Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = canopy light prediction model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3883 KB  
Article
Individual Tree-Level Biomass Mapping in Chinese Coniferous Plantation Forests Using Multimodal UAV Remote Sensing Approach Integrating Deep Learning and Machine Learning
by Yiru Wang, Zhaohua Liu, Jiping Li, Hui Lin, Jiangping Long, Guangyi Mu, Sijia Li and Yong Lv
Remote Sens. 2025, 17(23), 3830; https://doi.org/10.3390/rs17233830 - 26 Nov 2025
Cited by 1 | Viewed by 449
Abstract
Accurate estimation of individual tree aboveground biomass (AGB) is essential for understanding forest carbon dynamics, optimizing resource management, and addressing climate change. Conventional methods rely on destructive sampling, whereas unmanned aerial vehicle (UAV) remote sensing provides a non-destructive alternative. In this study, spectral [...] Read more.
Accurate estimation of individual tree aboveground biomass (AGB) is essential for understanding forest carbon dynamics, optimizing resource management, and addressing climate change. Conventional methods rely on destructive sampling, whereas unmanned aerial vehicle (UAV) remote sensing provides a non-destructive alternative. In this study, spectral indices, textural features, and canopy height attributes were extracted from high-resolution UAV optical imagery and Light Detection And Ranging (LiDAR) point clouds. We developed an improved YOLOv8 model (NB-YOLOv8), incorporating Neural Architecture Manipulation (NAM) attention and a Bidirectional Feature Pyramid Network (BiFPN), for individual tree detection. Combined with a random forest algorithm, this hybrid framework enabled accurate biomass estimation of Chinese fir, Chinese pine, and larch plantations. NB-YOLOv8 achieved superior detection performance, with 92.3% precision and 90.6% recall, outperforming the original YOLOv8 by 4.8% and 4.2%, and the watershed algorithm by 12.4% and 11.7%, respectively. The integrated model produced reliable tree-level AGB predictions (R2 = 0.65–0.76). SHapley Additive exPlanation (SHAP) analysis further revealed that local feature contributions often diverged from global rankings, underscoring the importance of interpretable modeling. These results demonstrate the effectiveness of combining deep learning and machine learning for tree-level AGB estimation, and highlight the potential of multi-source UAV remote sensing to support large-scale, fine-resolution forest carbon monitoring and management. Full article
Show Figures

Figure 1

25 pages, 2501 KB  
Review
Advances in Growing Degree Days Models for Flowering to Harvest: Optimizing Crop Management with Methods of Precision Horticulture—A Review
by Helene Fotouo Makouate and Manuela Zude-Sasse
Horticulturae 2025, 11(12), 1415; https://doi.org/10.3390/horticulturae11121415 - 21 Nov 2025
Viewed by 1723
Abstract
Temperature plays a vital role in plant metabolism, and effective crop temperature appears to be influenced by variables related to climate change. While extreme weather events are widely discussed, the effects of moderate temperature changes pose consistent yet underexplored challenges for farmers. The [...] Read more.
Temperature plays a vital role in plant metabolism, and effective crop temperature appears to be influenced by variables related to climate change. While extreme weather events are widely discussed, the effects of moderate temperature changes pose consistent yet underexplored challenges for farmers. The “growing degree days” (GDD) also termed “heat unit”, is the most widely used approach in agricultural and ecological studies to quantify the relationship between temperature and plant development. This review provides a comprehensive examination of GDD methodology as applied to horticultural crop production, specifically from initial fruit development to fruit maturity, and postharvest. It is the first integrated synthesis of the conceptual evolution, methodological refinement, and broad application of GDD, thereby highlighting the need to optimize GDD approaches in light of emerging technological tools. While the GDD model is valuable for predicting crop development based on heat accumulation, it has limitations in capturing the effects of other environmental factors. Additionally, air temperature may not provide precise data on each plant organ. Recent advances in remote sensing, such as the integration of thermal imaging, RGB cameras, and lidar have enabled the measurement of spatially resolved temperature distribution within crop canopies, including fruit surface temperature. Recent advances, highlighted in the literature, suggest that integrating sensor innovations with machine learning approaches holds high potential for improving the precision of modeling temperature-dependent growth responses and their interactions with other environmental variables. By addressing these challenges and expanding its applications, GDD can continue to serve as an essential tool in promoting sustainable horticultural practices and adapting to global warming. Full article
(This article belongs to the Special Issue Orchard Management Under Climate Change: 2nd Edition)
Show Figures

