Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,850)

Search Parameters:
Keywords = cancer hallmark

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2759 KiB  
Article
A Novel Serum-Based Bioassay for Quantification of Cancer-Associated Transformation Activity: A Case–Control and Animal Study
by Aye Aye Khine, Hsuan-Shun Huang, Pao-Chu Chen, Chun-Shuo Hsu, Ying-Hsi Chen, Sung-Chao Chu and Tang-Yuan Chu
Diagnostics 2025, 15(15), 1975; https://doi.org/10.3390/diagnostics15151975 - 6 Aug 2025
Abstract
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits [...] Read more.
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits anchorage-independent growth (AIG) in response to cancer-associated serum factors. Methods: Sera from ovarian and breast cancer patients, non-cancer controls, and ID8 ovarian cancer-bearing mice were tested for AIG-promoting activity in TY cells. Results: TY cells (passage 96) effectively distinguished cancer sera from controls (68.50 ± 2.12 vs. 17.50 ± 3.54 colonies, p < 0.01) and correlated with serum CA125 levels (r = 0.73, p = 0.03) in ovarian cancer patients. Receiver operating characteristic (ROC) analysis showed high diagnostic accuracy (AUC = 0.85, cutoff: 23.75 colonies). The AIG-promoting activity was mediated by HGF/c-MET and IGF/IGF-1R signaling, as inhibition of these pathways reduced phosphorylation and AIG. In an ID8 mouse ovarian cancer model, TY-AIG colonies strongly correlated with tumor burden (r = 0.95, p < 0.01). Conclusions: Our findings demonstrate that the TY cell-based AIG assay is a sensitive and specific biotest for detecting ovarian cancer and potentially other malignancies, leveraging the fundamental hallmark of malignant transformation. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

22 pages, 2029 KiB  
Article
Regulatory Effects of Endometriosis-Associated Genetic Variants: A Multi-Tissue eQTL Analysis
by Asbiel Felipe Garibaldi-Ríos, Perla Graciela Rodríguez-Gutiérrez, Jesús Magdiel García-Díaz, Guillermo Moisés Zúñiga-González, Luis E. Figuera, Belinda Claudia Gómez-Meda, Ana María Puebla-Pérez, Ingrid Patricia Dávalos-Rodríguez, Blanca Miriam Torres-Mendoza, Itzae Adonai Gutiérrez-Hurtado and Martha Patricia Gallegos-Arreola
Diseases 2025, 13(8), 248; https://doi.org/10.3390/diseases13080248 - 6 Aug 2025
Abstract
Backgroud. Endometriosis is a chronic, estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial-like tissue. Although genome-wide association studies (GWAS) have identified susceptibility variants, their tissue-specific regulatory impact remains poorly understood. Objective. To functionally characterize endometriosis-associated variants by exploring their regulatory effects [...] Read more.
Backgroud. Endometriosis is a chronic, estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial-like tissue. Although genome-wide association studies (GWAS) have identified susceptibility variants, their tissue-specific regulatory impact remains poorly understood. Objective. To functionally characterize endometriosis-associated variants by exploring their regulatory effects as expression quantitative trait loci (eQTLs) across six physiologically relevant tissues: peripheral blood, sigmoid colon, ileum, ovary, uterus, and vagina. Methods. GWAS-identified variants were cross-referenced with tissue-specific eQTL data from the GTEx v8 database. We prioritized genes either frequently regulated by eQTLs or showing the strongest regulatory effects (based on slope values, which indicate the direction and magnitude of the effect on gene expression). Functional interpretation was performed using MSigDB Hallmark gene sets and Cancer Hallmarks gene collections. Results. A tissue specificity was observed in the regulatory profiles of eQTL-associated genes. In the colon, ileum, and peripheral blood, immune and epithelial signaling genes predominated. In contrast, reproductive tissues showed the enrichment of genes involved in hormonal response, tissue remodeling, and adhesion. Key regulators such as MICB, CLDN23, and GATA4 were consistently linked to hallmark pathways, including immune evasion, angiogenesis, and proliferative signaling. Notably, a substantial subset of regulated genes was not associated with any known pathway, indicating potential novel regulatory mechanisms. Conclusions. This integrative approach highlights the com-plexity of tissue-specific gene regulation mediated by endometriosis-associated variants. Our findings provide a functional framework to prioritize candidate genes and support new mechanistic hypotheses for the molecular pathophysiology of endometriosis. Full article
Show Figures

