Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = carboxypeptidase inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 548 KiB  
Review
Carboxypeptidase A4: A Biomarker for Cancer Aggressiveness and Drug Resistance
by Adeoluwa A. Adeluola, Md. Sameer Hossain and A. R. M. Ruhul Amin
Cancers 2025, 17(15), 2566; https://doi.org/10.3390/cancers17152566 - 4 Aug 2025
Viewed by 119
Abstract
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate [...] Read more.
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate cancer cells, but it is now known to be expressed in various tissues throughout the body. Its physiologic expression is governed by latexin, a noncompetitive endogenous inhibitor of CPA4. Nevertheless, the overexpression of CPA4 has been associated with the progression and aggressiveness of many malignancies, including prostate, pancreatic, breast and lung cancer, to name a few. CPA4’s role in cancer has been attributed to its disruption of many cellular signaling pathways, e.g., PI3K-AKT-mTOR, STAT3-ERK, AKT-cMyc, GPCR, and estrogen signaling. The dysregulation of these pathways by CPA4 could be responsible for inducing epithelial--mesenchymal transition (EMT), tumor invasion and drug resistance. Although CPA4 has been found to regulate cancer aggressiveness and poor prognosis, no comprehensive review summarizing the role of CPA4 in cancer is available so far. In this review, we provide a brief description of peptidases, their classification, history of CPA4, mechanism of action of CPA4 as a peptidase, its expression in various tissues, including cancers, its role in various tumor types, the associated molecular pathways and cellular processes. We further discuss the limitations of current literature linking CPA4 to cancers and challenges that prevent using CPA4 as a biomarker for cancer aggressiveness and predicting drug response and highlight a number of future strategies that can help to overcome the limitations. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

19 pages, 15873 KiB  
Article
Molecular Basis of Dipeptide Recognition in Drosophila melanogaster Angiotensin I-Converting Enzyme Homologue, AnCE
by Joanna Żukowska, Kyle S. Gregory, Adam Robinson, R. Elwyn Isaac and K. Ravi Acharya
Biomolecules 2025, 15(4), 591; https://doi.org/10.3390/biom15040591 - 16 Apr 2025
Viewed by 661
Abstract
Human angiotensin-I-converting enzyme (ACE) is involved in vasoregulation, inflammation, and neurodegenerative disorders. The enzyme is formed of two domains; the C-domain (cACE) is primarily involved in blood pressure regulation, whereas the N-domain (nACE) is strongly linked to fibrosis; hence, designing domain-specific inhibitors could [...] Read more.
Human angiotensin-I-converting enzyme (ACE) is involved in vasoregulation, inflammation, and neurodegenerative disorders. The enzyme is formed of two domains; the C-domain (cACE) is primarily involved in blood pressure regulation, whereas the N-domain (nACE) is strongly linked to fibrosis; hence, designing domain-specific inhibitors could make a difference between treating one condition without having a negative effect on another. AnCE (a close homologue of ACE) is derived from Drosophila melanogaster and has a high similarity specifically to cACE. Due to high similarity and ease of crystallisation, AnCE has been chosen as a model protein for ACE studies and for the design of ACE inhibitors. In this study, enzyme kinetic assays and X-ray crystallography techniques revealed the significance of using dipeptides as selective inhibitors for AnCE and how this knowledge could be applied to cACE and nACE. All the dipeptides tested in this study were shown to bind AnCE in two distinct locations, i.e., the non-prime and prime subsites. It was found that a hydrophobic residue at the S1 and S1′ subsites, with a tryptophan at the S2 and S2′ subsites, showed highest affinity towards AnCE. It was also observed that a key pocket within the S2′ subsite had a major influence on the binding orientation within the prime subsites and could potentially explain ACE’s dipeptidyl carboxypeptidase activity. Importantly these dipeptides are found in functional foods, making them potentially available from diets. Knowledge of the dipeptide binding presented here could aid in the development of ACE domain-specific inhibitors. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

