionally, Pb, Ag, Cd, Mo, and W are considered essential indicators for ore formation besides Au, As, Sb, Hg, and Tl. Twelve effective association rules were derived using the association rule algorithm, which can aid in discriminating Au mineralization. The spatial distributions of the 15 elements indicated that the F14 fault is the main ore-bearing fracture zone, while the F7 fault serves as the ore-conducting structure, channeling ore-forming fluids into the F14 fault. Faults between the Wujiaping and Xuman formations, along with their associated reverse faults, present potential prospecting targets both within and outside the Lintan Au deposit in the Youjiang Basin. Exploration geochemical data can be fully utilized by combining factor analysis and association rule algorithms, offering key guidance for prospecting Carlin-type gold and similar deposits. Full article
(This article belongs to the Special Issue Geochemical Exploration for Critical Mineral Resources)
Show Figures

Figure 1

24 pages, 8308 KiB  
Article
Metallogenic Mechanism of Carlin-Type Gold Deposit in Zhen’an-Xunyang Basin, in the South Qinling of China: Constraints of In Situ Trace Elements and S Isotopes from Newly Discovered Wangzhuang Gold Deposit
by Wuyi Meng, Jiajun Liu, Huanhuan Wu, Zhen Zhang, Weidong Tang, Yongbao Gao, Liyong Wei, Bin Jia, Xin Zheng and Ningbo Liu
Minerals 2023, 13(11), 1459; https://doi.org/10.3390/min13111459 - 20 Nov 2023
Cited by 2 | Viewed by 2000
Abstract
The Zhen’an-Xunyang Basin is a late Paleozoic rifted basin with a series of Au-Hg-Sb deposits that have been found, mostly along the Nanyangshan fault. Recently discovered large- and medium-sized gold deposits such as the Xiaohe and Wangzhuang deposits exhibit typical characteristics of Carlin-type [...] Read more.
The Zhen’an-Xunyang Basin is a late Paleozoic rifted basin with a series of Au-Hg-Sb deposits that have been found, mostly along the Nanyangshan fault. Recently discovered large- and medium-sized gold deposits such as the Xiaohe and Wangzhuang deposits exhibit typical characteristics of Carlin-type gold deposits. Therefore, it is imperative to select a typical deposit for an in-depth study of its metallogenic mechanism to support future prospecting efforts targeting the Carlin-type gold deposits within the area. Based on detailed field investigation and microphotographic observation, four ore-forming stages are identified: I, low-sulfide quartz stage, characterized by euhedral, subhedral pyrite, and fine veins of quartz injected parallel to the strata; II, arsenopyrite–arsenian pyrite–quartz stage, the main mineralization stage characterized by strongly silicified zones of reticulated quartz, disseminated arsenopyrite, fine-grained pyrite; III, low-sulfide quartz stage, characterized by large quartz veins cutting through the ore body or fine veins of quartz; Ⅳ, carbonate–quartz stage, characterized by the appearance of a large number of calcite veins. In situ analysis of trace elements and S isotopes of typical metal sulfides was carried out. The results show significant variations in the trace element compositions of metal sulfides in different stages, among which the main mineralization stage differs notably from those of the Au- and As-low surrounding strata. In situ S isotope analysis reveals δ34S values ranging from 15.78‰ to 28.71‰ for stage I metal sulfides, 5.52‰ to 11.22‰ for stage II, and 0.3‰ to 5.25‰ for stage III, respectively, revealing a gradual decrease in S isotopic values from the pre-mineralization stage to post-mineralization stage, similar to those observed in the Xiaohe gold deposit. These features indicate a distinct injection of relatively low 34S hydrothermal fluids during the mineralization process. The element anomalies of the 1:50,000 stream sediment in the region revealed ore-forming element zonation changing in W→Au (W)→Hg, Sb (Au) anomalies from west to east, manifested by the discovery of tungsten, gold, and mercury–antimony deposits in the area. Moreover, conspicuous Cr-Ni-Ti-Co-Mo anomalies were observed on the western side of the Wangzhuang and Xiaohe gold deposits, indicating a potential concealed pluton related to these deposits. These lines of evidence point to a magmatic–hydrothermal origin for the Carlin-type gold deposits in this area. Furthermore, hydrothermal tungsten deposits, Carlin-type gold deposits, and low-temperature hydrothermal mercury–antimony deposits in this region are probably controlled by the same magma–hydrothermal system. Full article
Show Figures