Figure 1

18 pages, 3632 KB  
Article
Rapeseed Yield Estimation Using UAV-LiDAR and an Improved 3D Reconstruction Method
by Na Li, Zhiwei Hou, Haiyong Jiang, Chongchong Chen, Chao Yang, Yanan Sun, Lei Yang, Tianyu Zhou, Jingyu Chu, Qingzhe Fan and Lijie Zhang
Agriculture 2025, 15(21), 2265; https://doi.org/10.3390/agriculture15212265 - 30 Oct 2025
Viewed by 730
Abstract
Quantitative estimation of rapeseed yield is important for precision crop management and sustainable agricultural development. Traditional manual measurements are inefficient and destructive, making them unsuitable for large-scale applications. This study proposes a canopy-volume estimation and yield-modeling framework based on unmanned aerial vehicle light [...] Read more.
Quantitative estimation of rapeseed yield is important for precision crop management and sustainable agricultural development. Traditional manual measurements are inefficient and destructive, making them unsuitable for large-scale applications. This study proposes a canopy-volume estimation and yield-modeling framework based on unmanned aerial vehicle light detection and ranging (UAV-LiDAR) data combined with a HybridMC-Poisson reconstruction algorithm. At the early yellow ripening stage, 20 rapeseed plants were reconstructed in 3D, and field data from 60 quadrats were used to establish a regression relationship between plant volume and yield. The results indicate that the proposed method achieves stable volume reconstruction under complex canopy conditions and yields a volume–yield regression model. When applied at the field scale, the model produced predictions with a relative error of approximately 12% compared with observed yields, within an acceptable range for remote sensing–based yield estimation. These findings support the feasibility of UAV-LiDAR–based volumetric modeling for rapeseed yield estimation and help bridge the scale from individual plants to entire fields. The proposed method provides a reference for large-scale phenotypic data acquisition and field-level yield management. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

23 pages, 2760 KB  
Article
Improving the Accuracy of Seasonal Crop Coefficients in Grapevine from Sentinel-2 Data
by Diego R. Guevara-Torres, Hankun Luo, Chi Mai Do, Bertram Ostendorf and Vinay Pagay
Remote Sens. 2025, 17(19), 3365; https://doi.org/10.3390/rs17193365 - 4 Oct 2025
Viewed by 966
Abstract
Accurate assessment of a crop’s water requirement is essential for optimising irrigation scheduling and increasing the sustainability of water use. The crop coefficient (Kc) is a dimensionless factor that converts reference evapotranspiration (ET0) into actual crop evapotranspiration (ET [...] Read more.
Accurate assessment of a crop’s water requirement is essential for optimising irrigation scheduling and increasing the sustainability of water use. The crop coefficient (Kc) is a dimensionless factor that converts reference evapotranspiration (ET0) into actual crop evapotranspiration (ETc) and is widely used for irrigation scheduling. The Kc reflects canopy cover, phenology, and crop type/variety, but is difficult to measure directly in heterogeneous perennial systems, such as vineyards. Remote sensing (RS) products, especially open-source satellite imagery, offer a cost-effective solution at moderate spatial and temporal scales, although their application in vineyards has been relatively limited due to the large pixel size (~100 m2) relative to vine canopy size (~2 m2). This study aimed to improve grapevine Kc predictions using vegetation indices derived from harmonised Sentinel-2 imagery in combination with spectral unmixing, with ground data obtained from canopy light interception measurements in three winegrape cultivars (Shiraz, Cabernet Sauvignon, and Chardonnay) in the Barossa and Eden Valleys, South Australia. A linear spectral mixture analysis approach was taken, which required estimation of vine canopy cover through beta regression models to improve the accuracy of vegetation indices that were used to build the Kc prediction models. Unmixing improved the prediction of seasonal Kc values in Shiraz (R2 of 0.625, RMSE = 0.078, MAE = 0.063), Cabernet Sauvignon (R2 = 0.686, RMSE = 0.072, MAE = 0.055) and Chardonnay (R2 = 0.814, RMSE = 0.075, MAE = 0.059) compared to unmixed pixels. Furthermore, unmixing improved predictions during the early and late canopy growth stages when pixel variability was greater. Our findings demonstrate that integrating open-source satellite data with machine learning models and spectral unmixing can accurately reproduce the temporal dynamics of Kc values in vineyards. This approach was also shown to be transferable across cultivars and regions, providing a practical tool for crop monitoring and irrigation management in support of sustainable viticulture. Full article
Show Figures

Figure 1

32 pages, 7442 KB  
Article
Assisted Lettuce Tipburn Monitoring in Greenhouses Using RGB and Multispectral Imaging
by Jonathan Cardenas-Gallegos, Paul M. Severns, Alexander Kutschera and Rhuanito Soranz Ferrarezi
AgriEngineering 2025, 7(10), 328; https://doi.org/10.3390/agriengineering7100328 - 1 Oct 2025
Viewed by 1053
Abstract
Imaging in controlled agriculture helps maximize plant growth by saving labor and optimizing resources. By monitoring specific plant traits, growers can prevent crop losses by correcting environmental conditions that lead to physiological disorders like leaf tipburn. This study aimed to identify morphometric and [...] Read more.
Imaging in controlled agriculture helps maximize plant growth by saving labor and optimizing resources. By monitoring specific plant traits, growers can prevent crop losses by correcting environmental conditions that lead to physiological disorders like leaf tipburn. This study aimed to identify morphometric and spectral markers for the early detection of tipburn in two Romaine lettuce (Lactuca sativa) cultivars (‘Chicarita’ and ‘Dragoon’) using an image-based system with color and multispectral cameras. By monitoring tipburn in treatments using melatonin, lettuce cultivars, and with and without supplemental lighting, we enhanced our system’s accuracy for high-resolution tipburn symptom identification. Canopy geometrical features varied between cultivars, with the more susceptible cultivar exhibiting higher compactness and extent values across time, regardless of lighting conditions. These traits were further used to compare simple linear, logistic, least absolute shrinkage and selection operator (LASSO) regression, and random forest models for predicting leaf fresh and dry weight. Random forest regression outperformed simpler models, reducing the percentage error for leaf fresh weight from ~34% (LASSO) to ~13% (RMSE: 34.14 g to 17.32 g). For leaf dry weight, the percentage error decreased from ~20% to ~12%, with an explained variance increase to 94%. Vegetation indices exhibited cultivar-specific responses to supplemental lighting. ‘Dragoon’ consistently had higher red-edge chlorophyll index (CIrededge), enhanced vegetation index, and normalized difference vegetation index values than ‘Chicarita’. Additionally, ‘Dragoon’ showed a distinct temporal trend in the photochemical reflectance index, which increased under supplemental lighting. This study highlights the potential of morphometric and spectral traits for early detection of tipburn susceptibility, optimizing cultivar-specific environmental management, and improving the accuracy of predictive modeling strategies. Full article
Show Figures

Figure 1

26 pages, 9229 KB  
Article
Study on Prediction of Potato Above-Ground Biomass and Yield Based on UAV Visible Light Image
by Yiwen Chen, Yaohua Hu, Mengfei Liu, Xiaoyi Shi, Anxiang Huang, Xing Tong, Liangliang Yang and Linrun Cheng
Remote Sens. 2025, 17(18), 3246; https://doi.org/10.3390/rs17183246 - 19 Sep 2025
Viewed by 822
Abstract
Potato above-ground biomass (AGB) and tuber yield estimation remain challenging due to the subjectivity of farmer-based assessments, the high data requirements of spectral analysis methods, and the sensitivity of traditional Structure from Motion (SfM) techniques to soil elevation variability. To address these challenges, [...] Read more.
Potato above-ground biomass (AGB) and tuber yield estimation remain challenging due to the subjectivity of farmer-based assessments, the high data requirements of spectral analysis methods, and the sensitivity of traditional Structure from Motion (SfM) techniques to soil elevation variability. To address these challenges, this study proposes a novel UAV-based visible-light remote sensing framework to estimate the AGB and predict the tuber yield of potato crops. First, a new vegetation index, the Green-Red Combination Vegetation Index (GRCVI), was developed to improve the separability between vegetation and non-vegetation pixels. Second, an improved single-period SfM method was designed to mitigate errors in canopy height estimation caused by terrain variations. Fractional vegetation coverage (FVC) and plant height (PH) derived from UAV imagery were then integrated into a feedforward neural network (FNN) to predict AGB. Finally, potato tuber yield was predicted using polynomial regression based on AGB. Results showed that GRCVI combined with the numerical intersection method and SVM classification achieved FVC extraction accuracy exceeding 95%. The improved SfM method yielded canopy height estimates with R2 values ranging from 0.8470 to 0.8554 and RMSE values below 2.3 cm. The AGB estimation model achieved an R2 of 0.8341 and an RMSE of 19.9 g, while the yield prediction model obtained an R2 of 0.7919 and an RMSE of 47.0 g. This study demonstrates the potential of UAV-based visible-light imagery for cost-effective, non-destructive, and scalable monitoring of potato growth and yield, providing methodological support for precision agriculture and high-throughput phenotyping. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

