Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Keywords = cardiac action potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 499 KiB  
Case Report
Advantages of FVIII-Extended Half-Life (Turoctocog Alfa Pegol) in the Management of Cardiac Surgery in a Patient with Mild Hemophilia A: A Case Report and Literature Review
by Angela Napolitano, Andrea Venturini, Mauro Ronzoni, Graziella Saggiorato, Paolo Simioni and Ezio Zanon
Hematol. Rep. 2025, 17(4), 41; https://doi.org/10.3390/hematolrep17040041 - 6 Aug 2025
Abstract
Background and Clinical Significance: Hemophilia A presents a considerable challenge in cardiac surgery due to the elevated risk of perioperative bleeding, particularly during procedures involving cardiopulmonary bypass. Standard management typically involves standard half-life (SHL) factor VIII (FVIII) concentrates, which require frequent dosing. Extended [...] Read more.
Background and Clinical Significance: Hemophilia A presents a considerable challenge in cardiac surgery due to the elevated risk of perioperative bleeding, particularly during procedures involving cardiopulmonary bypass. Standard management typically involves standard half-life (SHL) factor VIII (FVIII) concentrates, which require frequent dosing. Extended half-life (EHL) FVIII products offer theoretical advantages, including prolonged action and reduced infusion frequency, but their use in cardiac surgery remains largely undocumented. Case Presentation: We report the case of a 73-year-old male with mild Hemophilia A who underwent successful aortic valve replacement using a 25 mm Carpentier-Edwards Magna Ease biological prosthesis. The patient was managed perioperatively with an anti-hemorrhagic protocol based on EHL recombinant FVIII. The surgery and postoperative course were uneventful, with no bleeding complications or need for transfusion. Conclusions: This case illustrates the potential role of EHL FVIII in safely managing hemophilic patients undergoing major cardiac surgery. Given the lack of existing reports in the literature, further studies are warranted to evaluate the efficacy and safety of EHL FVIII in this setting and to potentially optimize perioperative care protocols for this patient population. Full article
Show Figures

Figure 1

15 pages, 611 KiB  
Review
Role of Dyadic Proteins in Proper Heart Function and Disease
by Carter Liou and Michael T. Chin
Int. J. Mol. Sci. 2025, 26(15), 7478; https://doi.org/10.3390/ijms26157478 - 2 Aug 2025
Viewed by 199
Abstract
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development [...] Read more.
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development and positioning of dyads is essential in excitation–contraction (EC) coupling and, thus, beating of the heart. Three proteins, namely CMYA5, JPH2, and BIN1, are responsible for maintaining the dyadic cleft between the T-tubule and junctional sarcoplasmic reticulum (jSR). Various other dyadic proteins play integral roles in the primary function of the dyad—translating a propagating action potential (AP) into a myocardial contraction. Ca2+, a secondary messenger in this process, acts as an allosteric activator of the sarcomere, and its cytoplasmic concentration is regulated by the dyad. Loss-of-function mutations have been shown to result in cardiomyopathies and arrhythmias. Adeno-associated virus (AAV) gene therapy with dyad components can rescue dyadic dysfunction, which results in cardiomyopathies and arrhythmias. Overall, the dyad and its components serve as essential mediators of calcium homeostasis and excitation–contraction coupling in the mammalian heart and, when dysfunctional, result in significant cardiac dysfunction, arrhythmias, morbidity, and mortality. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Histopathological and Molecular Diagnostics)
Show Figures

Figure 1

16 pages, 738 KiB  
Review
A Rationale for the Use of Ivabradine in the Perioperative Phase of Cardiac Surgery: A Review
by Christos E. Ballas, Christos S. Katsouras, Konstantinos C. Siaravas, Ioannis Tzourtzos, Amalia I. Moula and Christos Alexiou
J. Cardiovasc. Dev. Dis. 2025, 12(8), 294; https://doi.org/10.3390/jcdd12080294 - 31 Jul 2025
Viewed by 524
Abstract
This review explores the advantages of ivabradine in the management of cardiac surgery patients, particularly highlighting its heart rate (HR)-reducing properties, its role in minimizing the impact of atrial fibrillation, and its contributions to improving left ventricular diastolic function, as well as reducing [...] Read more.
This review explores the advantages of ivabradine in the management of cardiac surgery patients, particularly highlighting its heart rate (HR)-reducing properties, its role in minimizing the impact of atrial fibrillation, and its contributions to improving left ventricular diastolic function, as well as reducing pain, stress, and anxiety. In parallel, studies provide evidence that ivabradine influences endothelial inflammatory responses through mechanisms such as biomechanical modulation. Unlike traditional beta-blockers that may induce hypotension, ivabradine selectively inhibits hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, allowing for effective HR reduction without compromising blood pressure stability. This characteristic is particularly beneficial for patients at risk of atrial fibrillation post-surgery, where HR control is crucial for cardiovascular stability. This is an area in which ivabradine appears to play a role prophylactically, possibly in combination with beta-blockers. Furthermore, ivabradine has been associated with enhanced diastolic parameters in left ventricular function, reflecting its potential to improve surgical outcomes in patients with compromised heart function. In addition to its cardiovascular benefits, it appears to alleviate psychological stress and anxiety, common in postoperative settings, by moderating the neuroendocrine response to stress, thereby reducing stress-induced hormone levels. Furthermore, it has notable analgesic properties, contributing to pain management through its action on HCN channels in both the peripheral and central nervous systems. Collectively, these findings indicate that ivabradine may serve as a valuable therapeutic agent in the perioperative care of cardiac surgery patients, addressing both physiological and psychological challenges during recovery. Full article
Show Figures

Figure 1

16 pages, 1138 KiB  
Review
Cardiac Myosin Inhibitors in the Treatment of Hypertrophic Cardiomyopathy: Clinical Trials and Future Challenges
by Arnold Kukowka and Marek Droździk
Biomolecules 2025, 15(8), 1098; https://doi.org/10.3390/biom15081098 - 29 Jul 2025
Viewed by 372
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and often underdiagnosed genetic cardiac disorder characterized by left ventricular hypertrophy and, in many cases, dynamic left ventricular outflow tract obstruction (LVOTO). The development of cardiac myosin inhibitors (CMIs) represents an emerging therapeutic approach in the pharmacological [...] Read more.
Hypertrophic cardiomyopathy (HCM) is a prevalent and often underdiagnosed genetic cardiac disorder characterized by left ventricular hypertrophy and, in many cases, dynamic left ventricular outflow tract obstruction (LVOTO). The development of cardiac myosin inhibitors (CMIs) represents an emerging therapeutic approach in the pharmacological management of obstructive HCM (oHCM). This review offers an integrated and up-to-date synthesis of the cardiac myosin inhibitor class, with a focus on mavacamten, aficamten, and the broader landscape of emerging agents. It also highlights recent clinical trial outcomes, pharmacokinetic and pharmacogenetic considerations, and potential future directions in therapy. Furthermore, we incorporate the most recent data up to May 2025, including late-breaking trial results and real-world safety findings, aiming to provide clinicians with a practical and comprehensive perspective on this evolving drug class. A narrative review was conducted by systematically searching PubMed, Scopus, Google Scholar, and ClinicalTrials.gov for English-language articles and trials published between January 2016 and May 2025. Keywords included “cardiac myosin inhibitor”, mavacamten”, “aficamten”, “MYK-224”, and “hypertrophic cardiomyopathy.” Inclusion criteria encompassed clinical trials and comprehensive reviews specifically addressing CMIs in cardiac applications. CMIs such as mavacamten and aficamten have demonstrated significant clinical benefits in reducing LVOT gradients, improving exercise capacity, and alleviating symptoms in patients with oHCM. Mavacamten is currently approved for clinical use, while aficamten is in advanced regulatory review. Comparative data suggest potential advantages of aficamten in the onset of action, pharmacokinetic profile, and tolerability. Emerging evidence supports the exploration of CMIs in pediatric populations, heart failure with preserved ejection fraction (HFpEF), and non-obstructive HCM (nHCM), although results are still preliminary. Cardiac myosin inhibitors offer a novel, pathophysiology-targeted approach to managing oHCM. While mavacamten has established efficacy, next-generation agents like aficamten may offer improved safety and versatility. Further long-term studies are needed to clarify their role across broader patient populations. Full article
Show Figures

Figure 1

25 pages, 10636 KiB  
Article
Qifu Decoction Alleviates Lipopolysaccharide-Induced Myocardial Dysfunction by Inhibiting TLR4/NF-κB/NLRP3 Inflammatory Pathway and Activating PPARα/CPT Pathway
by Lingxin Zhuo, Mingxuan Ma, Jiayi Zhang, Jiayu Zhou, Yuqi Zheng, Aiyin Liang, Qingqing Sun, Jia Liu and Wenting Liao
Pharmaceuticals 2025, 18(8), 1109; https://doi.org/10.3390/ph18081109 - 25 Jul 2025
Viewed by 312
Abstract
Background/Objectives: Sepsis-induced cardiomyopathy (SIC) is a serious clinical disorder with a high death rate. Qifu decoction (QFD) is a renowned traditional Chinese medicine with documented pharmacological actions, such as anti-inflammatory, anti-oxidant and anti-apoptosis activities, and it has good therapeutic effects on cardiovascular [...] Read more.
Background/Objectives: Sepsis-induced cardiomyopathy (SIC) is a serious clinical disorder with a high death rate. Qifu decoction (QFD) is a renowned traditional Chinese medicine with documented pharmacological actions, such as anti-inflammatory, anti-oxidant and anti-apoptosis activities, and it has good therapeutic effects on cardiovascular diseases. This study aimed to reveal the cardioprotective effects and underlying mechanisms of QFD against SIC. Methods: Electrocardiography, histopathological examination, and biochemical indicator determination were carried out to investigate the cardioprotective effects of QFD in the treatment of LPS-induced SIC mice. Metabolomics and network pharmacology strategies were employed to preliminarily analyze and predict the mechanisms of QFD against SIC. Molecular docking and Western blot were further applied to validate the core targets and potential pathways for the treatment of SIC in in vitro and in vivo models. Results: It was found that QFD considerably enhanced cardiac function; attenuated myocardial injury; and reduced the serum levels of LDH, CK-MB, IL-1β, and TNF-α by 28.7%, 32.3%, 38.6%, and 36.7%, respectively. Metabolomic analysis showed that QFD could regulate seven metabolic pathways, namely, glutathione metabolism; alanine, aspartate, and glutamate metabolism; arachidonic acid metabolism; glycerophospholipid metabolism; purine metabolism; sphingolipid metabolism; and fatty acid metabolism. Network pharmacology suggested that the anti-SIC effect of QFD may be mediated through the TNF, toll-like receptor, NOD-like receptor, NF-κB, and PPAR signaling pathways. Additionally, 26 core targets were obtained. Molecular docking revealed that active ingredients such as formononetin, kaempferol, quercetin, and (R)-norcoclaurine in QFD had a high affinity for binding to PPARα and TLR4. Further Western blot validation indicated that QFD could regulate the protein levels of NLRP3, TLR4, NF-κB, IL-6, TNF-α, COX2, sPLA2, PPARα, CPT1B, and CPT2. Conclusions: This study demonstrates that QFD can alleviate SIC by suppressing the TLR4/NF-κB/NLRP3 inflammatory pathway and modulating impaired FAO through the activation of the PPARα/CPT pathway, highlighting QFD as a promising candidate drug for SIC treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

27 pages, 2366 KiB  
Review
S-Nitrosylation in Cardiovascular Disorders: The State of the Art
by Caiyun Mao, Jieyou Zhao, Nana Cheng, Zihang Xu, Haoming Ma, Yunjia Song and Xutao Sun
Biomolecules 2025, 15(8), 1073; https://doi.org/10.3390/biom15081073 - 24 Jul 2025
Viewed by 376
Abstract
Protein S-nitrosylation is a selective post-translational modification in which a nitrosyl group is covalently attached to the reactive thiol group of cysteine, forming S-nitrosothiol. This modification plays a pivotal role in modulating physiological and pathological cardiovascular processes by altering protein conformation, activity, stability, [...] Read more.
Protein S-nitrosylation is a selective post-translational modification in which a nitrosyl group is covalently attached to the reactive thiol group of cysteine, forming S-nitrosothiol. This modification plays a pivotal role in modulating physiological and pathological cardiovascular processes by altering protein conformation, activity, stability, and other post-translational modifications. It is instrumental in regulating vascular and myocardial systolic and diastolic functions, vascular endothelial cell and cardiomyocyte apoptosis, and cardiac action potential and repolarization. Aberrant S-nitrosylation levels are implicated in the pathogenesis of various cardiovascular diseases, including systemic hypertension, pulmonary arterial hypertension, atherosclerosis, heart failure, myocardial infarction, arrhythmia, and diabetic cardiomyopathy. Insufficient S-nitrosylation leads to impaired vasodilation and increased vascular resistance, while excessive S-nitrosylation contributes to cardiac hypertrophy and myocardial fibrosis, thereby accelerating ventricular remodeling. This paper reviews the S-nitrosylated proteins in the above-mentioned diseases and their impact on these conditions through various signaling pathways, with the aim of providing a theoretical foundation for the development of novel therapeutic strategies or drugs targeting S-nitrosylated proteins. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

20 pages, 7123 KiB  
Article
Ionic and Electrotonic Contributions to Short-Term Ventricular Action Potential Memory: An In Silico Study
by Massimiliano Zaniboni
Computation 2025, 13(7), 175; https://doi.org/10.3390/computation13070175 - 20 Jul 2025
Viewed by 282
Abstract
Electrical restitution (ER) is a determinant of cardiac repolarization stability and can be measured as steady action potential (AP) duration (APD) at different pacing rates—the so-called dynamic restitution (ERdyn) curve—or as APD changes after pre- or post-mature stimulations—the so-called standard restitution [...] Read more.
Electrical restitution (ER) is a determinant of cardiac repolarization stability and can be measured as steady action potential (AP) duration (APD) at different pacing rates—the so-called dynamic restitution (ERdyn) curve—or as APD changes after pre- or post-mature stimulations—the so-called standard restitution (ERs1s2) curve. Short-term AP memory (Ms) has been described as the slope difference between the ERdyn and ERs1s2 curves, and represents the information stored in repolarization dynamics due to previous pacing conditions. Although previous studies have shown its dependence on ion currents and calcium cycling, a systematic picture of these features is lacking. By means of simulations with a human ventricular AP model, I show that APD restitution can be described under randomly changing pacing conditions (ERrand) and Ms derived as the slope difference between ERdyn and ERrand. Thus measured, Ms values correlate with those measured using ERs1s2. I investigate the effect on Ms of modulating the conductance of ion channels involved in AP repolarization, and of abolishing intracellular calcium transient. I show that Ms is chiefly determined by ERdyn rather than ERrand, and that interventions that shorten/prolong APD tend to decrease/increase Ms. Full article
Show Figures

Figure 1

19 pages, 5380 KiB  
Article
Pyridostigmine Treatment Significantly Alleviates Isoprenaline-Induced Chronic Heart Failure in Rats
by Sonja T. Marinković, Tanja Sobot, Žana M. Maksimović, Ðorđe Ðukanović, Snežana Uletilović, Nebojša Mandić-Kovačević, Sanja Jovičić, Milka Matičić, Milica Gajić Bojić, Aneta Stojmenovski, Anđela Bojanić, Ranko Škrbić and Miloš P. Stojiljković
Int. J. Mol. Sci. 2025, 26(14), 6892; https://doi.org/10.3390/ijms26146892 - 17 Jul 2025
Viewed by 406
Abstract
Autonomic imbalance is one of the major pathological disturbances in chronic heart failure (CHF). Additionally, enhanced oxidative stress and inflammation are considered to be the main contributors to the disease progression. A growing body of evidence suggests cholinergic stimulation as a potential therapeutic [...] Read more.
Autonomic imbalance is one of the major pathological disturbances in chronic heart failure (CHF). Additionally, enhanced oxidative stress and inflammation are considered to be the main contributors to the disease progression. A growing body of evidence suggests cholinergic stimulation as a potential therapeutic approach in CHF, since it corrects the autonomic imbalance and alters the inflammatory response via the cholinergic anti-inflammatory pathway. Although previous research has provided some insights into the potential mechanisms behind these effects, there is a gap in knowledge regarding different cholinergic stimulation methods and their specific mechanisms of action. In the present study, an isoprenaline model (5 mg/kg/day s.c. for 7 days, followed by 4 weeks of CHF development) was used. Afterwards, rats received pyridostigmine (22 mg/kg/day in tap water for 14 days) or no treatment. Pyridostigmine treatment prevented the progression of CHF, decreasing chamber wall thinning (↑ PWDd, ↑ PWDs) and left ventricle dilatation (↓ LVIDd, ↓ LVIDs), thus improving cardiac contractile function (↑ EF). Additionally, pyridostigmine improved antioxidative status (↓ TBARS, ↓ NO2; ↑ CAT, ↑ GSH) and significantly reduced cardiac fibrosis development, confirmed by pathohistological findings and biochemical marker reduction (↓ MMP2, ↓ MMP9). However, further investigations are needed to fully understand the exact cellular mechanisms involved in the CHF attenuation via pyridostigmine. Full article
(This article belongs to the Special Issue Advances in the Pathogenesis and Treatment of Heart Failure)
Show Figures

Figure 1

13 pages, 249 KiB  
Article
Psychological Flexibility Processes Differentially Predict Anxiety, Depression, and Well-Being Throughout Cardiac Rehabilitation
by Chiara A. M. Spatola, Giada Rapelli, Christina L. Goodwin, Roberto Cattivelli, Giada Pietrabissa, Gabriella Martino and Gianluca Castelnuovo
J. Clin. Med. 2025, 14(14), 4937; https://doi.org/10.3390/jcm14144937 - 11 Jul 2025
Viewed by 321
Abstract
Background. Several psychological processes can influence the adjustment of cardiac patients. Psychological flexibility has been linked to significant improvements in psychological well-being during cardiac rehabilitation (CR). It can be understood as the dynamic interaction of three key processes: openness to experience (OE), behavioral [...] Read more.
Background. Several psychological processes can influence the adjustment of cardiac patients. Psychological flexibility has been linked to significant improvements in psychological well-being during cardiac rehabilitation (CR). It can be understood as the dynamic interaction of three key processes: openness to experience (OE), behavioral awareness (BA), and value-driven action (VA). This study aimed to (1) evaluate the distinct role of these processes in predicting anxiety, depression, and psychological well-being in cardiac patients, and (2) assess these associations over the course of CR. Methods. A total of 194 CR patients participated in this longitudinal study, with 156 completing follow-up assessments at T2. Anxiety and depression were measured using the Patient Health Questionnaire-4, psychological well-being with the Psychological Well-being Index-Short, and psychological flexibility using the Comprehensive Assessment of ACT Processes. Results. Cross-sectional regression analysis revealed that all three psychological flexibility dimensions were negatively associated with anxiety and depression and positively associated with psychological well-being at T1. However, longitudinal analyses showed that only VA was positively associated with a decrease in depressive symptoms following CR. A sensitivity analysis conducted on the subgroup of patients with mild to severe symptoms of anxiety and depression further confirmed the robustness of these findings. Conclusions. These results highlight the potential benefits of measuring specific psychological flexibility processes when examining the psychological status of cardiac patients and when planning psychological interventions during CR. Full article
(This article belongs to the Special Issue New Advances in Cardiovascular Diseases: The Cutting Edge)
25 pages, 5252 KiB  
Article
Predicting the Damaging Potential of Uncharacterized KCNQ1 and KCNE1 Variants
by Svetlana I. Tarnovskaya and Boris S. Zhorov
Int. J. Mol. Sci. 2025, 26(14), 6561; https://doi.org/10.3390/ijms26146561 - 8 Jul 2025
Viewed by 361
Abstract
Voltage-gated potassium channels Kv7.1, encoded by the gene KCNQ1, play critical roles in various physiological processes. In cardiomyocytes, the complex Kv7.1-KCNE1 mediates the slow component of the delayed rectifier potassium current that is essential for the action potential repolarization. Over 1000 [...] Read more.
Voltage-gated potassium channels Kv7.1, encoded by the gene KCNQ1, play critical roles in various physiological processes. In cardiomyocytes, the complex Kv7.1-KCNE1 mediates the slow component of the delayed rectifier potassium current that is essential for the action potential repolarization. Over 1000 KCNQ1 missense variants, many of which are associated with long QT syndrome, are reported in ClinVar and other databases. However, over 600 variants are of uncertain clinical significance (VUS), have conflicting interpretations of pathogenicity, or lack germline information. Computational prediction of the damaging potential of such variants is important for the diagnostics and treatment of cardiac disease. Here, we collected 1750 benign and pathogenic missense variants of Kv channels from databases ClinVar, Humsavar, and Ensembl Variation and tested 26 bioinformatics tools in their ability to identify known pathogenic or likely pathogenic (P/LP) variants. The best-performing tool, AlphaMissense, predicted the pathogenicity of 195 VUSs in Kv7.1. Among these, 79 variants of 66 wildtype residues (WTRs) are also reported as P/LP variants in sequentially matching positions of at least one hKv7.1 paralogue. In available cryoEM structures of Kv7.1 with activated and deactivated voltage-sensing domains, 52 WTRs form intersegmental contacts with WTRs of ClinVar-listed variants, including 21 WTRs with P/LP variants. ClinPred and paralogue annotation methods consistently predicted that 21 WTRs of KCNE1 have 34 VUSs with damaging potential. Among these, 8 WTRs are contacting 23 Kv7.1 WTRs with 13 ClinVar-listed variants in the AlphaFold3 model. Analysis of intersegmental contacts in CryoEM and AlphaFold3 structures suggests atomic mechanisms of dysfunction for some VUSs. Full article
(This article belongs to the Special Issue Genetic Variations in Human Diseases: 2nd Edition)
Show Figures

Figure 1

17 pages, 2007 KiB  
Review
Modulation of Redox-Sensitive Cardiac Ion Channels
by Razan Orfali, Al Hassan Gamal El-Din, Varnika Karthick, Elisanjer Lamis, Vanna Xiao, Alena Ramanishka, Abdullah Alwatban, Osama Alkhamees, Ali Alaseem, Young-Woo Nam and Miao Zhang
Antioxidants 2025, 14(7), 836; https://doi.org/10.3390/antiox14070836 - 8 Jul 2025
Viewed by 586
Abstract
Redox regulation is crucial for the cardiac action potential, coordinating the sodium-driven depolarization, calcium-mediated plateau formation, and potassium-dependent repolarization processes required for proper heart function. Under physiological conditions, low-level reactive oxygen species (ROS), generated by mitochondria and membrane oxidases, adjust ion channel function [...] Read more.
Redox regulation is crucial for the cardiac action potential, coordinating the sodium-driven depolarization, calcium-mediated plateau formation, and potassium-dependent repolarization processes required for proper heart function. Under physiological conditions, low-level reactive oxygen species (ROS), generated by mitochondria and membrane oxidases, adjust ion channel function and support excitation–contraction coupling. However, when ROS accumulate, they modify a variety of important channel proteins in cardiomyocytes, which commonly results in reducing potassium currents, enhancing sodium and calcium influx, and enhancing intracellular calcium release. These redox-driven alterations disrupt the cardiac rhythm, promote after-depolarizations, impair contractile force, and accelerate the development of heart diseases. Experimental models demonstrate that oxidizing agents reduce repolarizing currents, whereas reducing systems restore normal channel activity. Similarly, oxidative modifications of calcium-handling proteins amplify sarcoplasmic reticulum release and diastolic calcium leak. Understanding the precise redox-dependent modifications of cardiac ion channels would guide new possibilities for targeted therapies aimed at restoring electrophysiological homeostasis under oxidative stress, potentially alleviating myocardial infarction and cardiovascular dysfunction. Full article
Show Figures

Graphical abstract

10 pages, 2269 KiB  
Article
Impact of Calcium and Potassium Currents on Spiral Wave Dynamics in the LR1 Model
by Xiaoping Yuan and Qianqian Zheng
Entropy 2025, 27(7), 690; https://doi.org/10.3390/e27070690 - 27 Jun 2025
Viewed by 398
Abstract
Spiral wave dynamics in cardiac tissue are critically implicated in the pathogenesis of arrhythmias. This study investigates the effects of modulating calcium and potassium currents on spiral wave stability in a two-dimensional cardiac model. The gate variable that dynamically regulates the opening probability [...] Read more.
Spiral wave dynamics in cardiac tissue are critically implicated in the pathogenesis of arrhythmias. This study investigates the effects of modulating calcium and potassium currents on spiral wave stability in a two-dimensional cardiac model. The gate variable that dynamically regulates the opening probability of ion channels also plays a significant role in the control of the spiral wave dynamics. We demonstrate that reducing gate variables accelerates wave propagation, thins spiral arms, and shortens action potential duration, ultimately inducing dynamic instability. Irregular electrocardiogram (ECG) patterns and altered action potential morphology further suggest an enhanced arrhythmogenic potential. These findings elucidate the ionic mechanisms underlying spiral wave breakup, providing both theoretical insights and practical implications for the development of targeted arrhythmia treatments. Full article
Show Figures

Figure 1

22 pages, 2622 KiB  
Article
SIRT1-Mediated Epigenetic Protective Mechanisms of Phytosome-Encapsulated Zea mays L. var. ceratina Tassel Extract in a Rat Model of PM2.5-Induced Cardiovascular Inflammation
by Wipawee Thukham-Mee, Jintanaporn Wattanathorn and Nut Palachai
Int. J. Mol. Sci. 2025, 26(12), 5759; https://doi.org/10.3390/ijms26125759 - 16 Jun 2025
Viewed by 465
Abstract
Cardiovascular injury caused by fine particulate matter (PM2.5) exposure is an escalating public health concern due to its role in triggering systemic inflammation and oxidative stress. This study elucidates the sirtuin 1 (SIRT1)-mediated epigenetic mechanisms underlying the protective effects of phytosome-encapsulated Zea mays [...] Read more.
Cardiovascular injury caused by fine particulate matter (PM2.5) exposure is an escalating public health concern due to its role in triggering systemic inflammation and oxidative stress. This study elucidates the sirtuin 1 (SIRT1)-mediated epigenetic mechanisms underlying the protective effects of phytosome-encapsulated Zea mays L. var. ceratina tassel extract (PZT) in a rat model of PM2.5-induced cardiovascular inflammation. Male Wistar rats were pretreated with PZT (100, 200, and 400 mg/kg body weight) for 21 days before and throughout a 27-day PM2.5 exposure period. SIRT1 expression and associated inflammatory and oxidative stress markers were evaluated in cardiac and vascular tissues. The findings revealed that PZT significantly upregulated SIRT1 expression, a key epigenetic regulator known to modulate inflammatory and antioxidant pathways. The activation of SIRT1 inhibited the nuclear factor-kappa B (NF-κB) signaling pathway, leading to a reduction in pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) within cardiac tissue. In vascular tissue, treatment with PZT reduced the levels of tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β), thereby mitigating inflammatory and fibrotic responses. Furthermore, SIRT1 activation by PZT enhanced the antioxidant defense system by upregulating superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), which was associated with a decrease in malondialdehyde (MDA), a marker of lipid peroxidation. Collectively, these results demonstrate that PZT confers cardiovascular protection through SIRT1-dependent epigenetic modulation, mitigating PM2.5-induced inflammation, oxidative stress, and tissue remodeling. The dual anti-inflammatory and antioxidant actions of PZT via SIRT1 activation highlight its potential as a functional food-based preventative agent for reducing cardiovascular risk in polluted environments. Full article
Show Figures

Figure 1

15 pages, 3593 KiB  
Article
Polypyrrole Coatings as Possible Solutions for Sensing and Stimulation in Bioelectronic Medicines
by Cristian Sevcencu, Izabella Crăciunescu, Alin-Alexandru Andrei, Maria Suciu, Sergiu Macavei and Lucian Barbu-Tudoran
Biosensors 2025, 15(6), 366; https://doi.org/10.3390/bios15060366 - 6 Jun 2025
Viewed by 492
Abstract
Bioelectronic medicines record biological signals and provide electrical stimulation for the treatment of diseases. Advanced bioelectronic therapies require the development of electrodes that match the softness of the implanted tissues, as the present metal electrodes do not meet this condition. The objective of [...] Read more.
Bioelectronic medicines record biological signals and provide electrical stimulation for the treatment of diseases. Advanced bioelectronic therapies require the development of electrodes that match the softness of the implanted tissues, as the present metal electrodes do not meet this condition. The objective of the present work was to investigate whether the electroconductive polymer polypyrrole (PPy) could be used for fabricating such electrodes, as PPy is several orders softer than metals. For this purpose, we here investigated if electrodes made using coatings and films of PPy doped with naphthalin-2-sulfonic acid (PPy/N) are capable to record and elicit by stimulation cardiac monophasic action potentials (MAPs) and if PPy/N is also biocompatible. The results of this study showed that the tested PPy/N electrodes are capable of recording MAPs almost identical to the MAPs recorded with platinum electrodes and eliciting stimulation-evoked MAPs almost identical to the spontaneous MAPs. In addition, we show here that the cell cultures that we used for biocompatibility tests grew in a similar manner on PPy/N and platinum substrates. We, therefore, conclude that PPy/N coatings and films have recording and electrical stimulation capabilities that are similar to those of platinum electrodes and that PPy/N substrates are as biocompatible as the platinum substrates. Full article
Show Figures

Figure 1

16 pages, 594 KiB  
Review
Traumatic Brain Injury and Coenzyme Q10: An Overview
by David Mantle, Mollie Dewsbury, Alexander David Mendelow and Iain P. Hargreaves
Int. J. Mol. Sci. 2025, 26(11), 5126; https://doi.org/10.3390/ijms26115126 - 27 May 2025
Viewed by 1036
Abstract
The incidence of morbidity and mortality in patients who have suffered traumatic brain injury (TBI) is such that novel therapeutic strategies are currently required. There is good evidence that ischaemia is the primary, and sometimes the secondary, cause of brain damage in TBI. [...] Read more.
The incidence of morbidity and mortality in patients who have suffered traumatic brain injury (TBI) is such that novel therapeutic strategies are currently required. There is good evidence that ischaemia is the primary, and sometimes the secondary, cause of brain damage in TBI. This ischaemia may lead to mitochondrial dysfunction, with associated oxidative stress and inflammation, in the pathogenesis of brain injury following head trauma. This, in turn, provides a rationale for the use of supplemental coenzyme Q10 (CoQ10) in the management of TBI, given its key roles in normal mitochondrial function and as an antioxidant and anti-inflammatory agent. In this article, we, therefore, review the use of supplemental CoQ10 in animal models of TBI and its potential application in the management of TBI patients. The problem of blood–brain barrier access is discussed, and how this might be circumvented via the use of an intranasal route to provide direct access of CoQ10 to the brain. In addition, there is evidence that TBI patients have an increased risk of developing cardiac dysfunction and that this may be mediated by aberrant immune action. Given the role of CoQ10 in promoting normal cardiac function and normal immune function, the administration of CoQ10 to prevent cardiovascular complications may improve outcomes in TBI patients. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

Back to TopTop