Figure 1

16 pages, 6375 KiB  
Article
Multi-Phase Hydrothermal Fluid Events in the Giant Lannigou Gold Deposit, SW China: Insights from Calcite Sm–Nd Age, Trace Elements, and C-O-Sr Isotopes
by Piyou Li, Yuzhao Hu, Zhendong Tian, Shenjin Guan and Huijun Fan
Minerals 2023, 13(11), 1420; https://doi.org/10.3390/min13111420 - 8 Nov 2023
Cited by 1 | Viewed by 1767
Abstract
The Nanpanjiang basin hosts the world’s second-largest concentration of Carlin-type gold deposits. To decipher the origin and evolution of hydrothermal fluid, this study conducted Sm–Nd dating, in-situ trace element, and C-O-Sr isotopic analyses on three types of calcite samples from the giant Lannigou [...] Read more.
The Nanpanjiang basin hosts the world’s second-largest concentration of Carlin-type gold deposits. To decipher the origin and evolution of hydrothermal fluid, this study conducted Sm–Nd dating, in-situ trace element, and C-O-Sr isotopic analyses on three types of calcite samples from the giant Lannigou gold deposit in the Nanpanjiang basin, SW China. The type-I calcite, intergrown with Au-bearing arsenian pyrite, has an Sm–Nd isochron age of 213 ± 7 Ma (MSWD = 0.81), indicating that gold mineralization occurred in Late Triassic. The type-II calcite, which coexists with high-maturity bitumens and cut through the main-stage gold orebodies, yields an Sm–Nd age of 188 ± 14 Ma (MSWD = 0.34), representing a post-ore hydrocarbon accumulation event. The type-I and type-II calcite samples have low REE contents (5.28–51.6 ppm) and exhibit MREE-enriched and LREE-/HREE-depleted patterns. Combined with their identical C-O-Sr isotopes, we suggest that hydrothermal fluids responsible for the precipitation of type-I and type-II calcite samples were derived from a mixed metamorphic fluid and meteoric water source. In contrast, the type-III calcite samples, associated with realgar and orpiment, have distinct Mn, Sr, and As contents, REE patterns, and C-O-Sr isotopic composition from the type-I and II calcites, suggestive of different fluid sources. Based on our and previously published data, we propose that the fluid evolution, gold mineralization, and hydrocarbon accumulation in the Nanpanjiang basin are closely related to the Indosinian and Yanshanian orogenies in South China. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

10 pages, 6379 KiB  
Article
Mineral Phase Evolution during Oxidation Roasting Pretreatment of Typical Carlin Gold Ore and Effects on Gold Leaching Efficiency
by Licheng Ma, Xiang Liu, Lei Wang and Jungang Qi
Minerals 2023, 13(4), 558; https://doi.org/10.3390/min13040558 - 16 Apr 2023
Cited by 3 | Viewed by 2771
Abstract
Arsenious and sulphur-bearing micro-disseminated gold ore is a kind of typical refractory Carlin-Type. The gold in Carlin-Type gold ore grains is distributed finely, existing as invisible or submicroscopic gold, encapsulated in arsenopyrite and pyrite. The technical difficulty of treatment Carlin-Type gold ore lies [...] Read more.
Arsenious and sulphur-bearing micro-disseminated gold ore is a kind of typical refractory Carlin-Type. The gold in Carlin-Type gold ore grains is distributed finely, existing as invisible or submicroscopic gold, encapsulated in arsenopyrite and pyrite. The technical difficulty of treatment Carlin-Type gold ore lies in how to release the fine gold wrapped in pyrite and arsenopyrite. In this study, the oxidation roasting pre-treatment technique was used to treat the Carlin-Type gold ore. This included a two-stage roasting process: the arsenic was removed in the first roasting process, and the sulphur was removed in the second roasting process. The thermodynamic of the roasting process was analyzed, and the mineral phase evolution of the roasting process was investigated by using XRD, SEM and EDS. Finally, the influence of sodium cyanide dosage and leaching time on leaching efficiency was investigated. The results suggest that for the first roasting temperature at 550 °C, and the second roasting at temperature 700 °C with air flow 2.5 L/min, the sodium cyanide dosage is 1.75 kg/t and leaching time is 27 h; a good leaching efficiency is obtained with 83.85%. Full article
(This article belongs to the Special Issue Valuable Metals Recovery by Mineral Processing and Hydrometallurgy)
Show Figures