25 pages, 2135 KB  
Article
Monitoring Wolfberry (Lycium barbarum L.) Canopy Nitrogen Content with Hyperspectral Reflectance: Integrating Spectral Transformations and Multivariate Regression
by Yongmei Li, Hao Wang, Hongli Zhao, Ligen Zhang and Wenjing Xia
Agronomy 2025, 15(9), 2072; https://doi.org/10.3390/agronomy15092072 - 28 Aug 2025
Viewed by 864
Abstract
Accurate monitoring of canopy nitrogen content in wolfberry (Lycium barbarum L.) is essential for optimizing fertilization management, improving crop yield, and promoting sustainable agriculture. However, the sparse, architecturally complex canopy of this perennial shrub—featuring coexisting branches, leaves, flowers, and fruits across maturity [...] Read more.
Accurate monitoring of canopy nitrogen content in wolfberry (Lycium barbarum L.) is essential for optimizing fertilization management, improving crop yield, and promoting sustainable agriculture. However, the sparse, architecturally complex canopy of this perennial shrub—featuring coexisting branches, leaves, flowers, and fruits across maturity stages—poses significant challenges for canopy spectral-based nitrogen assessment. This study integrates methods across canopy spectral acquisition, transformation, feature spectral selection, and model construction, and specifically explores the potential of hyperspectral remote sensing, integrated with spectral mathematical transformations and machine learning algorithms, for predicting canopy nitrogen content in wolfberry. The overarching goal is to establish a feasible technical framework and predictive model for monitoring canopy nitrogen in wolfberry. In this study, canopy spectral measurements are systematically collected from densely overlapping leaf regions within the east, south, west, and north orientations of the wolfberry canopy. Spectral data undergo mathematical transformation using first-derivative (FD) and continuum-removal (CR) techniques. Optimal spectral variables are identified through correlation analysis combined with Recursive Feature Elimination (RFE). Subsequently, predictive models are constructed using five machine learning algorithms and three linear regression methods. Key results demonstrate that (1) FD and CR transformations enhance the correlation with nitrogen content (max correlation coefficient (r) = −0.577 and 0.522, respectively; p < 0.01), surpassing original spectra (OS, −0.411), while concurrently improving model predictive capability. Validation tests yield maximum R2 values of 0.712 (FD) and 0.521 (CR) versus 0.407 for OS, confirming FD’s superior performance enhancement. (2) Nonlinear machine learning models, by capturing complex canopy-light interactions, outperform linear methods and exhibit superior predictive performance, achieving R2 values ranging from 0.768 to 0.976 in the training set—significantly outperforming linear regression models (R2 = 0.107–0.669). (3) The Random Forest (RF) model trained on FD-processed spectra achieves the highest accuracy, with R2 values of 0.914 (training set) and 0.712 (validation set), along with an RPD of 1.772. This study demonstrates the efficacy of spectral transformations and nonlinear regression methods in enhancing nitrogen content estimation. It establishes the first effective field monitoring strategy and optimal predictive model for canopy nitrogen content in wolfberry. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