Figure 1

20 pages, 3069 KiB  
Article
Inhibitory Impact of the Amino Benzoic Derivative DAB-2-28 on the Process of Epithelial–Mesenchymal Transition in Human Breast Cancer Cells
by Laurie Fortin, Julie Girouard, Yassine Oufqir, Alexis Paquin, Francis Cloutier, Isabelle Plante, Gervais Bérubé and Carlos Reyes-Moreno
Molecules 2025, 30(15), 3284; https://doi.org/10.3390/molecules30153284 - 5 Aug 2025
Abstract
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule [...] Read more.
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule derived from para-aminobenzoic acid, in the treatment of breast cancer. The luminal MCF-7 and the triple-negative MDA-MB-231 cancer cell lines used in this study represent, respectively, breast cancers in which the differentiation states are related to the epithelial phenotype of the mammary gland and breast cancers expressing a highly aggressive mesenchymal phenotype. In MCF-7 cells, soluble factors from macrophage-conditioned media (CM-MØ) induce a characteristic morphology of mesenchymal cells with an upregulated expression of Snail1, a mesenchymal marker, as opposed to a decrease in the expression of E-cadherin, an epithelial marker. DAB-2-28 does not affect the differential expression of Snail1 and E-cadherin in response to CM-MØ, but negatively impacts other hallmarks of EMT by decreasing invasion and migration capacities, in addition to MMP9 expression and gelatinase activity, in both MCF-7 and MDA-MB-231 cells. Moreover, DAB-2-28 inhibits the phosphorylation of key pro-EMT transcriptional factors, such as NFκB, STAT3, SMAD2, CREB, and/or AKT proteins, in breast cancer cells exposed to different EMT inducers. Overall, our study provides evidence suggesting that inhibition of EMT initiation or maintenance is a key mechanism by which DAB-2-28 can exert anti-tumoral effects in breast cancer cells. Full article
Show Figures

Figure 1

16 pages, 4092 KiB  
Article
Ribosome Biogenesis Underpins Tumor Progression: A Comprehensive Signature for Survival and Immunotherapy Response Prediction
by Amr R. Elhamamsy, Salma M. Aly, Rajeev S. Samant and Lalita A. Shevde
Cancers 2025, 17(15), 2576; https://doi.org/10.3390/cancers17152576 - 5 Aug 2025
Abstract
Background: RiBi is integral to cell proliferation, and its dysregulation is increasingly recognized as a hallmark of aggressive cancers. We sought to develop and validate a composite “PanRibo-515 score” reflecting RiBi activity across multiple tumor types, assess its prognostic significance, and explore [...] Read more.
Background: RiBi is integral to cell proliferation, and its dysregulation is increasingly recognized as a hallmark of aggressive cancers. We sought to develop and validate a composite “PanRibo-515 score” reflecting RiBi activity across multiple tumor types, assess its prognostic significance, and explore its relationship with immune checkpoint therapy outcomes. Methods: We curated 515 RiBi–associated genes (PanRibo-515) and used a LASSO regression-based strategy on a training dataset (GSE202203) to select the prognostically most relevant subset of 68 genes (OncoRibo-68). Directionality (positive or negative impact on survival) was assigned based on the sign of the LASSO coefficients. We integrated a forward selection approach to identify a refined subset of genes for computing the OncoRibo-68 score. For validation, patients in The Cancer Genome Atlas (TCGA) were stratified into high or low OncoRibo-68 score groups for survival analyses. Additional validation for immunotherapy response was conducted using bioinformatic platforms used for immunotherapy response analysis. Results: A higher OncoRibo-68 score consistently correlated with poorer overall and progression-free survival across multiple cancers. Elevated OncoRibo-68 score was linked to an immunosuppressive tumor microenvironment, but interestingly to increased response to checkpoint inhibitors. Conclusions: Our findings highlight RiBi as an important determinant of tumor aggressiveness and identify the OncoRibo-68 score as a promising biomarker for risk stratification and therapy selection. Future research may evaluate whether targeting RiBi pathways could enhance treatment efficacy, particularly in combination with immunotherapy. Full article
Show Figures