19 pages, 11189 KiB  
Article
Mode of Metal Ligation Governs Inhibition of Carboxypeptidase A
by Jorge Antonio Amador Balderas, Frank Beierlein, Anselm H. C. Horn, Senta Volkenandt, Leon Völcker, Nikoo Mokhtari, Jules Cesar Epee Ndongue and Petra Imhof
Int. J. Mol. Sci. 2024, 25(24), 13725; https://doi.org/10.3390/ijms252413725 - 23 Dec 2024
Viewed by 1239
Abstract
Carboxypeptidase is a Zn-dependent protease that specifically recognises and hydrolyses peptides with a hydrophobic side chain at the C-terminal residue. According to hydrolysis mechanisms proposed in the literature, catalysis requires a water molecule to be close to the Zn ion so as to [...] Read more.
Carboxypeptidase is a Zn-dependent protease that specifically recognises and hydrolyses peptides with a hydrophobic side chain at the C-terminal residue. According to hydrolysis mechanisms proposed in the literature, catalysis requires a water molecule to be close to the Zn ion so as to be activated as a nucleophile. Among small molecules that resemble the slowly hydrolysed Gly-Tyr peptide, which have been previously designed as inhibitors and characterised structurally, a variant with the terminal amino acid in a D-configuration has been the most effective. Our molecular dynamics simulations of carboxypeptidase complexed with different variants of those inhibitor ligands as well as variants of the Gly-Tyr peptide show that the strength of the inhibitory effect is not related to the binding strength of the ligand. Our data rather support an earlier notion that the inhibition is, at least partially, due to blocking a coordination site at the Zn ion by the ligand coordinating the metal ion in a bidentate fashion. Full article
(This article belongs to the Special Issue Mechanism of Enzyme Catalysis: When Structure Meets Function)
Show Figures

Figure 1

11 pages, 3130 KiB  
Communication
Aeruginosin 525 (AER525) from Cyanobacterium Aphanizomenon Sp. (KUCC C2): A New Serine Proteases Inhibitor
by Donata Overlingė, Marta Cegłowska, Robert Konkel and Hanna Mazur-Marzec
Mar. Drugs 2024, 22(11), 506; https://doi.org/10.3390/md22110506 - 8 Nov 2024
Cited by 1 | Viewed by 1472
Abstract
Aeruginosins (AERs) are one of the most common classes of cyanobacterial peptides synthesised through a hybrid non-ribosomal peptide synthase/polyketide synthase pathway. They have been found in Microcystis, Nodularia spumigena, Oscillatoria/Plantothrix, and Nostoc. The presence of AER in Aphanizomenon [...] Read more.
Aeruginosins (AERs) are one of the most common classes of cyanobacterial peptides synthesised through a hybrid non-ribosomal peptide synthase/polyketide synthase pathway. They have been found in Microcystis, Nodularia spumigena, Oscillatoria/Plantothrix, and Nostoc. The presence of AER in Aphanizomenon isolated from the Curonian Lagoon was reported for the first time in our previous work. Here, the structure of aeruginosin 525 (AER525), isolated from Aphanizomenon sp. KUCC C2, was characterised based on high-resolution mass spectrometry. This new AER variant shows potent activity against thrombin. It also inhibits trypsin and carboxypeptidase A but has no effect on elastase and chymotrypsin. In terms of the N-terminal residue and biological activity, AER525 displaces some similarity to dysinosins, which belongs to the most potent inhibitors of thrombin among AERs. The findings underline the potential of AER525 as a new anticoagulant agent. Full article
Show Figures

Figure 1

11 pages, 7084 KiB  
Article
Carboxypeptidase Inhibitor LXN Expression in Endometrial Tissue Is Menstrual Cycle Phase-Dependent and Is Upregulated in Endometriotic Lesions
by Meruert Sarsenova, Artjom Stepanjuk, Merli Saare, Sergo Kasvandik, Pille Soplepmann, Iveta Mikeltadze, Martin Götte, Andres Salumets and Maire Peters
Genes 2024, 15(8), 1086; https://doi.org/10.3390/genes15081086 - 17 Aug 2024
Cited by 1 | Viewed by 1582
Abstract
Endometriosis is a chronic hormone-dependent disease characterized by the spread of endometrial cells outside the uterus, which form endometriotic lesions and disrupt the functions of the affected organs. The etiopathogenesis of endometriosis is still unclear, and thus it is important to examine the [...] Read more.
Endometriosis is a chronic hormone-dependent disease characterized by the spread of endometrial cells outside the uterus, which form endometriotic lesions and disrupt the functions of the affected organs. The etiopathogenesis of endometriosis is still unclear, and thus it is important to examine the genes that may contribute to the establishment of endometriotic lesions. The aim of this study was to investigate the expression of new potential candidate gene latexin (LXN), an inhibitor of carboxypeptidases, in endometrium and endometriotic lesions to elucidate its possible role in endometriosis development. LXN expression in tissues was assessed using quantitative reverse transcription PCR (qRT–PCR) analysis and immunohistochemical staining (IHC). The functions of LXN were examined using Transwell and MTT assays. qRT–PCR analysis revealed that LXN expression in endometrium was menstrual cycle-dependent, being lowest in the early-secretory phase and highest in the late-secretory phase and was significantly upregulated in endometriotic lesions. IHC confirmed LXN expression in endometrial stromal cells, and in vitro assays demonstrated that knockdown of LXN effectively reduced the migratory capacity of endometrial stromal cells while promoting cell viability. In conclusion, our results showed that LXN can be involved in the pathogenesis of endometriosis by regulating the proliferation and migration activity of endometriotic stromal cells. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 4518 KiB  
Article
GCPII Inhibition Promotes Remyelination after Peripheral Nerve Injury in Aged Mice
by Yu Su, Meixiang Huang, Ajit G. Thomas, John Maragakis, Kaitlyn D. J. Huizar, Yuxin Zheng, Ying Wu, Mohamed H. Farah and Barbara S. Slusher
Int. J. Mol. Sci. 2024, 25(13), 6893; https://doi.org/10.3390/ijms25136893 - 23 Jun 2024
Cited by 2 | Viewed by 2530
Abstract
Peripheral nerve injuries (PNIs) represent a significant clinical challenge, particularly in elderly populations where axonal remyelination and regeneration are impaired. Developing therapies to enhance these processes is crucial for improving PNI repair outcomes. Glutamate carboxypeptidase II (GCPII) is a neuropeptidase that plays a [...] Read more.
Peripheral nerve injuries (PNIs) represent a significant clinical challenge, particularly in elderly populations where axonal remyelination and regeneration are impaired. Developing therapies to enhance these processes is crucial for improving PNI repair outcomes. Glutamate carboxypeptidase II (GCPII) is a neuropeptidase that plays a pivotal role in modulating glutamate signaling through its enzymatic cleavage of the abundant neuropeptide N-acetyl aspartyl glutamate (NAAG) to liberate glutamate. Within the PNS, GCPII is expressed in Schwann cells and activated macrophages, and its expression is amplified with aging. In this study, we explored the therapeutic potential of inhibiting GCPII activity following PNI. We report significant GCPII protein and activity upregulation following PNI, which was normalized by the potent and selective GCPII inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In vitro, 2-PMPA robustly enhanced myelination in dorsal root ganglion (DRG) explants. In vivo, using a sciatic nerve crush injury model in aged mice, 2-PMPA accelerated remyelination, as evidenced by increased myelin sheath thickness and higher numbers of remyelinated axons. These findings suggest that GCPII inhibition may be a promising therapeutic strategy to enhance remyelination and potentially improve functional recovery after PNI, which is especially relevant in elderly PNI patients where this process is compromised. Full article
(This article belongs to the Special Issue Peripheral Neuropathies: Molecular Research and Novel Therapy)
Show Figures