17 pages, 2283 KB  
Article
A Remote Strawberry Health Monitoring System Performed with Multiple Sensors Approach
by Xiao Du, Jun Steed Huang, Qian Shi, Tongge Li, Yanfei Wang, Haodong Liu, Zhaoyuan Zhang, Ni Yu and Ning Yang
Agriculture 2025, 15(15), 1690; https://doi.org/10.3390/agriculture15151690 - 5 Aug 2025
Viewed by 1209
Abstract
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in [...] Read more.
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in the greenhouse, so traditional detection methods cannot meet effective online monitoring of strawberry health status without manual intervention. Therefore, this paper proposes a leaf soft-sensing method based on a thermal infrared imaging sensor and adaptive image screening Internet of Things system, with additional sensors to realize indirect and rapid monitoring of the health status of a large range of strawberries. Firstly, a fuzzy comprehensive evaluation model is established by analyzing the environmental interference terms from the other sensors. Secondly, through the relationship between plant physiological metabolism and canopy temperature, a growth model is established to predict the growth period of strawberries based on canopy temperature. Finally, by deploying environmental sensors and solar height sensors, the image acquisition node is activated when the environmental interference is less than the specified value and the acquisition is completed. The results showed that the accuracy of this multiple sensors system was 86.9%, which is 30% higher than the traditional model and 4.28% higher than the latest advanced model. It makes it possible to quickly and accurately assess the health status of plants by a single factor without in-person manual intervention, and provides an important indication of the early, undetectable state of strawberry disease, based on remote operation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

24 pages, 13416 KB  
Article
Estimating Biomass in Eucalyptus globulus and Pinus pinaster Forests Using UAV-Based LiDAR in Central and Northern Portugal
by Leilson Ferreira, André Salgado de Andrade Sandim, Dalila Araújo Lopes, Joaquim João Sousa, Domingos Manuel Mendes Lopes, Maria Emília Calvão Moreira Silva and Luís Pádua
Land 2025, 14(7), 1460; https://doi.org/10.3390/land14071460 - 14 Jul 2025
Cited by 1 | Viewed by 1444
Abstract
Accurate biomass estimation is important for forest management and climate change mitigation. This study evaluates the potential of using LiDAR (Light Detection and Ranging) data, acquired through Unmanned Aerial Vehicles (UAVs), for estimating above-ground and total biomass in Eucalyptus globulus and Pinus pinaster [...] Read more.
Accurate biomass estimation is important for forest management and climate change mitigation. This study evaluates the potential of using LiDAR (Light Detection and Ranging) data, acquired through Unmanned Aerial Vehicles (UAVs), for estimating above-ground and total biomass in Eucalyptus globulus and Pinus pinaster stands in central and northern Portugal. The acquired LiDAR point clouds were processed to extract structural metrics such as canopy height, crown area, canopy density, and volume. A multistep variable selection procedure was applied to reduce collinearity and select the most informative predictors. Multiple linear regression (MLR) models were developed and validated using field inventory data. Random Forest (RF) models were also tested for E. globulus, enabling a comparative evaluation between parametric and machine learning regression models. The results show that the 25th height percentile, canopy cover density at two meters, and height variance demonstrated an accurate biomass estimation for E. globulus, with coefficients of determination (R2) varying between 0.86 for MLR and 0.90 for RF. Although RF demonstrated a similar predictive performance, MLR presented advantages in terms of interpretability and computational efficiency. For P. pinaster, only MLR was applied due to the limited number of field data, yet R2 exceeded 0.80. Although absolute errors were higher for Pinus pinaster due to greater biomass variability, relative performance remained consistent across species. The results demonstrate the feasibility and efficiency of UAV LiDAR point cloud data for stand-level biomass estimation, providing simple and effective models for biomass estimation in these two species. Full article
Show Figures