Figure 1

14 pages, 1813 KiB  
Article
Elevated Antigen-Presenting-Cell Signature Genes Predict Stemness and Metabolic Reprogramming States in Glioblastoma
by Ji-Yong Sung and Kihwan Hwang
Int. J. Mol. Sci. 2025, 26(15), 7411; https://doi.org/10.3390/ijms26157411 - 1 Aug 2025
Viewed by 271
Abstract
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on [...] Read more.
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on tumor-intrinsic phenotypes remains underexplored. We analyzed both bulk- and single-cell RNA sequencing datasets of GBM to investigate the association between APC gene expression and tumor-cell states, including stemness and metabolic reprogramming. Signature scores were computed using curated gene sets related to APC activity, KEGG metabolic pathways, and cancer hallmark pathways. Protein–protein interaction (PPI) networks were constructed to examine the links between immune regulators and metabolic programs. The high expression of APC-related genes, such as HLA-DRA, CD74, CD80, CD86, and CIITA, was associated with lower stemness signatures and enhanced inflammatory signaling. These APC-high states (mean difference = –0.43, adjusted p < 0.001) also showed a shift in metabolic activity, with decreased oxidative phosphorylation and increased lipid and steroid metabolism. This pattern suggests coordinated changes in immune activity and metabolic status. Furthermore, TNF-α and other inflammatory markers were more highly expressed in the less stem-like tumor cells, indicating a possible role of inflammation in promoting differentiation. Our findings revealed that elevated APC gene signatures are associated with more differentiated and metabolically specialized GBM cell states. These transcriptional features may also reflect greater immunogenicity and inflammation sensitivity. The APC metabolic signature may serve as a useful biomarker to identify GBM subpopulations with reduced stemness and increased immune engagement, offering potential therapeutic implications. Full article
(This article belongs to the Special Issue Advanced Research on Cancer Stem Cells)
Show Figures

Figure 1

55 pages, 6122 KiB  
Review
Isorhamnetin: Reviewing Recent Developments in Anticancer Mechanisms and Nanoformulation-Driven Delivery
by Juie Nahushkumar Rana, Kainat Gul and Sohail Mumtaz
Int. J. Mol. Sci. 2025, 26(15), 7381; https://doi.org/10.3390/ijms26157381 - 30 Jul 2025
Viewed by 219
Abstract
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This [...] Read more.
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This review comprehensively explores the mechanisms by which isorhamnetin exerts its anticancer effects, including cell cycle regulation, apoptosis, suppression of metastasis and angiogenesis, and modulation of oxidative stress and inflammation. Notably, isorhamnetin arrests cancer cell proliferation by regulating cyclins, and CDKs induce apoptosis via caspase activation and mitochondrial dysfunction. It inhibits metastatic progression by downregulating MMPs, VEGF, and epithelial–mesenchymal transition (EMT) markers. Furthermore, its antioxidant and anti-inflammatory properties mitigate reactive oxygen species (ROS) and pro-inflammatory cytokines, restricting cancer progression and modulating tumor microenvironments. Combining isorhamnetin with other treatments was also discussed to overcome multidrug resistance. Importantly, this review integrates the recent literature (2022–2024) and highlights isorhamnetin’s roles in modulating cancer-specific signaling pathways, immune evasion, tumor microenvironment dynamics, and combination therapies. We also discuss nanoformulation-based strategies that significantly enhance isorhamnetin’s delivery and bioavailability. This positions isorhamnetin as a promising adjunct in modern oncology, capable of improving therapeutic outcomes when used alone or in synergy with conventional treatments. The future perspectives and potential research directions were also summarized. By consolidating current knowledge and identifying critical research gaps, this review positions Isorhamnetin as a potent and versatile candidate in modern oncology, offering a pathway toward safer and more effective cancer treatment strategies. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation, 2nd Edition)
Show Figures

Figure 1

19 pages, 1716 KiB  
Review
Combination Therapy Using Phytochemicals and PARP Inhibitors in Hybrid Nanocarriers: An Optimistic Approach for the Management of Colon Cancer
by Mohammad Javed Qureshi, Gurpreet Kaur Narde, Alka Ahuja, Dhanalekshmi Unnikrishnan Meenakshi and Khalid Al Balushi
Int. J. Mol. Sci. 2025, 26(15), 7350; https://doi.org/10.3390/ijms26157350 - 30 Jul 2025
Viewed by 345
Abstract
DNA damage repair is a hallmark of any cancer growth, eventually leading to drug resistance and death. The poly ADP-ribose polymerase (PARP) enzyme is vital in repairing damaged DNA in normal and cancer cells with mutated DNA damage response (DDR) genes. [...] Read more.
DNA damage repair is a hallmark of any cancer growth, eventually leading to drug resistance and death. The poly ADP-ribose polymerase (PARP) enzyme is vital in repairing damaged DNA in normal and cancer cells with mutated DNA damage response (DDR) genes. Inhibitors of the PARP enzyme aid in chemotherapy, as shown by drug combinations such as Olaparib and Irinotecan in breast cancer treatment. However, the effect of Olaparib in colon cancer has not been studied extensively. Synthetic drugs have a significant limitation in cancer treatment due to drug resistance, leading to colon cancer relapse. Bioavailability of Olaparib and other PARP inhibitors is limited due to their hydrophobicity, which poses a significant challenge. These limitations and challenges can be addressed by encapsulating Olaparib in nanoparticles that could possibly increase the bioavailability of the drug at the site of action. New age nanoparticles, such as hybrid nanoparticles, provide superior quality in terms of design and circulatory time of the drug in the plasma. The side effects of Olaparib as a chemotherapeutic pave the way for exploring phytochemicals that may have similar effects. The combined impact of Olaparib and phytochemicals such as genistein, resveratrol and others in nano-encapsulated form can be explored in the treatment of colon cancer. Full article
(This article belongs to the Special Issue Anticancer Drug Discovery Based on Natural Products)
Show Figures

Figure 1

21 pages, 2831 KiB  
Review
IL-20 Subfamily Biological Effects: Mechanistic Insights and Therapeutic Perspectives in Cancer
by Valentina Maggisano, Maria D’Amico, Saveria Aquila, Francesca Giordano, Anna Martina Battaglia, Adele Chimento, Flavia Biamonte, Diego Russo, Vincenzo Pezzi, Stefania Bulotta and Francesca De Amicis
Int. J. Mol. Sci. 2025, 26(15), 7320; https://doi.org/10.3390/ijms26157320 - 29 Jul 2025
Viewed by 175
Abstract
The interleukin-20 (IL-20) cytokine subfamily, a subset of the IL-10 superfamily, includes IL-19, IL-20, IL-22, IL-24, and IL-26. Recently, their involvement in cancer biology has gained attention, particularly due to their impact on the tumor microenvironment (TME). Notably, IL-20 subfamily cytokines can exert [...] Read more.
The interleukin-20 (IL-20) cytokine subfamily, a subset of the IL-10 superfamily, includes IL-19, IL-20, IL-22, IL-24, and IL-26. Recently, their involvement in cancer biology has gained attention, particularly due to their impact on the tumor microenvironment (TME). Notably, IL-20 subfamily cytokines can exert both pro-tumorigenic and anti-tumorigenic effects, depending on the context. For example, IL-22 promotes tumor growth by enhancing cancer cell proliferation and protecting against apoptosis, whereas IL-24 demonstrates anti-tumor activity by inducing cancer cell death and inhibiting metastasis. Additionally, these cytokines influence macrophage polarization—an essential factor in the immune landscape of tumors—thereby modulating the inflammatory environment and immune evasion strategies. Understanding the dual role of IL-20 subfamily cytokines within the TME and their interactions with cancer cell hallmarks presents a promising avenue for therapeutic development. Interleukin-20 receptor antagonists are being researched for their role in cancer therapy, since they potentially inhibit tumor growth and progression. This review explores the relationship between IL-20 cytokines and key cancer-related processes, including growth and proliferative advantages, angiogenesis, invasion, metastasis, and TME support. Further research is necessary to unravel the specific mechanisms underlying their contributions to tumor progression and to determine their potential for targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Advanced Research on Immune Cells and Cytokines (2nd Edition))
Show Figures

Figure 1

18 pages, 1337 KiB  
Article
Dysregulated Alternative Splicing in Breast Cancer Subtypes of RIF1 and Other Transcripts
by Emma Parker, Laura Akintche, Alexandra Pyatnitskaya, Shin-ichiro Hiraga and Anne D. Donaldson
Int. J. Mol. Sci. 2025, 26(15), 7308; https://doi.org/10.3390/ijms26157308 - 29 Jul 2025
Viewed by 288
Abstract
Genome instability is a hallmark of cancer, often driven by mutations and altered expression of genome maintenance factors involved in DNA replication and repair. Rap1 Interacting Factor 1 (RIF1) plays a crucial role in genome stability and is implicated in cancer pathogenesis. Cells [...] Read more.
Genome instability is a hallmark of cancer, often driven by mutations and altered expression of genome maintenance factors involved in DNA replication and repair. Rap1 Interacting Factor 1 (RIF1) plays a crucial role in genome stability and is implicated in cancer pathogenesis. Cells express two RIF1 splice variants, RIF1-Long and RIF1-Short, which differ in their ability to protect cells from DNA replication stress. Here, we investigate differential expression and splicing of RIF1 in cancer cell lines following replication stress and in patients using matched normal and tumour data from The Cancer Genome Atlas (TCGA). Overall RIF1 expression is altered in several cancer types, with increased transcript levels in colon and lung cancers. RIF1 also exhibits distinct splicing patterns, particularly in specific breast cancer subtypes. In Luminal A (LumA), Luminal B (LumB), and HER2-enriched breast cancers (HER2E), RIF1 Exon 31 tends to be excluded, favouring RIF1-Short expression and correlating with poorer clinical outcomes. These breast cancer subtypes also tend to exclude other short exons, suggesting length-dependent splicing dysregulation. Basal breast cancer also shows exon exclusion, but unlike other subtypes, it shows no short-exon bias. Surprisingly, however, in basal breast cancer, RIF1 Exon 31 is not consistently excluded, which may impact prognosis since RIF1-Long protects against replication stress. Full article
(This article belongs to the Special Issue New Advances in Cancer Genomics)
Show Figures

Figure 1

19 pages, 5001 KiB  
Article
Prognostic Potential of Apoptosis-Related Biomarker Expression in Triple-Negative Breast Cancers
by Miklós Török, Ágnes Nagy, Gábor Cserni, Zsófia Karancsi, Barbara Gregus, Dóra Hanna Nagy, Péter Árkosy, Ilona Kovács, Gabor Méhes and Tibor Krenács
Int. J. Mol. Sci. 2025, 26(15), 7227; https://doi.org/10.3390/ijms26157227 - 25 Jul 2025
Viewed by 271
Abstract
Of breast cancers, the triple-negative subtype (TNBC) is characterized by aggressive behavior, poor prognosis and limited treatment options due to its high molecular heterogeneity. Since insufficient programmed cell death response is a major hallmark of cancer, here we searched for apoptosis-related biomarkers of [...] Read more.
Of breast cancers, the triple-negative subtype (TNBC) is characterized by aggressive behavior, poor prognosis and limited treatment options due to its high molecular heterogeneity. Since insufficient programmed cell death response is a major hallmark of cancer, here we searched for apoptosis-related biomarkers of prognostic potential in TNBC. The expression of the pro-apoptotic caspase 8, cytochrome c, caspase 3, the anti-apoptotic BCL2 and the caspase-independent mediator, apoptosis-inducing factor-1 (AIF1; gene AIFM1) was tested in TNBC both in silico at transcript and protein level using KM-Plotter, and in situ in our clinical TNBC cohort of 103 cases using immunohistochemistry. Expression data were correlated with overall survival (OS), recurrence-free survival (RFS) and distant metastasis-free survival (DMFS). We found that elevated expression of the executioner apoptotic factors AIF1 and caspase 3, and of BCL2, grants significant OS advantage within TNBC, both at the mRNA and protein level, particularly for chemotherapy-treated vs untreated patients. The dominantly cytoplasmic localization of AIF1 and cleaved-caspase 3 proteins in primary TNBC suggests that chemotherapy may recruit them from the cytoplasmic/mitochondrial stocks to contribute to improved patient survival in proportion to their expression. Our results suggest that testing for the expression of AIF1, caspase 3 and BCL2 may identify partly overlapping TNBC subgroups with favorable prognosis, warranting further research into the potential relevance of apoptosis-targeting treatment strategies. Full article
(This article belongs to the Special Issue Molecular Research in Triple-Negative Breast Cancer: 2nd Edition)
Show Figures

Figure 1

28 pages, 1210 KiB  
Review
Metformin Beyond Diabetes: A Precision Gerotherapeutic and Immunometabolic Adjuvant for Aging and Cancer
by Abdul Rehman, Shakta Mani Satyam, Mohamed El-Tanani, Sainath Prabhakar, Rashmi Kumari, Prakashchandra Shetty, Sara S. N. Mohammed, Zaina Nafees and Basma Alomar
Cancers 2025, 17(15), 2466; https://doi.org/10.3390/cancers17152466 - 25 Jul 2025
Viewed by 401
Abstract
Metformin, a long-established antidiabetic agent, is undergoing a renaissance as a prototype gerotherapeutic and immunometabolic oncology adjuvant. Mechanistic advances reveal that metformin modulates an integrated network of metabolic, immunological, microbiome-mediated, and epigenetic pathways that impact the hallmarks of aging and cancer biology. Clinical [...] Read more.
Metformin, a long-established antidiabetic agent, is undergoing a renaissance as a prototype gerotherapeutic and immunometabolic oncology adjuvant. Mechanistic advances reveal that metformin modulates an integrated network of metabolic, immunological, microbiome-mediated, and epigenetic pathways that impact the hallmarks of aging and cancer biology. Clinical data now demonstrate its ability to reduce cancer incidence, enhance immunotherapy outcomes, delay multimorbidity, and reverse biological age markers. Landmark trials such as UKPDS, CAMERA, and the ongoing TAME study illustrate its broad clinical impact on metabolic health, cardiovascular risk, and age-related disease trajectories. In oncology, trials such as MA.32 and METTEN evaluate its influence on progression-free survival and tumor response, highlighting its evolving role in cancer therapy. This review critically synthesizes the molecular underpinnings of metformin’s polypharmacology, examines results from pivotal clinical trials, and compares its effectiveness with emerging gerotherapeutics and senolytics. We explore future directions, including optimized dosing, biomarker-driven personalization, rational combination therapies, and regulatory pathways, to expand indications for aging and oncology. Metformin stands poised to play a pivotal role in precision strategies that target the shared roots of aging and cancer, offering scalable global benefits across health systems. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

27 pages, 1049 KiB  
Review
Hallmarks of Cancer Expression in Oral Leukoplakia: A Scoping Review of Systematic Reviews and Meta-Analyses
by Isabel González-Ruiz, Valerie Samayoa-Descamps, Karen Andrea Guagua-Cortez, Miguel Ángel González-Moles and Pablo Ramos-García
Cancers 2025, 17(15), 2427; https://doi.org/10.3390/cancers17152427 - 22 Jul 2025
Viewed by 279
Abstract
Background/Objectives: Oral leukoplakia (OL) is a prevalent oral potentially malignant disorder. Despite its clinical relevance, the molecular basis of its progression to malignancy is not yet fully elucidated. This scoping review of systematic reviews and meta-analyses aimed to synthesize current knowledge and evidence [...] Read more.
Background/Objectives: Oral leukoplakia (OL) is a prevalent oral potentially malignant disorder. Despite its clinical relevance, the molecular basis of its progression to malignancy is not yet fully elucidated. This scoping review of systematic reviews and meta-analyses aimed to synthesize current knowledge and evidence gaps regarding the implications of hallmarks of cancer expression in OL malignant transformation. Methods: A systematic search was conducted in MEDLINE, Embase, DARE, and the Cochrane Library to identify systematic reviews (with or without meta-analysis) published up to April-2025. Results: Twenty-two systematic reviews were included. The most frequently explored hallmark was activation of invasion and metastasis (n = 12; 32.40%), followed by tumor-promoting inflammation (n = 10; 27.03%), evasion of growth suppressors (n = 8; 21.60%), sustained proliferative signaling (n = 3; 8.10%), energy metabolism reprogramming (n = 2; 5.40%), replicative immortality (n = 1; 2.70%), and resistance to cell death (n = 1; 2.70%). No evidence was found for angiogenesis or immune evasion in OL. Conclusions: Available evidence indicates that OL may develop oncogenic mechanisms in early stages of oral oncogenesis, especially those related to sustained proliferation, evasion of growth suppressor signals, and cellular migration and invasion. Chronic inflammation also may facilitate the acquisition of other hallmarks throughout the multistep process of oral carcinogenesis. These findings also reveal evidence gaps in underexplored hallmarks of cancer, which highlights the need to expand future primary- and secondary-level investigations to better define the molecular mechanisms underlying OL malignant transformation. Full article
(This article belongs to the Special Issue Oral Potentially Malignant Disorders and Oral Cavity Cancer)
Show Figures

Figure 1

16 pages, 1980 KiB  
Review
Analyzing the Blueprint: Exploring the Molecular Profile of Metastasis and Therapeutic Resistance
by Guadalupe Avalos-Navarro, Martha Patricia Gallegos-Arreola, Emmanuel Reyes-Uribe, Luis Felipe Jave Suárez, Gildardo Rivera-Sánchez, Héctor Rangel-Villalobos, Ana Luisa Madriz-Elisondo, Itzae Adonai Gutiérrez Hurtado, Juan José Varela-Hernández and Ramiro Ramírez-Patiño
Int. J. Mol. Sci. 2025, 26(14), 6954; https://doi.org/10.3390/ijms26146954 - 20 Jul 2025
Viewed by 409
Abstract
Metastases are the leading cause of cancer-related deaths. The spread of neoplasms involves multiple mechanisms, with metastatic tumors exhibiting molecular behaviors distinct from their primary counterparts. The key hallmarks of metastatic lesions include chromosomal instability, copy number alterations (CNAs), and a reduced degree [...] Read more.
Metastases are the leading cause of cancer-related deaths. The spread of neoplasms involves multiple mechanisms, with metastatic tumors exhibiting molecular behaviors distinct from their primary counterparts. The key hallmarks of metastatic lesions include chromosomal instability, copy number alterations (CNAs), and a reduced degree of subclonality. Furthermore, metabolic adaptations such as enhanced glycogen synthesis and storage, as well as increased fatty acid oxidation (FAO), play a critical role in sustaining energy supply in metastases and contributing to chemoresistance. FAO promotes the infiltration of macrophages into the tumor, where they polarize to the M2 phenotype, which is associated with immune suppression and tissue remodeling. Additionally, the tumor microbiome and the action of cytotoxic drugs trigger neutrophil extravasation through inflammatory pathways. Chemoresistant neutrophils in the tumor microenvironment can suppress effector lymphocyte activation and facilitate the formation of neutrophil extracellular traps (NETs), which are linked to drug resistance. This article examines the genomic features of metastatic tumors, along with the metabolic and immunological dynamics within the metastatic tumor microenvironment, and their contribution to drug resistance. It also discusses the molecular mechanisms underlying resistance to chemotherapeutic agents commonly used in the treatment of metastatic cancer. Full article
(This article belongs to the Special Issue Breast Cancer: From Pathophysiology to Novel Therapies)
Show Figures

Figure 1

21 pages, 5260 KiB  
Review
Disrupting Cell Cycle Machinery: CREPT Is an Emerging Target in Cancer Therapy
by Umar Farooq, Jun Li and Zhijie Chang
Cancers 2025, 17(14), 2401; https://doi.org/10.3390/cancers17142401 - 19 Jul 2025
Viewed by 620
Abstract
The transcriptional co-factor cell-cycle-related and expression-elevated protein in tumors (CREPT) has emerged as a critical driver of the cell cycle and a significant contributor to tumorigenesis. The aberrant expression or upregulation of CREPT boosts multiple signaling pathways, including Wnt/β-catenin, STAT3 and NF-κB/TNFR2, which [...] Read more.
The transcriptional co-factor cell-cycle-related and expression-elevated protein in tumors (CREPT) has emerged as a critical driver of the cell cycle and a significant contributor to tumorigenesis. The aberrant expression or upregulation of CREPT boosts multiple signaling pathways, including Wnt/β-catenin, STAT3 and NF-κB/TNFR2, which are frequently dysregulated in various cancers and are associated with poor overall survival. In preclinical studies, CREPT knockdown via shRNA has demonstrated sustained tumor growth regression. Recent researches have uncovered additional functions of CREPT, including roles in metabolic regulation, tissue repair, and microenvironmental remodeling, further establishing it as a pleiotropic transcriptional regulator. Currently, there is no therapeutic agent that directly inhibits CREPT expression in clinic. However, miRNAs and other methods have been used to target CREPT, which have yielded useful results in inhibiting tumor growth. In this review, we discuss the role of CREPT in the hallmarks of cancer and propose that targeting CREPT will reverse tumor growth and may improve the immune checkpoint inhibitors in combination in CREPT-driven cancers. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Graphical abstract

12 pages, 1344 KiB  
Article
Transcriptomic Profiling of Paired Primary Tumors and CNS Metastases in Breast Cancer Reveals Immune Modulation Signatures
by Ana Julia Aguiar de Freitas, Muriele Bertagna Varuzza, Stéphanie Calfa, Rhafaela Lima Causin, Vinicius Duval da Silva, Cristiano de Pádua Souza and Márcia Maria Chiquitelli Marques
Int. J. Mol. Sci. 2025, 26(14), 6944; https://doi.org/10.3390/ijms26146944 - 19 Jul 2025
Viewed by 341
Abstract
Breast cancer is a leading cause of central nervous system (CNS) metastases in women, often associated with poor prognosis and limited therapeutic options. However, molecular differences between primary tumors and CNS metastases remain underexplored. We aimed to characterize transcriptomic differences between primary breast [...] Read more.
Breast cancer is a leading cause of central nervous system (CNS) metastases in women, often associated with poor prognosis and limited therapeutic options. However, molecular differences between primary tumors and CNS metastases remain underexplored. We aimed to characterize transcriptomic differences between primary breast tumors and matched CNS metastases and identify immune-related biomarkers associated with metastatic progression and patient outcomes. Transcriptomic profiling was based on 11 matched FFPE sample pairs (primary tumor and CNS metastasis). Paired formalin-fixed paraffin-embedded (FFPE) samples from primary tumors (T1) and CNS metastases (T2) were analyzed using the NanoString nCounter® platform and the PanCancer IO 360™ Gene Expression Panel. Differential gene expression, Z-score transformation, and heatmap visualization were performed in R. In silico survival analyses for overall survival (OS) and recurrence-free survival (RFS) were conducted using publicly available TCGA and GEO datasets. Forty-five genes were significantly differentially expressed between the T1 and T2 samples. Immune-related genes such as CXCL9, IL7R, CD79A, and CTSW showed consistent downregulation in CNS metastases. High expression of CXCL9 and CD79A was associated with improved OS and RFS, whereas high IL7R and CTSW expression correlated with worse outcomes. These findings indicate immune suppression as a hallmark of CNS colonization. Comparative transcriptomic analysis further underscored the distinct molecular landscapes between primary and metastatic tumors. This study highlights transcriptional signatures associated with breast cancer CNS metastases, emphasizing the role of immune modulation in metastatic progression. The identified genes have potential as prognostic biomarkers and therapeutic targets, supporting the need for site-specific molecular profiling in metastatic breast cancer management. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in Brazil, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop