Rapeseed Yield Estimation Using UAV-LiDAR and an Improved 3D Reconstruction Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. UAV Platform and Sensor
2.3. Single-Plant 3D Reconstruction Algorithm
- (1)
- Data Preprocessing
- (2)
- Reconstruction Workflow
- (3)
- Error Feedback and Volume Estimation
- (4)
- Algorithm Performance Comparison
2.4. Quadrat Experiments and Modeling
- (1)
- Quadrat Experiment Design
- (2)
- Canopy Volume Calculation
- (3)
- Volume–Yield Modeling
2.5. Evaluation of Point Cloud Preprocessing Quality
3. Results
3.1. Performance Comparison of Single-Plant Reconstruction Algorithms
3.2. Algorithmic Efficiency
3.3. Quadrat Statistics and Yield Modeling
3.4. Prediction Accuracy and Error Sources
- (1)
- spatial heterogeneity among plants, causing yield variation under the same volume;
- (2)
- sampling and weighing errors in manual yield measurement;
- (3)
- local occlusion or noise in point cloud reconstruction affecting volume estimation.
3.5. Volume–Yield Relationship and Model Rationality
4. Discussion
4.1. Factors Influencing the Accuracy of Single-Plant Volume Reconstruction
- (1)
- Point-cloud density effect: Larger plants received denser sampling during UAV-LiDAR scanning, reducing bias caused by sparse returns.
- (2)
- Structural clarity effect: Larger plants exhibited clearer geometry and thicker organs, improving keypoint extraction and model stability while reducing errors from boundary ambiguity or local occlusion [37].

4.2. Application Prospects and Implications
5. Conclusions
- (1)
- Improved reconstruction accuracy: The HybridMC-Poisson algorithm effectively alleviated boundary blurring and detail loss in single-plant rapeseed modeling, significantly improving volume estimation accuracy and geometric fidelity compared with conventional methods. Benchmark experiments confirmed its superiority over Poisson, Alpha-Shape, and Ball-Pivoting in error control and robustness.
- (2)
- Robust yield model: A linear regression model between plant volume and yield was constructed using quadrat survey data, with the through-origin model selected as the final formulation. At the field scale, the predicted yield differed from the measured yield by 12.4%, meeting accuracy requirements for agricultural remote sensing yield estimation.
- (3)
- Practical application potential: The proposed method provides a rapid and non-destructive approach for yield estimation in rapeseed and other complex-canopy crops. It offers promising applications for crop phenotyping and smart agriculture management. However, further improvements are needed in cross-regional adaptability and point cloud stitching efficiency. Future work could leverage deep learning and multi-modal data fusion to enhance robustness and scalability.
- (4)
- Improved reconstruction accuracy directly enhances the reliability of field-scale yield estimation and supports refined fertilizer and irrigation planning. By providing high-resolution structural information at both single-plant and canopy levels, the proposed workflow enables more precise quantification of crop biomass and spatial yield variability. Such accuracy improvements facilitate data-driven decision-making in precision agriculture, contributing to optimized input allocation, reduced resource waste, and higher production efficiency.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stahl, A.; Pfeifer, M.; Frisch, M.; Wittkop, B.; Snowdon, R.J. Recent genetic gains in nitrogen use efficiency in winter oilseed rape (Brassica napus L.). Front. Plant Sci. 2017, 8, 963. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Wang, X.; Cheng, T.; Tian, Y.; Zhu, Y. Abundance considerations for modeling yield of rapeseed during flowering. Front. Plant Sci. 2023, 14, 1188216. [Google Scholar]
- Han, J.; Zhang, Z.; Cao, J. Developing a new method to identify flowering dynamics of rapeseed using Landsat 8 and Sentinel-1/2. Remote Sens. 2021, 13, 105. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Ma, J.; Li, S.; Xu, Z. Cross-year rapeseed yield prediction for harvesting decisions using UAV-derived vegetation indices and texture features. Remote Sens. 2025, 17, 2010. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook 2023; FAO: Rome, Italy, 2023. [Google Scholar]
- Shen, J.; Liu, Y.; Wang, X.; Bai, J.; Lin, L.; Luo, F.; Zhong, H. A comprehensive review of health-benefiting components in rapeseed oil. Food Chem. 2023, 15, 999. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Huang, Z.; Cao, L. Biotransformation technology and high-value application of rapeseed meal: A review. Bioresour. Bioproc. 2022, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- European Court of Auditors (ECA). Special Report 29/2023: The EU’s Support for Sustainable Biofuels; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Han, J.; Zhang, Z.; Luo, Y.; Cao, J.; Zhang, L. The RapeseedMap10 database: Annual maps of rapeseed at 10 m spatial resolution based on multi-source data. Earth Syst. Sci. Data 2021, 13, 2857–2871. [Google Scholar] [CrossRef]
- Duan, B.; Xiao, X.; Xie, X.; Huang, F.; Zhi, X.; Ma, N. Remote estimation of rapeseed phenotypic traits under different crop conditions based on UAV multispectral images. J. Appl. Remote Sens. 2024, 18, 018503. [Google Scholar] [CrossRef]
- Brown, J.K.M.; Beeby, R.; Penfield, S. Yield instability of winter oilseed rape modulated by early winter temperature variation. Sci. Rep. 2019, 9, 43461. [Google Scholar] [CrossRef]
- Persaud, L.; Bheemanahalli, R.; Seepaul, R.; Reddy, K.R.; Macoon, B. Low- and high-temperature phenotypic diversity of Brassica carinata shoot traits. Front. Plant Sci. 2022, 13, 900011. [Google Scholar] [CrossRef]
- Junk, J.; Torres, A.; El Jaroudi, M.; Eickermann, M. Impact of climate change on the phenology of winter oilseed rape (Brassica napus L.) in Europe. Agriculture 2024, 14, 1049. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, C.; Dong, Z.; Xu, J.-L.; He, Y. Early yield prediction of oilseed rape using UAV-based hyperspectral imaging combined with machine learning algorithms. Agriculture 2025, 15, 1100. [Google Scholar] [CrossRef]
- Wei, C.; Wang, S.; Wang, C.; Wang, L.; Yang, G.; Zhao, C. Estimation and mapping of winter oilseed rape LAI from high-resolution optical satellite data via a hybrid inversion method. Remote Sens. 2017, 9, 488. [Google Scholar] [CrossRef]
- Fang, S.; Tang, W.; Peng, Y.; Gong, Y.; Dai, C.; Chai, R.; Liu, K. Remote estimation of vegetation fraction and flower fraction in oilseed rape with unmanned aerial vehicle data. Remote Sens. 2016, 8, 416. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, Y.; Chen, X.; Li, H.; Zhao, J. Mapping rapeseed aboveground biomass potential using optical and phenotypic metrics. Front. Plant Sci. 2024, 15, 1504119. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Ren, Y.; Zhou, H.; Lou, W.; Hao, P.; Lin, B.; Zhang, G.; Gu, Q.; Hua, S. Oilseed rape yield prediction from UAVs using spectral sensors. Agriculture 2024, 14, 1317. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Yang, C.; Xie, T.; Jiang, Z.; Hu, T.; Luo, Z.; Zhou, G.; Xie, J. Assessing the effect of real spatial resolution of in situ UAV multispectral images on seedling rapeseed growth monitoring. Remote Sens. 2020, 12, 1207. [Google Scholar] [CrossRef]
- Wu, F.; Lu, P.; Chen, S.; Xu, Y.; Wang, Z.; Dai, R.; Zhang, S. Identifying peak flowering dates of winter rapeseed with Sentinel-1/2. Remote Sens. 2025, 17, 1051. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Taymans, M.; Lemoine, G.; Ceglar, A.; Yordanov, M.; van der Velde, M. Detecting flowering phenology in oilseed rape with Sentinel-1/2 time series. Remote Sens. Environ. 2020, 239, 111660. [Google Scholar] [CrossRef]
- Teng, X.; Zhou, G.; Wu, Y.; Huang, C.; Dong, W.; Xu, S. Three-dimensional reconstruction method of rapeseed plants in the whole growth period using RGB-D camera. Sensors 2021, 21, 4628. [Google Scholar] [CrossRef]
- Lv, X.; Wang, X.; Wang, Y.; Zhang, F.; Liu, L.; Wu, Z.; Liu, Y.; Yang, Y.; Li, X.; Chen, L.; et al. Dynamic whole-life cycle measurement of individual plant height in oilseed rape through the fusion of point cloud and crop root zone localization. Comput. Electron. Agric. 2025, 236, 110505. [Google Scholar] [CrossRef]
- Fujiwara, R.; Kikawada, T.; Sato, H.; Akiyama, Y. Comparison of remote sensing methods for plant heights in agricultural fields using UAV-SfM. Front. Plant Sci. 2022, 13, 886804. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, H.; Yang, X.; Lu, X.; Guo, Z.; Jiang, L.; He, Y.; Cen, H. Biomass phenotyping of oilseed rape through UAV multi-view oblique imaging with 3DGS and SAM model. arXiv 2024, arXiv:2411.08453. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, F.; Zhu, S.; Zhang, W.; Wu, F.; Yang, T.; Yang, G.; Zhao, Y.; Sun, C.; Liu, T. Research on rapeseed above-ground biomass estimation based on spectral and LiDAR data. Agronomy 2024, 14, 1610. [Google Scholar] [CrossRef]
- Hu, F.; Lin, C.; Peng, J.; Wang, J.; Zhai, R. Rapeseed leaf estimation methods at field scale by LiDAR and TLS. Agronomy 2022, 12, 2409. [Google Scholar] [CrossRef]
- Wu, S.; Hu, C.; Tian, B.; Huang, Y.; Yang, S.; Li, S.; Xu, S. A 3D reconstruction platform for complex plants using OB-NeRF. Front. Plant Sci. 2025, 16, 1449626. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.R.; Pang, J.; Yu, S.; Su, J.; Hou, S.; Han, T. Reconstruction, segmentation and phenotypic feature extraction of oilseed rape point cloud combining 3D Gaussian Splatting and CKG-PointNet++. Agriculture 2025, 15, 1289. [Google Scholar] [CrossRef]
- Arshad, M.A.; Jubery, T.; Afful, J.; Jignasu, A.; Balu, A.; Ganapathysubramanian, B.; Sarkar, S.; Krishnamurthy, A. Evaluating neural radiance fields (NeRFs) for 3D plant geometry reconstruction in field conditions. Plant Phenomics 2024, 6, 0235. [Google Scholar] [CrossRef]
- Hu, K.; Ying, W.; Pan, Y.; Kang, H.; Chen, C. High-fidelity 3D reconstruction of plants using neural radiance fields. Comput. Electron. Agric. 2024, 220, 108848. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Wang, C.; Wang, C.; Gong, K.; Li, Y.; Lan, Y. Point cloud completion of plant leaves under occlusion conditions based on deep learning. Plant Phenomics 2023, 5, 0117. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, H.; Yang, X.; Lu, X.; Guo, Z.; Jiang, L.; He, Y.; Cen, H. Biomass phenotyping of oilseed rape through UAV multi-view oblique imaging with 3DGS and SAM model. Comput. Electron. Agric. 2025, 235, 110320. [Google Scholar] [CrossRef]
- Stausberg, L.; Jost, B.; Klingbeil, L.; Kuhlmann, H. A 3D surface reconstruction pipeline for plant phenotyping. Remote Sens. 2024, 16, 4720. [Google Scholar] [CrossRef]
- Paturkar, A.; Zhao, Y.; Sengupta, G.S.; Bailey, D.G. Making use of 3D models for plant physiognomic analysis. Remote Sens. 2021, 13, 2232. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, S.; Zhu, N. High-throughput legume seed phenotyping using a laser scanner and 3D reconstruction (includes Poisson surface reconstruction). Remote Sens. 2022, 14, 431. [Google Scholar] [CrossRef]
- Wu, B.; Yu, B.; Yue, W.; Shu, S.; Tan, W.; Hu, C.; Huang, Y.; Wu, J.; Liu, H. A voxel-based method for automated identification and morphological parameters of street trees from mobile laser scanning data. Remote Sens. 2013, 5, 584–611. [Google Scholar] [CrossRef]
- Kuželka, K.; Slavík, M.; Surový, P. Very high-density point clouds from UAV laser scanning for automatic tree stem detection and direct diameter measurement. Remote Sens. 2020, 12, 1236. [Google Scholar] [CrossRef]
- Jarahizadeh, S.; Salehi, B. A comparative analysis of UAV photogrammetric software performance for forest 3D modeling: Agisoft Metashape, PIX4Dmapper, and DJI Terra. Sensors 2024, 24, 286. [Google Scholar] [CrossRef]
- Wang, Q.; Li, C.; Huang, L.; Chen, L.; Zheng, Q.; Liu, L. Research on rapeseed seedling counting based on an improved crowd counting network. Agriculture 2024, 14, 783. [Google Scholar] [CrossRef]
- Dorbu, F.; Hashemi-Beni, L. Detection of individual corn crop and canopy delineation from UAV imagery. Remote Sens. 2024, 16, 2679. [Google Scholar] [CrossRef]
- Adedeji, O.; Abdalla, A.; Ghimire, B.; Ritchie, G.; Guo, W. Flight altitude and sensor angle affect UAS cotton plant-height assessments. Drones 2024, 8, 746. [Google Scholar] [CrossRef]
- Wu, G.; You, Y.; Yang, Y.; Cao, J.; Bai, Y.; Zhu, S.; Wu, L.; Wang, W.; Chang, M.; Wang, X. UAV-LiDAR measurement of vegetation canopy structure and its impact on land–air exchange simulation based on Noah-MP model. Remote Sens. 2022, 14, 2998. [Google Scholar] [CrossRef]
- Li, W.; Tang, B.; Hou, Z.; Wang, H.; Bing, Z.; Yang, Q.; Zheng, Y. Dynamic slicing and reconstruction algorithm for precise canopy volume estimation in 3D citrus tree point clouds. Remote Sens. 2024, 16, 2142. [Google Scholar] [CrossRef]
- Gao, M.; Yang, F.; Wei, H.; Liu, X. Individual maize location and height estimation in field using UAV-borne LiDAR and RGB images. Remote Sens. 2022, 14, 2292. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, X.; Shen, Y.; Zhu, Y.; Jiang, L.; Cen, H. 3D reconstruction of of complex, dynamic population canopy architecture for crops with a novel point cloud completion model: A case study in Brassica napus (rapeseed). arXiv 2025, arXiv:2506.18292. [Google Scholar]
- Yu, C.B.; Lu, X.; Liao, X.; Liao, H. High-throughput quantification of rapeseed root architecture and its correlation with aboveground biomass. J. Oil Crops China 2016, 38, 681–690. [Google Scholar]
- Lorensen, W.E.; Cline, H.E. Marching cubes: A high-resolution 3D surface construction algorithm. In Seminal Graphics: Pioneering Efforts That Shaped the Field; Association for Computing Machinery: New York, NY, USA, 1987; Volume 21, pp. 163–169. [Google Scholar]
- Kazhdan, M.; Hoppe, H. Screened Poisson surface reconstruction. ACM Trans. Graph. 2013, 32, 29. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Fallas Calderón, I.D.L.Á.; Heenkenda, M.K.; Sahota, T.S.; Serrano, L.S. Canola yield estimation using remotely sensed images and M5P model tree algorithm. Remote Sens. 2025, 17, 2127. [Google Scholar] [CrossRef]
- Bognár, P.; Kern, A.; Pásztor, S.; Steinbach, P.; Lichtenberger, J. Testing the robust yield estimation method for winter wheat, corn, rapeseed, and sunflower with different vegetation indices and meteorological data. Remote Sens. 2022, 14, 2860. [Google Scholar] [CrossRef]









| Parameter Category | Specification |
|---|---|
| UAV platform | DJI M300 RTK |
| Positioning system | RTK/IMU, horizontal accuracy ±3 cm, vertical accuracy ±5 cm |
| LiDAR model | 3D-BOXR Lite (32 channels, 905 nm) |
| Ranging accuracy | 3–5 cm |
| Scanning frequency | 10 Hz |
| Point frequency | ≤600 k points/s |
| Field of view | 360° × 285° |
| Ranging distance | 120 m |
| Power consumption | ≤40 W |
| Weight | ≈830 g |
| Output interface | USB2.0/Type-C/HDMI/RJ45 |
| Algorithm | Key Innovation | Parameter Settings | Advantages | Limitations |
|---|---|---|---|---|
| HybridMC-Poisson | Dual-resolution voxel + adaptive trimming | Voxel size: 0.02 m; Poisson depth: 9 | High boundary accuracy, robust for complex crop structures | Computationally demanding, requires higher hardware resources |
| Ball-Pivoting | No special optimization | Radius: 1.2 × mean point spacing | Simple and efficient, suitable for low-density point clouds | Poor boundary handling, prone to errors |
| Poisson | Standard Screened Poisson | Depth: 9 | Suitable for large-scale data, smooth surface generation | Poor boundary fidelity, not ideal for complex structures |
| Alpha-Shape | Geometry-driven reconstruction | α = 0.01 × bounding box max edge length | Retains irregular geometry, good for non-convex objects | High computational cost, surfaces may lack smoothness |
| Algorithm | Relative Volume Error (%) | Chamfer Distance (cm) | Hausdorff Distance (cm) | Runtime (s) |
|---|---|---|---|---|
| HybridMC-Poisson | 2.96 | 1.053 | 1.883 | 3 |
| Poisson | 6.22 | 1.7785 | 3.4095 | 7.5 |
| Alpha-Shape | 5.54 | 1.4575 | 2.778 | 5.2 |
| Ball-Pivoting | 12.96 | 1.933 | 3.884 | 4.5 |
| Source | SS (Sum of Squares) | df | MS (Mean Square) | F |
|---|---|---|---|---|
| Between groups | 245.812 | 3 | 81.937 | 15.04 |
| Within groups | 414.124 | 76 | 5.449 | |
| Total | 659.935 | 79 |
| Density Level | Plant Number | Single-Plant Volume (cm3) | Quadrat Volume (L) | Yield (kg) |
|---|---|---|---|---|
| Low | 14 | 88.91 | 1.26225 | 0.10155 |
| Medium | 21 | 86.22 | 1.7752 | 0.124 |
| High | 23 | 85.735 | 1.971 | 0.1505 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Hou, Z.; Jiang, H.; Chen, C.; Yang, C.; Sun, Y.; Yang, L.; Zhou, T.; Chu, J.; Fan, Q.; et al. Rapeseed Yield Estimation Using UAV-LiDAR and an Improved 3D Reconstruction Method. Agriculture 2025, 15, 2265. https://doi.org/10.3390/agriculture15212265
Li N, Hou Z, Jiang H, Chen C, Yang C, Sun Y, Yang L, Zhou T, Chu J, Fan Q, et al. Rapeseed Yield Estimation Using UAV-LiDAR and an Improved 3D Reconstruction Method. Agriculture. 2025; 15(21):2265. https://doi.org/10.3390/agriculture15212265
Chicago/Turabian StyleLi, Na, Zhiwei Hou, Haiyong Jiang, Chongchong Chen, Chao Yang, Yanan Sun, Lei Yang, Tianyu Zhou, Jingyu Chu, Qingzhe Fan, and et al. 2025. "Rapeseed Yield Estimation Using UAV-LiDAR and an Improved 3D Reconstruction Method" Agriculture 15, no. 21: 2265. https://doi.org/10.3390/agriculture15212265
APA StyleLi, N., Hou, Z., Jiang, H., Chen, C., Yang, C., Sun, Y., Yang, L., Zhou, T., Chu, J., Fan, Q., & Zhang, L. (2025). Rapeseed Yield Estimation Using UAV-LiDAR and an Improved 3D Reconstruction Method. Agriculture, 15(21), 2265. https://doi.org/10.3390/agriculture15212265