Figure 1

22 pages, 7140 KB  
Article
Impact of Phenological and Lighting Conditions on Early Detection of Grapevine Inflorescences and Bunches Using Deep Learning
by Rubén Íñiguez, Carlos Poblete-Echeverría, Ignacio Barrio, Inés Hernández, Salvador Gutiérrez, Eduardo Martínez-Cámara and Javier Tardáguila
Agriculture 2025, 15(14), 1495; https://doi.org/10.3390/agriculture15141495 - 11 Jul 2025
Viewed by 750
Abstract
Reliable early-stage yield forecasts are essential in precision viticulture, enabling timely interventions such as harvest planning, canopy management, and crop load regulation. Since grape yield is directly related to the number and size of bunches, the early detection of inflorescences and bunches, carried [...] Read more.
Reliable early-stage yield forecasts are essential in precision viticulture, enabling timely interventions such as harvest planning, canopy management, and crop load regulation. Since grape yield is directly related to the number and size of bunches, the early detection of inflorescences and bunches, carried out even before flowering, provides a valuable foundation for estimating potential yield far in advance of veraison. Traditional yield prediction methods are labor-intensive, subjective, and often restricted to advanced phenological stages. This study presents a deep learning-based approach for detecting grapevine inflorescences and bunches during early development, assessing how phenological stage and illumination conditions influence detection performance using the YOLOv11 architecture under commercial field conditions. A total of 436 RGB images were collected across two phenological stages (pre-bloom and fruit-set), two lighting conditions (daylight and artificial night-time illumination), and six grapevine cultivars. All images were manually annotated following a consistent protocol, and models were trained using data augmentation to improve generalization. Five models were developed: four specific to each condition and one combining all scenarios. The results show that the fruit-set stage under daylight provided the best performance (F1 = 0.77, R2 = 0.97), while for inflorescences, night-time imaging yielded the most accurate results (F1 = 0.71, R2 = 0.76), confirming the benefits of artificial lighting in early stages. These findings define optimal scenarios for early-stage organ detection and support the integration of automated detection models into vineyard management systems. Future work will address scalability and robustness under diverse conditions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

24 pages, 32355 KB  
Article
Evaluating UAV LiDAR and Field Spectroscopy for Estimating Residual Dry Matter Across Conservation Grazing Lands
by Bruce Markman, H. Scott Butterfield, Janet Franklin, Lloyd Coulter, Moses Katkowski and Daniel Sousa
Remote Sens. 2025, 17(14), 2352; https://doi.org/10.3390/rs17142352 - 9 Jul 2025
Viewed by 1507
Abstract
Residual dry matter (RDM) is a term used in rangeland management to describe the non-photosynthetic plant material left on the soil surface at the end of the growing season. RDM measurements are used by agencies and conservation entities for managing grazing and fire [...] Read more.
Residual dry matter (RDM) is a term used in rangeland management to describe the non-photosynthetic plant material left on the soil surface at the end of the growing season. RDM measurements are used by agencies and conservation entities for managing grazing and fire fuels. Measuring the RDM using traditional methods is labor-intensive, costly, and subjective, making consistent sampling challenging. Previous studies have assessed the use of multispectral remote sensing to estimate the RDM, but with limited success across space and time. The existing approaches may be improved through the use of spectroscopic (hyperspectral) sensors, capable of capturing the cellulose and lignin present in dry grass, as well as Unmanned Aerial Vehicle (UAV)-mounted Light Detection and Ranging (LiDAR) sensors, capable of capturing centimeter-scale 3D vegetation structures. Here, we evaluate the relationships between the RDM and spectral and LiDAR data across the Jack and Laura Dangermond Preserve (Santa Barbara County, CA, USA), which uses grazing and prescribed fire for rangeland management. The spectral indices did not correlate with the RDM (R2 < 0.1), likely due to complete areal coverage with dense grass. The LiDAR canopy height models performed better for all the samples (R2 = 0.37), with much stronger performance (R2 = 0.81) when using a stratified model to predict the RDM in plots with predominantly standing (as opposed to laying) vegetation. This study demonstrates the potential of UAV LiDAR for direct RDM quantification where vegetation is standing upright, which could help improve RDM mapping and management for rangelands in California and beyond. Full article
Show Figures