Figure 1

18 pages, 6160 KiB  
Article
Activation of Dolomite Flotation by Ferrous Hydroxide and Carbonate
by Haiping Zhao, Xiaopeng Niu, Bingxu Dong, Xianbing Jia and Renman Ruan
Minerals 2023, 13(2), 200; https://doi.org/10.3390/min13020200 - 30 Jan 2023
Cited by 1 | Viewed by 2165
Abstract
The major problem with Carlin-type gold deposit flotation is that the high dolomite content in the concentrate decreases the quality of gold. Further, the activation mechanisms involved in dolomite flotation are still not fully understood. Herein, the correlation of Fe2+ conversion with [...] Read more.
The major problem with Carlin-type gold deposit flotation is that the high dolomite content in the concentrate decreases the quality of gold. Further, the activation mechanisms involved in dolomite flotation are still not fully understood. Herein, the correlation of Fe2+ conversion with xanthate adsorption and dolomite flotation was investigated to reveal the effect of dolomite embedded with pyrite. Flotation tests suggested that Fe2+ rather than Fe3+ improved the floatability of dolomite from 20% to 45%. Contact angles and thermodynamic tests indicated that the hydrophobicity of Fe2+-modified dolomite corresponds to the adsorption of xanthate. Importantly, time-of-flight secondary ion mass spectroscopy (Tof-SIMS) and x-ray photoelectron spectroscopy (XPS) attributed the activation of dolomite flotation to the formation of Fe(OH)2 and FeCO3. The coordination model of flotation successfully elucidated the selective adsorption of xanthate between Fe(OH)2, FeCO3 and FeOOH surfaces. The density function theory (DFT) simulation calculation was performed to identify the reaction rate at the atomic level, and the density of states (DOS) was also conducted to verify the conclusions at the electronic level. This study presents important surface chemistry evidence for understanding and regulating the poor selectivity in the flotation of Carlin-type gold deposits. Full article
(This article belongs to the Special Issue Sulphate and Carbonate Minerals)
Show Figures

Figure 1

21 pages, 7637 KiB  
Article
The Relationship between Fluid Evolution and Hydrocarbon Accumulation and Metallization in the Nanpanjiang-Youjiang Basin: Evidence from Calcite Petrography and Fluid Inclusions
by Peng He, Xiang Ge, Chuanbo Shen, Shuaiping Li and Youzhi Chen
Energies 2023, 16(1), 328; https://doi.org/10.3390/en16010328 - 28 Dec 2022
Cited by 1 | Viewed by 1937
Abstract
In the process of diagenesis and burial of sedimentary basins, basin fluid activities participate in the process of hydrocarbon accumulation and metal mineralization. Understanding the evolution of basin fluid is of great significance in revealing the related hydrocarbon accumulation and mineralization. Paleo-reservoirs are [...] Read more.
In the process of diagenesis and burial of sedimentary basins, basin fluid activities participate in the process of hydrocarbon accumulation and metal mineralization. Understanding the evolution of basin fluid is of great significance in revealing the related hydrocarbon accumulation and mineralization. Paleo-reservoirs are closely associated with Carlin-type gold deposits in the Nanpanjiang-Youjiang Basin, South China. Calcite, the fluid activity product, is closely related to bitumen and gold-bearing pyrite. By integrating petrographic, cathode luminescence, and fluid inclusion analysis, as well as the relevant chronological results of predecessors, this paper attempts to establish the relationship between fluid evolution, hydrocarbon accumulation, and gold mineralization. Two types of calcite (black/gray and white) developed in the Banqi-Yata-Laizishan area, the Nanpanjiang-Youjiang Basin. Black/gray calcite is symbiotic with bitumen and features dark red colors in cathode luminescence. Many hydrocarbon inclusions developed along with fluid inclusion analysis at low homogenization temperatures (65.7~173.1 °C). Combining the previously reported U-Pb ages (~250–230 Ma) of this kind of calcite with some geochemistry data on the associated reservoir and gold deposit, this calcite records the consecutive hydrocarbon accumulation and Carlin-type gold mineralization from the Late Permian to the Late Triassic periods controlled by Indosinian tectonic movement. The white calcite featuring bright red in cathodoluminescence is symbiotic with gold-bearing pyrite and realgar, and the associated fluid inclusions have high homogenization temperatures (128.2~299.9 °C). Combined with regional tectonic background and isotopic chronology (~140–106 Ma), it seems to record the early Cretaceous Carlin-type gold mineralization controlled by the subduction of the paleo-Pacific plate in the late Yanshanian period. Full article
(This article belongs to the Special Issue Formation, Exploration and Production of Oil and Gas)
Show Figures

Figure 1

24 pages, 7312 KiB  
Article
Genesis of the Tangshang Au Deposit in Southeast Yunnan Province, China: Constraints from In Situ Chemical and S-Sr Isotope Analyses
by Weifang Song, Pan Wu, Jianzhong Liu, Junhai Li, Zepeng Wang, Qinping Tan, Zhuojun Xie and Lulin Zheng
Minerals 2022, 12(7), 806; https://doi.org/10.3390/min12070806 - 24 Jun 2022
Viewed by 2392
Abstract
The Yunnan–Guizhou–Guangxi district (also known as the Dian–Qian–Gui “Golden Triangle”) in southwestern China contains numerous Carlin-type Au deposits (CTGDs). However, the sources of Au and Au-bearing fluids in these deposits remain controversial. The Tangshang Au deposit is a middle-sized CTGD in southeastern Yunnan [...] Read more.
The Yunnan–Guizhou–Guangxi district (also known as the Dian–Qian–Gui “Golden Triangle”) in southwestern China contains numerous Carlin-type Au deposits (CTGDs). However, the sources of Au and Au-bearing fluids in these deposits remain controversial. The Tangshang Au deposit is a middle-sized CTGD in southeastern Yunnan Province. This study involved in situ chemical and S isotope analyses of sulfides and in situ trace elemental and Sr isotope analyses of ore-related calcite; these data were used to trace the sources of fluids and Au, as well as the genesis of this deposit. Four pyrite types (Py1, Py2, Py3, and Py4) and two arsenopyrite types (Apy1 and Apy2) were identified based on their textural characteristics. It was found that Py1 contains relatively lower Au, Sb, Cu, and Tl contents than those of Py2, Py3, and Py4. Py1 is wrapped by rim-Py2 and Py3, which indicates an early-ore-stage genesis. The Carlin-type mineralization elements are elevated in the pyrites (Au = 3.04–38.1 ppm; As = 40,932–65,833 ppm; Tl = 0 to 3.3 ppm; Sb = 1.2 to 343 ppm; and Cu = 10 to 102 ppm), and the average Co/Ni ratio is 0.54. Additionally, Au has a positive correlation with Tl and Cu. The high concentrations of As and Au in all types of pyrite indicate that the ore-forming fluids are rich in both elements. The sulfides in the ores were shown to produce similar S isotope ratios, which are obviously higher than the S isotope value of sulfide (~0‰) in Emeishan basalt; therefore, the integration of these and elemental composition data indicated that all pyrites (Py1, Py2, Py3, and Py4) form during the ore stage. These results also demonstrate that the δ34S values of the Au-bearing fluids are higher than those of basalt wall rocks. The flat chondrite-normalized REEs pattern and positive Eu anomaly of the calcite were similar to those obtained from Emeishan basalt, which suggests a reducing characteristic of hydrothermal fluids. The 87Sr/86Sr ratios (0.70557–0.70622) of calcite were also comparable to the range obtained from Emeishan basalt. Some slightly higher 87Sr/86Sr ratios, which ranged between those obtained from Emeishan basalt and limestone from the Maokou Formation, indicated that the Sr isotope ratios of the Au-bearing fluids are higher than those of Emeishan basalt. Based on data generated in the present study and the regional geology of this area, a genetic model involving a metamorphic fluid system was proposed for the Tangshang gold deposit, and a gold mineralization event related to metamorphic fluid in the south of the Dian–Qian–Gui “Golden Triangle” was indicated. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

16 pages, 4459 KiB  
Article
Multi-Objective Function Optimization of Cemented Neutralization Slag Backfill Strength Based on RSM-BBD
by Mingqing Huang, Lin Chen, Ming Zhang and Shulin Zhan
Materials 2022, 15(4), 1585; https://doi.org/10.3390/ma15041585 - 20 Feb 2022
Cited by 8 | Viewed by 2308
Abstract
Tailings produced in the beneficiation of Carlin-type gold deposits are characterized by fine particle size and high mud content. When neutralized with wasted acid generated by pressurized pre-oxidation, the tailings turn to neutralized slag and perform as a novel backfill material. To understand [...] Read more.
Tailings produced in the beneficiation of Carlin-type gold deposits are characterized by fine particle size and high mud content. When neutralized with wasted acid generated by pressurized pre-oxidation, the tailings turn to neutralized slag and perform as a novel backfill material. To understand the influential behavior of variable factors on the strength and its optimization of cemented neutralization slag backfill, RMS-BBD design test was carried out with 56–60% slurry mass fraction, 12.5–25% cement/(neutralization slag + waste rock) (i.e., C/(S+R)) and 30–40% waste rock content. A modified three-dimensional quadratic regression model was proposed to predict the strength of cemented neutralization slag backfill. The results showed that backfill strength predicted by the modified ternary quadratic regression model was in high coincidence with the data of backfill mixture tests. C/(S+R) was predominant in backfill strength with regard to every single influential factor throughout the curing age, and the mass fraction of slurry had a significant effect on the later strength. From the perspective of economic and engineering operation, a multi-objective function method was further introduced to optimize the backfill strength. The optimal mixture proportion of cemented neutralized slag backfill slurry was: 58.4% slurry mass fraction, 32.2% waste rock content, and 20.1% C/(S+R). The backfill strength of this mixture proportion on days 7, 28 and 56 was verified as 0.42, 0.64 and 0.85 MPa, respectively. RSM-BBD design and multi-objective function optimization proposed a reliable way to evaluate and optimize the strength of neutralized slag backfill with high mud content. Full article
Show Figures

Figure 1

20 pages, 99767 KiB  
Article
Coupling Relationship Analysis of Gold Content Using Gaofen-5 (GF-5) Satellite Hyperspectral Remote Sensing Data: A Potential Method in Chahuazhai Gold Mining Area, Qiubei County, SW China
by Yuehan Qin, Xinle Zhang, Zhifang Zhao, Ziyang Li, Changbi Yang and Qunying Huang
Remote Sens. 2022, 14(1), 109; https://doi.org/10.3390/rs14010109 - 28 Dec 2021
Cited by 13 | Viewed by 3518
Abstract
The gold (Au) geochemical anomaly is an important indicator of gold mineralization. While the traditional field geochemical exploration method is time-consuming and expensive, the hyperspectral remote sensing technique serves as a robust technique for the delineation and mapping of hydrothermally altered and weathered [...] Read more.
The gold (Au) geochemical anomaly is an important indicator of gold mineralization. While the traditional field geochemical exploration method is time-consuming and expensive, the hyperspectral remote sensing technique serves as a robust technique for the delineation and mapping of hydrothermally altered and weathered mineral deposits. Nonetheless, mineralization element anomaly detection was still seldomly used in previous hyperspectral remote sensing applications in mineralization. This study explored the coupling relationship between Gaofen-5 (GF-5) hyperspectral data and Au geochemical anomalies through several models. The Au geochemical anomalies in the Chahuazhai mining area, Qiubei County, Yunnan Province, SW China, was studied in detail. First, several noise reduction methods including radiometric calibration, Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), Savitzky–Golay filter, and endmember choosing methods including Minimum Noise Fraction (MNF) transformation, matched filtering, and Fast Fourier Transform (FFT) transformation were applied to the Gaofen-5 (GF-5) hyperspectral data processing. The Spectrum-Area (S-A) method was introduced to build an FFT filter to highlight the spectral abnormal characteristics associated with Au geochemical anomaly information. Specifically, the Matched Filtering (MF) technique was applied to the dataset to find the Au geochemical anomaly abundances of endmembers with innovative large-sample learning. Then, Multiple Linear Regression (MLR), Partial Least Squares (PLS) regression, a Back Propagation (BP) network, and Geographically Weighted Regression (GWR) were used to reveal the coupling relationship between the spectra of the processed hyperspectral data and the Au geochemical anomalies. The results show that the GWR analysis has a much higher coefficient of determination, which implies that the Au geochemical anomalies and the spectral information are highly related to spatial locations. GWR works especially well for showing the regional Au geochemical anomaly trend and simulating the Au concentrated areas. The GWR model with application of the S-A method is applicable to the detection of Au geochemical anomalies, which could provide a potential method for Au deposit exploration using GF-5 hyperspectral data. Full article
Show Figures

Figure 1

16 pages, 8949 KiB  
Article
Tennantite–Tetrahedrite-Series Minerals and Related Pyrite in the Nibao Carlin-Type Gold Deposit, Guizhou, SW China
by Dongtian Wei, Yong Xia, Jeffrey A. Steadman, Zhuojun Xie, Xijun Liu, Qinping Tan and Ling’an Bai
Minerals 2021, 11(1), 2; https://doi.org/10.3390/min11010002 - 22 Dec 2020
Cited by 7 | Viewed by 4100
Abstract
A number of sediment-hosted, Carlin-type/-like gold deposits are distributed in the Youjiang basin of SW China. The gold ores are characterized by high As, Hg, and Sb contents but with low base metal contents (Cu+Pb+Zn < 500–1000 ppm). The Nibao deposit is unique [...] Read more.
A number of sediment-hosted, Carlin-type/-like gold deposits are distributed in the Youjiang basin of SW China. The gold ores are characterized by high As, Hg, and Sb contents but with low base metal contents (Cu+Pb+Zn < 500–1000 ppm). The Nibao deposit is unique among these gold deposits by having tennantite–tetrahedrite-series minerals in its ores. The deposit is also unique in being primarily hosted in the relatively unreactive siliceous pyroclastic rocks, unlike classic Carlin-type gold deposits that are hosted in carbonates or calcareous clastic rocks. In this study, we have identified tennantite-(Zn), tennantite-(Hg), and tetrahedrite-(Zn) from the tennantite–tetrahedrite-series mineral assemblage. The tennantite-(Zn) can be further divided into two sub-types of Tn-(Zn)-I; and Tn-(Zn)-II;. Tn-(Zn)-I; usually occurs in the core of a Tennantite–tetrahedrite composite and appears the darkest under the SEM image, whereas Tn-(Zn)-II overgrows on Tn-(Zn)-I and is overgrown by tetrahedrite-(Zn). Tennantite-(Hg) occasionally occurs as inclusions near the uneven boundary between Tn-(Zn)-I and Tn-(Zn)-II. An appreciable amount of Au (up to 3540 ppm) resides in the tennantite–tetrahedrite-series minerals, indicating that the latter is a major Au host at Nibao. The coexistence of tennantite–tetrahedrite-series minerals and Au-bearing pyrite indicates the Nibao ore fluids were more oxidized than the Carlin-type ore fluids. The tennantite–tetrahedrite series at Nibao evolved from Tn-(Zn)-I through Tn-(Zn)-II to tetrahedrite-(Zn), which is likely caused by Sb accumulation in the ore fluids. This indicates that the Nibao ore fluids may have become more reduced and less acidic during Au precipitation. Full article
(This article belongs to the Special Issue Ore Mineralogy and Geochemistry of Rare Metal Deposits)
Show Figures

Figure 1

Back to TopTop