Figure 1

15 pages, 4090 KiB  
Article
Identification of Genes and miRNAs Associated with TAFI-Related Thrombosis: An in Silico Study
by Erasmia Rouka, Sotirios G. Zarogiannis, Chrissi Hatzoglou, Konstantinos I. Gourgoulianis and Foteini Malli
Biomolecules 2023, 13(9), 1318; https://doi.org/10.3390/biom13091318 - 28 Aug 2023
Viewed by 2276
Abstract
Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) is a carboxypeptidase B-like proenzyme encoded by the CPB2 gene. After thrombin activation, TAFI downregulates fibrinolysis, thus linking the latter with coagulation. TAFI has been shown to play a role in venous and arterial thrombotic diseases, yet, data regarding [...] Read more.
Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) is a carboxypeptidase B-like proenzyme encoded by the CPB2 gene. After thrombin activation, TAFI downregulates fibrinolysis, thus linking the latter with coagulation. TAFI has been shown to play a role in venous and arterial thrombotic diseases, yet, data regarding the molecular mechanisms underlying its function have been conflicting. In this study, we focused on the prediction and functional enrichment analysis (FEA) of the TAFI interaction network and the microRNAs (miRNAs) targeting the members of this network in an attempt to identify novel components and pathways of TAFI-related thrombosis. To this end, we used nine bioinformatics software tools. We found that the TAFI interactome consists of 28 unique genes mainly involved in hemostasis. Twenty-four miRNAs were predicted to target these genes. Co-annotation analysis of the predicted interactors with respect to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and transcription factors (TFs) pointed to the complement and coagulation cascades as well as neutrophil extracellular trap formation. Cancer, stroke, and intracranial aneurysm were among the top 20 significant diseases related to the identified miRNAs. We reason that the predicted biomolecules should be further studied in the context of TAFI-related thrombosis. Full article
(This article belongs to the Special Issue Vascular Disease and Thrombosis)
Show Figures

Figure 1

13 pages, 2939 KiB  
Article
ProCPU Is Expressed by (Primary) Human Monocytes and Macrophages and Expression Differs between States of Differentiation and Activation
by Karen Claesen, Joni De Loose, Pieter Van Wielendaele, Emilie De bruyn, Yani Sim, Sofie Thys, Ingrid De Meester and Dirk Hendriks
Int. J. Mol. Sci. 2023, 24(4), 3725; https://doi.org/10.3390/ijms24043725 - 13 Feb 2023
Cited by 1 | Viewed by 2402
Abstract
Carboxypeptidase U (CPU, TAFIa, CPB2) is a potent attenuator of fibrinolysis that is mainly synthesized by the liver as its inactive precursor proCPU. Aside from its antifibrinolytic properties, evidence exists that CPU can modulate inflammation, thereby regulating communication between coagulation and inflammation. Monocytes [...] Read more.
Carboxypeptidase U (CPU, TAFIa, CPB2) is a potent attenuator of fibrinolysis that is mainly synthesized by the liver as its inactive precursor proCPU. Aside from its antifibrinolytic properties, evidence exists that CPU can modulate inflammation, thereby regulating communication between coagulation and inflammation. Monocytes and macrophages play a central role in inflammation and interact with coagulation mechanisms resulting in thrombus formation. The involvement of CPU and monocytes/macrophages in inflammation and thrombus formation, and a recent hypothesis that proCPU is expressed in monocytes/macrophages, prompted us to investigate human monocytes and macrophages as a potential source of proCPU. CPB2 mRNA expression and the presence of proCPU/CPU protein were studied in THP-1, PMA-stimulated THP-1 cells and primary human monocytes, M-CSF-, IFN-γ/LPS-, and IL-4-stimulated-macrophages by RT-qPCR, Western blotting, enzyme activity measurements, and immunocytochemistry. CPB2 mRNA and proCPU protein were detected in THP-1 and PMA-stimulated THP-1 cells as well as in primary monocytes and macrophages. Moreover, CPU was detected in the cell medium of all investigated cell types and it was demonstrated that proCPU can be activated into functionally active CPU in the in vitro cell culture environment. Comparison of CPB2 mRNA expression and proCPU concentrations in the cell medium between the different cell types provided evidence that CPB2 mRNA expression and proCPU secretion in monocytes and macrophages is related to the degree to which these cells are differentiated. Our results indicate that primary monocytes and macrophages express proCPU. This sheds new light on monocytes and macrophages as local proCPU sources. Full article
Show Figures

Graphical abstract

17 pages, 3164 KiB  
Article
Isolation and Characterization of NpCI, a New Metallocarboxypeptidase Inhibitor from the Marine Snail Nerita peloronta with Anti-Plasmodium falciparum Activity
by Aymara Cabrera-Muñoz, Yusvel Sierra-Gómez, Giovanni Covaleda-Cortés, Mey L. Reytor, Yamile González-González, José M. Bautista, Francesc Xavier Avilés and Maday Alonso-del-Rivero
Mar. Drugs 2023, 21(2), 94; https://doi.org/10.3390/md21020094 - 28 Jan 2023
Cited by 2 | Viewed by 2087
Abstract
Metallocarboxypeptidases are zinc-dependent peptide-hydrolysing enzymes involved in several important physiological and pathological processes. They have been a target of growing interest in the search for natural or synthetic compound binders with biomedical and drug discovery purposes, i.e., with potential as antimicrobials or antiparasitics. [...] Read more.
Metallocarboxypeptidases are zinc-dependent peptide-hydrolysing enzymes involved in several important physiological and pathological processes. They have been a target of growing interest in the search for natural or synthetic compound binders with biomedical and drug discovery purposes, i.e., with potential as antimicrobials or antiparasitics. Given that marine resources are an extraordinary source of bioactive molecules, we screened marine invertebrates for new inhibitory compounds with such capabilities. In this work, we report the isolation and molecular and functional characterization of NpCI, a novel strong metallocarboxypeptidase inhibitor from the marine snail Nerita peloronta. NpCI was purified until homogeneity using a combination of affinity chromatography and RP-HPLC. It appeared as a 5921.557 Da protein with 53 residues and six disulphide-linked cysteines, displaying a high sequence similarity with NvCI, a carboxypeptidase inhibitor isolated from Nerita versicolor, a mollusc of the same genus. The purified inhibitor was determined to be a slow- and tight-binding inhibitor of bovine CPA (Ki = 1.1·× 10−8 mol/L) and porcine CPB (Ki = 8.15·× 10−8 mol/L) and was not able to inhibit proteases from other mechanistic classes. Importantly, this inhibitor showed antiplasmodial activity against Plasmodium falciparum in an in vitro culture (IC50 = 5.5 μmol/L), reducing parasitaemia mainly by inhibiting the later stages of the parasite’s intraerythrocytic cycle whilst having no cytotoxic effects on human fibroblasts. Interestingly, initial attempts with other related proteinaceous carboxypeptidase inhibitors also displayed similar antiplasmodial effects. Coincidentally, in recent years, a metallocarboxypeptidase named PfNna1, which is expressed in the schizont phase during the late intraerythrocytic stage of the parasite’s life cycle, has been described. Given that NpCI showed a specific parasiticidal effect on P. falciparum, eliciting pyknotic/dead parasites, our results suggest that this and related inhibitors could be promising starting agents or lead compounds for antimalarial drug discovery strategies. Full article
(This article belongs to the Special Issue Enzyme Inhibitors from Marine Resources)
Show Figures

Figure 1

17 pages, 5201 KiB  
Article
The Silkworm Carboxypeptidase Inhibitor Prevents Gastric Cancer Cells’ Proliferation through the EGF/EGFR Signaling Pathway
by Junhong Ye, Jifu Li and Ping Zhao
Int. J. Mol. Sci. 2023, 24(2), 1078; https://doi.org/10.3390/ijms24021078 - 5 Jan 2023
Cited by 6 | Viewed by 2931
Abstract
Gastric cancer is a common malignant tumor originating from the gastric mucosa epithelium. Studies have shown that bioactive substances such as antimicrobial peptides and cantharidin contained in a variety of insects can exert anti-cancer functions; when compared with chemotherapy drugs, these bioactive substances [...] Read more.
Gastric cancer is a common malignant tumor originating from the gastric mucosa epithelium. Studies have shown that bioactive substances such as antimicrobial peptides and cantharidin contained in a variety of insects can exert anti-cancer functions; when compared with chemotherapy drugs, these bioactive substances have less toxicity and reduced side effects. Here, we report the first Bombyx mori carboxypeptidase inhibitor that is specifically and highly expressed in silk glands, which can significantly prevent the proliferation of gastric cancer cells by inhibiting the MAPK/ERK pathway initiated by EGF/EGFR through the promotion of expression of the proto-oncogene c-Myc, thereby affecting the expression of related cyclins. Through molecular docking and virtual screening of silkworm carboxypeptidase inhibitors and epidermal growth factor receptors, we identified a polypeptide that overlapped with existing small-molecule inhibitors of the receptor. In the present work, we explore the medicinal potential and application of silkworm carboxypeptidase inhibitors to promote the development of anti-tumor drugs from insect-derived substances. Full article
(This article belongs to the Special Issue Novel Biological Molecules for Cancer Treatments)
Show Figures

Figure 1

24 pages, 5727 KiB  
Article
Transcriptomic Analysis Insight into the Immune Modulation during the Interaction of Ophiocordyceps sinensis and Hepialus xiaojinensis
by Xinxin Tong, Ting Peng, Sukun Liu, Daixi Zhang and Jinlin Guo
Insects 2022, 13(12), 1119; https://doi.org/10.3390/insects13121119 - 5 Dec 2022
Cited by 4 | Viewed by 2549
Abstract
Ophiocordyceps sinensis (Berk.) is an entomopathogenic fungus that can infect the larva of the ghost moth, Hepialus xiaojinensis, causing mummification after more than one year. This prolonged infection provides a valuable model for studying the immunological interplay between an insect host and a pathogenic [...] Read more.
Ophiocordyceps sinensis (Berk.) is an entomopathogenic fungus that can infect the larva of the ghost moth, Hepialus xiaojinensis, causing mummification after more than one year. This prolonged infection provides a valuable model for studying the immunological interplay between an insect host and a pathogenic fungus. A comparative transcriptome analysis of pre-infection (L) and one-year post-infection (IL) larvae was performed to investigate the immune response in the host. Here, a total of 59,668 unigenes were obtained using Illumina Sequencing in IL and L. Among the 345 identified immune-related genes, 83 out of 86 immune-related differentially expressed genes (DEGs) had a much higher expression in IL than in L. Furthermore, the immune-related DEGs were classified as pathogen recognition receptors (PRRs), signal modulators or transductors, and immune effector molecules. Serpins and protease inhibitors were found to be upregulated in the late phase of infection, suppressing the host’s immune response. Based on the above analysis, the expression levels of most immune-related genes would return to the baseline with the immune response being repressed in the late phase of infection, leading to the fungal immunological tolerance after prolonged infection. Meanwhile, the transcriptomes of IL and the mummified larva (ML) were compared to explore O. sinensis invasion. A total of 1408 novel genes were identified, with 162 of them annotated with putative functions. The gene families likely implicated in O. sinensis pathogenicity have been identified, primarily including serine carboxypeptidase, peroxidase, metalloprotease peptidase, aminopeptidases, cytochrome P450, and oxidoreductase. Furthermore, quantitative real-time PCR (qPCR) was used to assess the expression levels of some critical genes that were involved in immune response and fungal pathogenicity. The results showed that their expression levels were consistent with the transcriptomes. Taken together, our findings offered a comprehensive and precise transcriptome study to understand the immune defense in H. xiaojinensis and O. sinensis invasion, which would accelerate the large-scale artificial cultivation of this medicinal fungus. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

17 pages, 777 KiB  
Review
Negative Effects of Cyanotoxins and Adaptative Responses of Daphnia
by Anke Schwarzenberger
Toxins 2022, 14(11), 770; https://doi.org/10.3390/toxins14110770 - 7 Nov 2022
Cited by 10 | Viewed by 4190
Abstract
The plethora of cyanobacterial toxins are an enormous threat to whole ecosystems and humans. Due to eutrophication and increases in lake temperatures from global warming, changes in the distribution of cyanobacterial toxins and selection of few highly toxic species/strains are likely. Globally, one [...] Read more.
The plethora of cyanobacterial toxins are an enormous threat to whole ecosystems and humans. Due to eutrophication and increases in lake temperatures from global warming, changes in the distribution of cyanobacterial toxins and selection of few highly toxic species/strains are likely. Globally, one of the most important grazers that controls cyanobacterial blooms is Daphnia, a freshwater model organism in ecology and (eco)toxicology. Daphnia–cyanobacteria interactions have been studied extensively, often focusing on the interference of filamentous cyanobacteria with Daphnia’s filtering apparatus, or on different nutritional constraints (the lack of essential amino acids or lipids) and grazer toxicity. For a long time, this toxicity only referred to microcystins. Currently, the focus shifts toward other deleterious cyanotoxins. Still, less than 10% of the total scientific output deals with cyanotoxins that are not microcystins; although these other cyanotoxins can occur just as frequently and at similar concentrations as microcystins in surface water. This review discusses the effects of different cyanobacterial toxins (hepatotoxins, digestive inhibitors, neurotoxins, and cytotoxins) on Daphnia and provides an elaborate and up-to-date overview of specific responses and adaptations of Daphnia. Furthermore, scenarios of what we can expect for the future of Daphnia–cyanobacteria interactions are described by comprising anthropogenic threats that might further increase toxin stress in Daphnia. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

10 pages, 2283 KiB  
Article
In Silico Structural Analysis of Serine Carboxypeptidase Nf314, a Potential Drug Target in Naegleria fowleri Infections
by Pablo A. Madero-Ayala, Rosa E. Mares-Alejandre and Marco A. Ramos-Ibarra
Int. J. Mol. Sci. 2022, 23(20), 12203; https://doi.org/10.3390/ijms232012203 - 13 Oct 2022
Cited by 3 | Viewed by 2940
Abstract
Naegleria fowleri, also known as the “brain-eating” amoeba, is a free-living protozoan that resides in freshwater bodies. This pathogenic amoeba infects humans as a casual event when swimming in contaminated water. Upon inhalation, N. fowleri invades the central nervous system and causes [...] Read more.
Naegleria fowleri, also known as the “brain-eating” amoeba, is a free-living protozoan that resides in freshwater bodies. This pathogenic amoeba infects humans as a casual event when swimming in contaminated water. Upon inhalation, N. fowleri invades the central nervous system and causes primary amoebic meningoencephalitis (PAM), a rapidly progressive and often fatal disease. Although PAM is considered rare, reducing its case fatality rate compels the search for pathogen-specific proteins with a structure–function relationship that favors their application as targets for discovering new or improved drugs against N. fowleri infections. Herein, we report a computational approach to study the structural features of Nf314 (a serine carboxypeptidase that is a virulence-related protein in N. fowleri infections) and assess its potential as a drug target, using bioinformatics tools and in silico molecular docking experiments. Our findings suggest that Nf314 has a ligand binding site suitable for the structure-based design of specific inhibitors. This study represents a further step toward postulating a reliable therapeutic target to treat PAM with drugs specifically aimed at blocking the pathogen proliferation by inhibiting protein function. Full article
(This article belongs to the Special Issue Emerging Topics in Structural Biology)
Show Figures

Figure 1

14 pages, 2047 KiB  
Article
Enhanced Production of ECM Proteins for Pharmaceutical Applications Using Mammalian Cells and Sodium Heparin Supplementation
by Javier Garcia-Pardo, Sergi Montané, Francesc Xavier Avilés, Sebastian Tanco and Julia Lorenzo
Pharmaceutics 2022, 14(10), 2138; https://doi.org/10.3390/pharmaceutics14102138 - 8 Oct 2022
Viewed by 2330
Abstract
The yields of soluble ECM proteins recombinantly produced with mammalian cells can be significantly enhanced by exploiting the stabilizing properties of heparin. Here, we propose a simple and straightforward scalable protocol for the mammalian cell production of ECM proteins with affinity for heparin, [...] Read more.
The yields of soluble ECM proteins recombinantly produced with mammalian cells can be significantly enhanced by exploiting the stabilizing properties of heparin. Here, we propose a simple and straightforward scalable protocol for the mammalian cell production of ECM proteins with affinity for heparin, using heparin as a supplement. As proof of concept, we have demonstrated the high-level expression of four biomedically relevant human enzymes such as carboxypeptidase Z (CPZ), carboxypeptidase A6 (CPA6), beta-galactoside alpha-2,6-sialyltransferase 2 (ST6GAL1) and thrombin-activable fibrinolysis inhibitor (TAFI). We found a strong linear correlation between the isoelectric point (pI) of a protein and the improvement in protein expression levels upon heparin addition, providing a reference for selecting novel protein targets that would benefit from heparin supplementation. Finally, we demonstrated the compatibility of this approach with a three-step purification strategy that includes an initial heparin affinity purification step. Using CPZ as a representative example, we performed a preparative purification of this enzyme. The purified protein is enzymatically active and can be used for pharmaceutical applications as well as for high-throughput functional and structural studies. Full article
(This article belongs to the Special Issue Next Generation Platform for the Production of Biopharmaceuticals)
Show Figures

Figure 1

16 pages, 3424 KiB  
Article
D-DOPA Is a Potent, Orally Bioavailable, Allosteric Inhibitor of Glutamate Carboxypeptidase II
by Sadakatali S. Gori, Ajit G. Thomas, Arindom Pal, Robyn Wiseman, Dana V. Ferraris, Run-duo Gao, Ying Wu, Jesse Alt, Takashi Tsukamoto, Barbara S. Slusher and Rana Rais
Pharmaceutics 2022, 14(10), 2018; https://doi.org/10.3390/pharmaceutics14102018 - 23 Sep 2022
Cited by 2 | Viewed by 3270
Abstract
Glutamate carboxypeptidase-II (GCPII) is a zinc-dependent metalloenzyme implicated in numerous neurological disorders. The pharmacophoric requirements of active-site GCPII inhibitors makes them highly charged, manifesting poor pharmacokinetic (PK) properties. Herein, we describe the discovery and characterization of catechol-based inhibitors including L-DOPA, D-DOPA, and caffeic [...] Read more.
Glutamate carboxypeptidase-II (GCPII) is a zinc-dependent metalloenzyme implicated in numerous neurological disorders. The pharmacophoric requirements of active-site GCPII inhibitors makes them highly charged, manifesting poor pharmacokinetic (PK) properties. Herein, we describe the discovery and characterization of catechol-based inhibitors including L-DOPA, D-DOPA, and caffeic acid, with sub-micromolar potencies. Of these, D-DOPA emerged as the most promising compound, with good metabolic stability, and excellent PK properties. Orally administered D-DOPA yielded high plasma exposures (AUCplasma = 72.7 nmol·h/mL) and an absolute oral bioavailability of 47.7%. Unfortunately, D-DOPA brain exposures were low with AUCbrain = 2.42 nmol/g and AUCbrain/plasma ratio of 0.03. Given reports of isomeric inversion of D-DOPA to L-DOPA via D-amino acid oxidase (DAAO), we evaluated D-DOPA PK in combination with the DAAO inhibitor sodium benzoate and observed a >200% enhancement in both plasma and brain exposures (AUCplasma = 185 nmol·h/mL; AUCbrain = 5.48 nmol·h/g). Further, we demonstrated GCPII target engagement; orally administered D-DOPA with or without sodium benzoate caused significant inhibition of GCPII activity. Lastly, mode of inhibition studies revealed D-DOPA to be a noncompetitive, allosteric inhibitor of GCPII. To our knowledge, this is the first report of D-DOPA as a distinct scaffold for GCPII inhibition, laying the groundwork for future optimization to obtain clinically viable candidates. Full article
(This article belongs to the Special Issue Brain-Targeted Drug Delivery Volume II)
Show Figures

Graphical abstract

Back to TopTop