Figure 1

26 pages, 7645 KB  
Article
Prediction of Rice Chlorophyll Index (CHI) Using Nighttime Multi-Source Spectral Data
by Cong Liu, Lin Wang, Xuetong Fu, Junzhe Zhang, Ran Wang, Xiaofeng Wang, Nan Chai, Longfeng Guan, Qingshan Chen and Zhongchen Zhang
Agriculture 2025, 15(13), 1425; https://doi.org/10.3390/agriculture15131425 - 1 Jul 2025
Viewed by 974
Abstract
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring [...] Read more.
The chlorophyll index (CHI) is a crucial indicator for assessing the photosynthetic capacity and nutritional status of crops. However, traditional methods for measuring CHI, such as chemical extraction and handheld instruments, fall short in meeting the requirements for efficient, non-destructive, and continuous monitoring at the canopy level. This study aimed to explore the feasibility of predicting rice canopy CHI using nighttime multi-source spectral data combined with machine learning models. In this study, ground truth CHI values were obtained using a SPAD-502 chlorophyll meter. Canopy spectral data were acquired under nighttime conditions using a high-throughput phenotyping platform (HTTP) equipped with active light sources in a greenhouse environment. Three types of sensors—multispectral (MS), visible light (RGB), and chlorophyll fluorescence (ChlF)—were employed to collect data across different growth stages of rice, ranging from tillering to maturity. PCA and LASSO regression were applied for dimensionality reduction and feature selection of multi-source spectral variables. Subsequently, CHI prediction models were developed using four machine learning algorithms: support vector regression (SVR), random forest (RF), back-propagation neural network (BPNN), and k-nearest neighbors (KNNs). The predictive performance of individual sensors (MS, RGB, and ChlF) and sensor fusion strategies was evaluated across multiple growth stages. The results demonstrated that sensor fusion models consistently outperformed single-sensor approaches. Notably, during tillering (TI), maturity (MT), and the full growth period (GP), fused models achieved high accuracy (R2 > 0.90, RMSE < 2.0). The fusion strategy also showed substantial advantages over single-sensor models during the jointing–heading (JH) and grain-filling (GF) stages. Among the individual sensor types, MS data achieved relatively high accuracy at certain stages, while models based on RGB and ChlF features exhibited weaker performance and lower prediction stability. Overall, the highest prediction accuracy was achieved during the full growth period (GP) using fused spectral data, with an R2 of 0.96 and an RMSE of 1.99. This study provides a valuable reference for developing CHI prediction models based on nighttime multi-source spectral data. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

17 pages, 6026 KB  
Article
Estimation of Crude Protein Content in Revegetated Alpine Grassland Using Hyperspectral Data
by Yanfu Bai, Shijie Zhou, Jingjing Wu, Haijun Zeng, Bingyu Luo, Mei Huang, Linyan Qi, Wenyan Li, Mani Shrestha, Abraham A. Degen and Zhanhuan Shang
Remote Sens. 2025, 17(13), 2114; https://doi.org/10.3390/rs17132114 - 20 Jun 2025
Cited by 1 | Viewed by 749
Abstract
Remote sensing plays an important role in understanding the degradation and restoration processes of alpine grasslands. However, the extreme climatic conditions of the region pose difficulties in collecting field spectral data on which remote sensing is based. Thus, in-depth knowledge of the spectral [...] Read more.
Remote sensing plays an important role in understanding the degradation and restoration processes of alpine grasslands. However, the extreme climatic conditions of the region pose difficulties in collecting field spectral data on which remote sensing is based. Thus, in-depth knowledge of the spectral characteristics of alpine grasslands and an accurate assessment of their restoration status are still lacking. In this study, we collected the canopy hyperspectral data of plant communities in the growing season from severely degraded grasslands and actively restored grasslands of different ages in 13 counties of the “Three-River Headwaters Region” and determined the absorption characteristics in the red-light region as well as the trends of red-light parameters. We generated a model for estimating the crude protein content of plant communities in different grasslands based on the screened spectral characteristic covariates. Our results revealed that (1) the raw reflectance parameters of the near-infrared band spectra can distinguish alpine Kobresia meadow from extremely degraded and actively restored grasslands; (2) the wavelength value red-edge position (REP), corresponding to the highest point of the first derivative (FD) spectral reflectance (680–750 nm), can identify the extremely degraded grassland invaded by Artemisia frigida; and (3) the red valley reflectance (Rrw) parameter of the continuum removal (CR) spectral curve (550–750 nm) can discriminate among actively restored grasslands of different ages. In comparison with the Kobresia meadow, the predictive model for the actively restored grassland was more accurate, reaching an accuracy of over 60%. In conclusion, the predictive modeling of forage crude protein content for actively restored grasslands is beneficial for grassland management and sustainable development policies. Full article
Show Figures

Graphical abstract

17 pages, 6547 KB  
Article
Direct Estimation of Forest Aboveground Biomass from UAV LiDAR and RGB Observations in Forest Stands with Various Tree Densities
by Kangyu So, Jenny Chau, Sean Rudd, Derek T. Robinson, Jiaxin Chen, Dominic Cyr and Alemu Gonsamo
Remote Sens. 2025, 17(12), 2091; https://doi.org/10.3390/rs17122091 - 18 Jun 2025
Cited by 1 | Viewed by 3620
Abstract
Canada’s vast forests play a substantial role in the global carbon balance but require laborious and expensive forest inventory campaigns to monitor changes in aboveground biomass (AGB). Light detection and ranging (LiDAR) or reflectance observations onboard airborne or unoccupied aerial vehicles (UAVs) may [...] Read more.
Canada’s vast forests play a substantial role in the global carbon balance but require laborious and expensive forest inventory campaigns to monitor changes in aboveground biomass (AGB). Light detection and ranging (LiDAR) or reflectance observations onboard airborne or unoccupied aerial vehicles (UAVs) may address scalability limitations associated with traditional forest inventory but require simple forest structures or large sets of manually delineated crowns. Here, we introduce a deep learning approach for crown delineation and AGB estimation reproducible for complex forest structures without relying on hand annotations for training. Firstly, we detect treetops and delineate crowns with a LiDAR point cloud using marker-controlled watershed segmentation (MCWS). Then we train a deep learning model on annotations derived from MCWS to make crown predictions on UAV red, blue, and green (RGB) tiles. Finally, we estimate AGB metrics from tree height- and crown diameter-based allometric equations, all derived from UAV data. We validate our approach using 14 ha mixed forest stands with various experimental tree densities in Southern Ontario, Canada. Our results show that using an unsupervised LiDAR-only algorithm for tree crown delineation alongside a self-supervised RGB deep learning model trained on LiDAR-derived annotations leads to an 18% improvement in AGB estimation accuracy. In unharvested stands, the self-supervised RGB model performs well for height (adjusted R2, Ra2 = 0.79) and AGB (Ra2 = 0.80) estimation. In thinned stands, the performance of both unsupervised and self-supervised methods varied with stand density, crown clumping, canopy height variation, and species diversity. These findings suggest that MCWS can be supplemented with self-supervised deep learning to directly estimate biomass components in complex forest structures as well as atypical forest conditions where stand density and spatial patterns are manipulated. Full article
Show Figures

Figure 1

18 pages, 4788 KB  
Article
UAV-Based LiDAR and Multispectral Imaging for Estimating Dry Bean Plant Height, Lodging and Seed Yield
by Shubham Subrot Panigrahi, Keshav D. Singh, Parthiba Balasubramanian, Hongquan Wang, Manoj Natarajan and Prabahar Ravichandran
Sensors 2025, 25(11), 3535; https://doi.org/10.3390/s25113535 - 4 Jun 2025
Cited by 5 | Viewed by 2065
Abstract
Dry bean, the fourth-largest pulse crop in Canada is increasingly impacted by climate variability, needing efficient methods to support cultivar development. This study investigates the potential of unmanned aerial vehicle (UAV)-based Light Detection and Ranging (LiDAR) and multispectral imaging (MSI) for high-throughput phenotyping [...] Read more.
Dry bean, the fourth-largest pulse crop in Canada is increasingly impacted by climate variability, needing efficient methods to support cultivar development. This study investigates the potential of unmanned aerial vehicle (UAV)-based Light Detection and Ranging (LiDAR) and multispectral imaging (MSI) for high-throughput phenotyping of dry bean traits. Image data were collected across two dry bean field trials to assess plant height, lodging and seed yield. Multiple LiDAR-derived features accessing canopy height, crop lodging and digital biomass were evaluated against manual height measurements, visually rated lodging scale and seed yield, respectively. At the same time, three MSI-derived data were used to estimate seed yield. Classification- and regression-based machine learning models were used to estimate key agronomic traits using both LiDAR and MSI-based crop features. The canopy height derived from LiDAR showed a good correlation (R2 = 0.86) with measured plant height at the mid-pod filling (R6) stage. Lodging classification was most effective using Gradient Boosting, Random Forest and Logistic Regression, with R8 (physiological maturity stage) canopy height being the dominant predictor. For seed yield prediction, models integrating LiDAR and MSI outperformed individual datasets, with Gradient Boosting Regression Trees yielding the highest accuracy (R2 = 0.64, RMSE = 687.2 kg/ha and MAE = 521.6 kg/ha). Normalized Difference Vegetation Index (NDVI) at the R6 stage was identified as the most informative spectral feature. Overall, this study demonstrates the importance of integrating UAV-based LiDAR and MSI for accurate, non-destructive phenotyping in dry bean breeding programs. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop