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Abstract: Arsenious and sulphur-bearing micro-disseminated gold ore is a kind of typical refractory
Carlin-Type. The gold in Carlin-Type gold ore grains is distributed finely, existing as invisible or
submicroscopic gold, encapsulated in arsenopyrite and pyrite. The technical difficulty of treatment
Carlin-Type gold ore lies in how to release the fine gold wrapped in pyrite and arsenopyrite. In this
study, the oxidation roasting pre-treatment technique was used to treat the Carlin-Type gold ore. This
included a two-stage roasting process: the arsenic was removed in the first roasting process, and the
sulphur was removed in the second roasting process. The thermodynamic of the roasting process
was analyzed, and the mineral phase evolution of the roasting process was investigated by using
XRD, SEM and EDS. Finally, the influence of sodium cyanide dosage and leaching time on leaching
efficiency was investigated. The results suggest that for the first roasting temperature at 550 ◦C, and
the second roasting at temperature 700 ◦C with air flow 2.5 L/min, the sodium cyanide dosage is
1.75 kg/t and leaching time is 27 h; a good leaching efficiency is obtained with 83.85%.

Keywords: oxidation roasting pretreatment; Carlin-Type gold deposit arsenopyrite; pyrite; cyanide
leaching

1. Introduction

The natural resources of gold mine are decreased and the high–quality gold ores
are gradually depleted. The refractory gold ores have become the main source of gold
product. The feature of refractory gold ore is that the gold grain size is extremely fine, and
exists in invisible or submicroscopic gold, which is encapsulated in arsenopyrite, sulfide,
carbonate or siliceous rock [1–3]. Hence, it is difficult to extract gold from ores using
cyanide leaching, even after ultra-fine grinding [4]. In order to render gold amenable to
the subsequent cyanide leaching, oxidation pretreatment is considered to be an effective
method for treatment of refractory gold ore, and breaks up the sulphide to oxides or
sulphates before cyanidation [5–9].

A number of projects have been conducted to improve the extraction of gold from fine-
grained refractory gold ores by using oxidation roasting pretreatment [10–12]. Oxidation
roasting pretreatment is the most common pretreatment approach to treatment refractory
gold ores [13–17]. To achieve good recoveries in subsequent leaching, the majority of the
sulfur and organic carbon has to be oxidized to SO2 and CO2; the arsenic of ore has to be
transformed to the volatile trivalent compound. Some of SO2 and SO3 and volatile trivalent
compound can be captured with lime or dolomite of ores forms the stable compounds and
ends up in the calcine [18].

In this study, the gold in arsenious and sulfur-bearing Carlin-Type gold ore is dis-
tributed extremely finely, existing as invisible or submicroscopic gold, encapsulated in
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arsenopyrite and pyrite. The technical difficulty of treatment Carlin-Type gold ore lies in
how to release the fine gold encapsulated in pyrite and arsenopyrite. In order to achieve
a good gold recovery, the thermodynamic analysis was used to verify the feasibility and
reliability of the oxidation roasting in this paper. The mineral phase evolution of calcining
was investigated by using XRD, SEM and EDS. Finally, a central composite design was used
for investigating the operating variables corresponding to the leaching efficiency of gold.

2. Material and Methods
2.1. Raw Materials

An arsenious and sulfur-bearing Carlin-Type gold ore was obtained from Guizhou.
The ore sample was prepared by crushing and grinding. Inductively coupled plasma optical
emission spectrometry (ICP-OES, PerkinElmer Optima, USA) was used to determine the
chemical composition of the sample after dissolution, whereas gold was analyzed with the
fire assay method followed by atomic absorption spectroscopy (AAS, WFX-130A, Beijing,
China). The main phases were identified via mineral liberation analyzer (MLA 650, FEI
Company, Czech Republic), scanning electron microscope (SEM Zeiss Sigma, Germany)
equipped with energy-dispersive X-ray spectroscopy (EDS, Oxford, UK), electron probe
scanning and X-ray diffraction (Rigaku SmartLab, Japan).

The main elements of the gold ore are shown in Table 1. It shows that the arsenious
and sulfur-bearing Carlin-Type gold ore contains 2.50 g/t of Au, 9.15% of S and 0.79% of
As. The SEM-EDS image of arsenious and sulfur-bearing Carlin-Type gold ore is shown in
Figure 1. The metal minerals are mainly pyrite and arsenopyrite, and gangue minerals are
mainly quartz, sericite, dolomite, calcite, ferrodolomite, kaoline, etc. The occurrence of gold
is determined via diagnostic leaching. The occurrence of gold in different phases of Carlin-
Type gold ore is shown in Figure 2. The dissemination characteristics and size fraction of
main minerals were investigated with a mineral liberation analyzer (MLA). The gold in
ore is extremely fine, and exists as invisible or submicroscopic gold, and is encapsulated in
pyrite, arsenopyrite and silicate minerals. The particles of pyrite and arsenopyrite are also
fine, 76.5% of pyrite have particle size −300 µm, and 83.36% of arsenopyrite have particles
size −38µm. It is interesting that the distribution of gold in pyrite is only 6.08%, and the
distribution of gold in arsenpyrite is 93.92%. The large amount of gold in arsenpyrite is
the reason it is difficult to treat. The carbon content in the ore is 1.70%. The occurrence
of carbon in different phases of Carlin-Type gold ore shows that 93.53% of carbon was
presented in inorganic carbon; only 4.41% of carbon was presented in organic carbon and
the rest was graphitic carbon. The content of organic and graphitic carbon in the ore was
below 1%. Hence, there is almost no preg-robbing organic carbon.

Table 1. The main elements of the Carlin-Type gold ore.

Element Content (%) Mineral Content (%)

Au (g/t) 2.50 Pyrite 22.93
Ag (g/t) 0.82 Arsenopyrite 1.27

S 9.15 Sericite 32.00
As 0.79 Quartz 25.09
Fe 9.55 Dolomite 5.95
Mg 1.75 Calcite 2.68
Ca 3.9 Ferrodolomite 3.06
Ti 1.5 Kaoline 2.53
K 2.46 Chlorite 1.51

Na 0.03 Rutile 1.33
P 0.33 Others 1.65
C 1.70
Al 3.12

SiO2 40.74
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Figure 1. The SEM-EDS images of arsenious and sulfur-bearing Carlin-Type gold ore. 
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Figure 2. The occurrence of gold in different phases of Carlin-Type gold ore. 

2.2. Roasting and Cyanide Leaching 
The ground ore, with 85% passing size of 74 μm, was dried. Air oxidation roasting 

experiments were carried out in controlled atmosphere chamber furnace (static furnace). 
A 20 g sample was weighed and placed in a quartz crucible; a desired air flow was set 
which was controlled by adjusting the flowmeter. The sample was heated to a prede-
termined temperature with a temperature increase speed of 20 °C/min. When the desired 
temperature was reached, the temperature was maintained for a certain time. Subse-
quently, the calcine was cooled to room temperature and gold was leached under the 
following conditions: the calcine was ground to 92.23% passing size of 38 um, concentra-
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Figure 1. The SEM-EDS images of arsenious and sulfur-bearing Carlin-Type gold ore.
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Figure 2. The occurrence of gold in different phases of Carlin-Type gold ore.

2.2. Roasting and Cyanide Leaching

The ground ore, with 85% passing size of 74 µm, was dried. Air oxidation roasting
experiments were carried out in controlled atmosphere chamber furnace (static furnace). A
20 g sample was weighed and placed in a quartz crucible; a desired air flow was set which
was controlled by adjusting the flowmeter. The sample was heated to a predetermined tem-
perature with a temperature increase speed of 20 ◦C/min. When the desired temperature
was reached, the temperature was maintained for a certain time. Subsequently, the calcine
was cooled to room temperature and gold was leached under the following conditions: the
calcine was ground to 92.23% passing size of 38 um, concentration of slurry 25%, pH of
leaching solution 11–12 and leaching temperature 25 ◦C. After the leaching test, the slurry
was filtrated via a vacuum filtration device. The residue was dried and the gold content
was analyzed via the fire assay method followed by atomic absorption spectroscopy.

3. Results and Discussion
3.1. The Oxidation Roasting Pretreatment
3.1.1. The Thermodynamics Fundamental of Roasting

The oxidation roasting of arsenious and sulfur-bearing Carlin-Type gold ore is a
complex chemical reaction process. The arsenopyrite and pyrite in the gold ore is oxidized
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to iron oxides, arsenic oxides, sulfur oxides, sulfate and arsenate in the oxidation roasting
process so that the finely disseminated gold particles can be dissolved via cyanide during
leaching. The main equilibrium reaction can be expressed as follows:

2FeAsS(s) = FeS2(s) + 2As(g) (1)

4FeS2(s) + 11O2(g) = 2Fe2O3(s) + 8SO2(g) (2)

2As(g) + O2(g)= 2AsO(g) (3)

2Fe2O3(s)+4AsO(g) + 3O2(g)= 4FeAsO4(s) (4)

To understand the phase evolution of arsenopyrite and pyrite of gold ore in the roasting
process, a thermodynamic model was calculated by using the Equilibrium Composition
module of HSC Chemistry 6.0. The amount of O2 (g) and N2 (g) in the calculation was
normalized to be 1.0 mol and 3.71 mol, respectively. The equilibrium amounts of species
and temperature for the reaction of FeAsS and O2, and FeS2 and O2 at different content
of O2 are shown in Figures 3 and 4, respectively. It can be seen from Figures 3 and 4
that the content of oxygen is an important factor for affecting FeAsS and FeS2 oxidation
roasting. At temperature 200–600 ◦C, the As2O3 is easily formed at lower amounts of
oxygen, and the FeAsS is decomposed to FeS2, As2O3, SO2 and iron oxide is lower. When
the amount of oxygen is increased, the main compositions are changed to FeAsO4, SO3
and SO2. Compared to FeAsS, FeS2 is easily oxidized to SO2, Fe3O4 and Fe2O3 at lower
amounts of oxygen. When the amount of oxygen is increased, the FeS2 is oxidized to SO2,
SO3 and Fe2O3. From the analysis, the arsenic and sulfur can be removed by using control
roasting conditions, e.g., amount of oxygen and roasting temperature.
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3.1.2. Effect of Roasting Condition on Removal Efficiency of As and S, and Leaching Ef-
ficiency of Gold 

The gold of refractory gold ore is encapsulated in arsenopyrite and sulfide. The 
content of gold in pyrite is only 6.08%, and the distribution of gold in arsenpyrite is 
93.92%; it is necessary to remove As and S from the sulfide refractory gold ore using the 
air oxidation roasting for releasing the fine gold encapsulated in pyrite and arsenopyrite. 
Figure 5 shows effects of the temperature (a) and air flow rate (b) on the removal effi-
ciency of As and S, and leaching efficiency of gold in single stage roasting. It can be seen 
from Figure 5a (air flow rate 2.5 L/min, roasting 1 h) that the removal efficiency of As is 
less than 30%, and decreases on increasing the roasting temperature; the removal effi-
ciency of S increases on increasing the roasting temperature. The leaching efficiency of 
gold is less than 80%, and increases on increasing the roasting temperature from 500 ℃ to 
700 ℃. The effects of air flow rate on the removal efficiency of As and S, and leaching ef-
ficiency of gold are shown in Figure 5b (roasting temperature 700 ℃, roasting 1 h), which 
shows that the removal efficiency of As decreases on increasing the airflow rate; howev-
er, the removal efficiency of S shows the opposite trend. The leaching efficiency of gold 
decreases on increasing the air flow rate. It also can be seen that the removal of As has an 
important effect on leaching of gold. 
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Figure 4. Equilibrium amounts of species as a function of temperature for reaction of FeS2 and O2.
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3.1.2. Effect of Roasting Condition on Removal Efficiency of As and S, and Leaching
Efficiency of Gold

The gold of refractory gold ore is encapsulated in arsenopyrite and sulfide. The content
of gold in pyrite is only 6.08%, and the distribution of gold in arsenpyrite is 93.92%; it is
necessary to remove As and S from the sulfide refractory gold ore using the air oxidation
roasting for releasing the fine gold encapsulated in pyrite and arsenopyrite. Figure 5 shows
effects of the temperature (a) and air flow rate (b) on the removal efficiency of As and S,
and leaching efficiency of gold in single stage roasting. It can be seen from Figure 5a (air
flow rate 2.5 L/min, roasting 1 h) that the removal efficiency of As is less than 30%, and
decreases on increasing the roasting temperature; the removal efficiency of S increases on
increasing the roasting temperature. The leaching efficiency of gold is less than 80%, and
increases on increasing the roasting temperature from 500 °C to 700 °C. The effects of air
flow rate on the removal efficiency of As and S, and leaching efficiency of gold are shown
in Figure 5b (roasting temperature 700 °C, roasting 1 h), which shows that the removal
efficiency of As decreases on increasing the airflow rate; however, the removal efficiency of
S shows the opposite trend. The leaching efficiency of gold decreases on increasing the air
flow rate. It also can be seen that the removal of As has an important effect on leaching
of gold.
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Figure 5. Effects of the temperature (a) and air flow rate (b) on the removal efficiency of As and S, 
and leaching efficiency of gold in single stage roasting. 

In order to obtain the best removal efficiency of As and S, and leaching efficiency of 
gold, a series of two stage roasting experiments was used to investigate the effect of 
roasting condition on removal efficiency of As and S, and leaching efficiency of gold, 
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Figure 5. Effects of the temperature (a) and air flow rate (b) on the removal efficiency of As and S,
and leaching efficiency of gold in single stage roasting.

In order to obtain the best removal efficiency of As and S, and leaching efficiency
of gold, a series of two stage roasting experiments was used to investigate the effect of
roasting condition on removal efficiency of As and S, and leaching efficiency of gold, which
investigated the first roasting temperature, the second roasting temperature and the second
roasting air flow. The effects of roasting condition on removal efficiency of As and S, and
leaching efficiency of gold are shown in Figure 6. The effects of first roasting temperature
on the removal efficiency of As and S are shown in Figure 6a (the sample was roasted in
air (air flow 0 L/min) at different temperatures (450–600 ◦C) for 1 h). It can be seen from
Figure 6a that the optimum removal efficiency of As is 46.91% at temperature 550 °C with
only 38.41% S removal. To further remove S from the first stage roasting calcine (obtained
at temperature 550 °C, air flow rate 0 L/min, roasting time 1 h), the higher temperature
(600 °C–800 °C) and higher air flow rate (1.5 L/min -3.0 L/min) were used to roast the
first stage roasting calcine. It can be seen from Figure 6b that the removal efficiency of S
increased on increasing temperature, the leaching efficiency also increased on increasing the
second stage roasting temperature below 750 ◦C. The leaching efficiency of gold decreased
when the temperature exceeded 750 ◦C; this is because the sample was sintered under over
roasting conditions and as a result the gold was not accessible to cyanide. The effects of
the air flow on the removal efficiency of S, and leaching efficiency of gold in second stage
roasting are shown in Figure 6c. It can be seen that the removal efficiency of S increases on
increasing of air flow; the leaching efficiency of gold also increases with air flow. Above
all, the As and S can be removed by controlling the operating parameters and condition of
roasting process, which can give a good leaching efficiency of gold.
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The arsenic was removed in the first roasting process at a temperature of 550 ◦C, and
the sulfur was removed in the second roasting process at 700 ◦C with air flow 2.5 L/min. The
mineral composition and microstructure of calcine was determined via X-ray diffraction,
the electron probe microanalysis technique (EPMA) and SEM. The X-ray diffraction pattern
of arsenious and sulfur-bearing refractory gold ore and calcine are shown in Figure 7. It
can be seen from Figure 7 that the main components of calcine were quartz and hematite.
Comparing with raw material, the diffraction peak of pyrite and arsenopyrite disappeared
completely in calcine and is replaced by the hematite peak. This indicates that the pyrite
and arsenopyrite were almost completely oxidized to hematite in calcine.
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The surface micro structure and elemental composition of raw ores and hematite in
calcine were observed via map analyses with the electron probe microanalysis technique
(EPMA). The electron probe microanalysis of hematite in calcine is shown in Figures 8 and 9.
It can be seen from Figures 8 and 9 that the pyrite contains some arsenic in raw ore. The
gold in ore is extremely fine, and exists as invisible or submicroscopic gold, which does not
reveal the presence of any discrete grains of gold. In these gold ores, gold is chemically
bound within the arsenopyrite in a non-metallic form, owing to its suitable atomic spacing
and crystal chemistry with respect to gold (Swash, 1988). As shown in Figures 8 and 9,
comparing with raw ore, most arsenic and sulfur was removed in roasting process, and
hematite was the main product of the calcine. The microstructure of hematite is shown
in Figure 10. It can be seen from Figure 10 that the hematite possesses a porous structure
resulting from the escape of the arsenic or sulphur atoms from the sulphide grains. Those
micro-pores could provide a diffusion channel for CN–, which is conducive to improving
the leaching efficiency of gold.
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Figure 9. The electron probe microanalysis of arsenopyrite (a) and hematite in calcine (b).

The mineral phase evolution during roasting is followed by a change in the occurrence
state of gold. The change in the occurrence state of gold directly affects the gold leaching
efficiency. The occurrence of gold is determined via diagnostic leaching. The occurrence
of gold in different phases of the arsenious and sulfur-bearing Carlin-Type gold ore and
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the calcine is shown in Figure 11. It can be seen from Figure 11 that only 16.88% of gold is
exposed in raw ore, with up to 61.6% of the gold encapsulated in sulfides. After roasting,
the calcin contains up to 56.4% exposed gold, iron oxide-encapsulated gold up to 31.50%
and sulfide-encapsulated gold almost reduced to 0 %. This will facilitate the subsequent
gold leaching process.
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3.3. The Effects on Gold Leaching Efficiency

As mentioned above, the arsenic was removed in the first stage roasting process at
temperature 550 °C, air flow rate 0 L/min and roasting time 1 h. The sulfur was removed in
the second roasting process at 700 ◦C, air flow 2.5 L/min with roasting time 1 h. Hence, the
calcine was prepared at the above conditions, and the influence of sodium cyanide dosage
and leaching time on leaching efficiency was investigated. Figure 12a shows the leaching
efficiency of gold at different sodium cyanide dosages with a constant leaching time of 24 h.
It can be seen from Figure 12a that the leaching efficiency of gold increases with increasing
sodium cyanide dosage. When the sodium cyanide dosage is more than 1.75 kg/t, the
leaching efficiency of gold does not significantly increase. Figure 12b shows the leaching
efficiency of gold at different leaching times with a constant sodium cyanide dosage of
1.75 kg/t. It can be seen from Figure 12a that the leaching efficiency of gold increases with
increasing leaching time. When leaching time is more than 27 h, the leaching efficiency of
gold does not significantly increase. Based on the above analysis, the results suggest that
for the first roasting temperature at 550 ◦C, and the second roasting at temperature 700 ◦C
with air flow 2.5 L/min, the sodium cyanide dosage is 1.75 kg/t and leaching time is 27 h;
a good leaching efficiency is obtained with 83.85%.
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4. Conclusions

This study investigated the two stage oxidation roasting technique, which was used to
treat the arsenious and sulfur-bearing Carlin-Type gold ore with the purpose of improving
leaching efficiency of gold. In the roasting process, the arsenic was removed in the first
roasting, and the sulfur was removed in second roasting. The thermodynamic of the roast-
ing process was analyzed, and the mineral phase evolution of calcining was investigated
by using XRD, SEM and EDS. After roasting, the pyrite and arsenopyrite were almost com-
pletely oxidized to hematite. The exposed gold is up to 56.40%, iron oxide-encapsulated
gold is up to 31.50% and sulfide-encapsulated gold is reduced almost to 0%. The porous
structure of the hematite facilitates the subsequent gold leaching process. Finally, a small
scale (20 g) batch test with first roasting temperature at 550 ◦C for 1 h without air flow, and
second roasting at temperature 700 ◦C for 1 h with air flow 2.5 L/min, followed by 27 h
cyanidation with 1.75 kg/t cyanide addition gave 83.5% gold extraction.
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